Spring 2014 Problem 2: Consider the four dimensional real vector space

$$V = \{f : \mathbb{Z}/4\mathbb{Z} \to \mathbb{R}\}$$

with the $\mathbb{R}[x]$ -module structure given by shifting so that (xf)(r) = f(r+1). Find a direct sum decomposition of V into irreducible $\mathbb{R}[x]$ modules. **Spring 2014 Problem 4:** Give an example of a ring R and an R module which is projective but not free.

 $\mathbf{2}$

Spring 2015 Problem 4: Find a quotient ring of $\mathbb{Z}[x]$ which is a pid but not a field.

Spring 2015 Problem 5: Let $R = \mathbb{Q}[X]/(X^3 - 2)$.

- (1) Is R a field? Explain.
- (2) Run the extended Euclidean algorithm on $X^3 2$ and $X^2 X + 1$ to find polynomials A(x) and B(x) with

 $A(X)(X^{3}-2) + B(X)(X^{2}-X+1) = \gcd(X^{3}-2, X^{2}-X+1).$

(3) Does $[X^2 - X + 1]$ have a multiplicative inverse in R? If yes, find it.

Fall 2018 Problem 5. Solve the following questions:

- (a) If F is a field, prove that F[x]/(f(x)) is a field if and only if f(x) is irreducible over F.
- (b) Show that $f(x) = x^2 + 2x + 2$ is irreducible in $\mathbb{Q}[x]$, and find the inverse of 1 + x in $\mathbb{Q}[x]/(f(x))$.

Fall 2017 Problem 4. Find all maximal ideals in the ring $\mathbb{F}_7[x]/(x^2+1)$ and the ring $\mathbb{F}_7[x]/(x^3+1)$.

6

Fall 2016 Problem 4. Let $I, J \subseteq R$ be ideals in a principle ideal domain R. Prove that I + J = R iff $IJ = I \cap J$. Fall 2014 Problem 4. List all ideals of $\mathbb{F}_p[x]/(x^2 + x - 6)$ when (a) p = 7(b) p = 5.

8

Fall 2015 Problem 4. Let *I* denote the ideal in the ring $\mathbb{Z}[x]$ generated by 5 and $x^3 + x + 1$. Is *I* a prime ideal?