Fall 2012 Problem 1:

(1) Can a vector space over an infinite field be a finite union

$$V = \cup_{i=1}^{k} V_i$$

where for each $i, V_i \neq V$? (2) Can the group $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ be a union of fnitely many proper subgroups?

Spring 2013 Problem 1: Let A be a *Boolean ring*, i.e., $a^a = a$ for all $a \in A$. Show that the ring A is commutative.

Fall 2012 Problem 4: Let R be a commutative ring and I an ideal in R. Prove or disprove: The set $\sqrt{I} := \{a \in R : \exists n \in \mathbb{N}, n > 0, a^n \in I\}$ is an ideal.

Spring 2016 Problem 6: Find the smallest integer $c \ge 0$ for which

$$R_c := \mathbb{Z}[n]/(c, x^2 - 2)$$

is

- (1) a domaiin
- (2) a field.

Spring 2014 Problem 5. Let V be a linear representation of the group G over the field $\mathbb{Q}[\sqrt{2}]$, and let $\chi: G \to \mathbb{Q}[\sqrt{2}]$ be its character. Then V is also a vector space $V_{\mathbb{Q}}$ over \mathbb{Q} , and is again a linear representation of G. Express its character $\chi_{\mathbb{Q}}$ in term of the original character χ .

Spring 2015 Problem 3. Show that if G is an infinite simple group then every proper subgroup has infinitely many conjugates. Use this to conclude that G has an infinite automorphism group.

Spring 2012 Problem 5. Find the number of field homomorphisms $\phi : \mathbb{Q}[2^{\frac{1}{3}}] \to \mathbb{C}$.

Spring 2014 Problem 1. Find the smallest order of a group which is not cyclic and not isomorphic to a subgroup of the symmetric group Σ_5 .

8