MAT 249, 2021, Day 2, Tensors

- (1) **Fall 2020 Problem 3.** Let R be a commutative ring with unit, and let M, N be R-modules whose underlying set is finite. Prove that $M \otimes_R N$ is also a finite set.
- (2) Fall 2019 Problem 4.
 - (a) If R is a commutative ring with unit, and M, N are R-modules, how does one describe the R-module structure of $M \otimes_R N$?
 - (b) Let M be the module over $R = \mathbb{Z}[x]$ whose total space is \mathbb{Z} , such that x acts by multiplication by -1. Compute the tensor product $M \otimes_R M$ as an R-module.
- (3) Fall 2018 Problem 2. Let \mathbb{H} be the real quarternions. Then $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{H}$ is isomorphic to which of the following rings? Prove your answer.
 - (a) $\mathbb{C} \times \mathbb{C}$
 - (b) $\mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}$
 - (c) $\mathcal{M}_2(\mathbb{C})$
 - (d) $\mathcal{M}_2(\mathbb{R})$
 - (e) $\mathcal{M}_2(\mathbb{H})$
 - (f) $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$
- (4) Fall 2018 Problem 4. Solve the following:
 - (a) Prove that $R/I \otimes_R R/J \cong R/(I+J)$ for R a commutative ring, and $I, J \subset R$ are ideals.
 - (b) Find the dimension of $\mathbb{Q}[x,y]/(x^2+y^2) \otimes_{\mathbb{Q}[x,y]} \mathbb{Q}[x,y]/(x+y^3)$ as a vector space over \mathbb{Q} , or explain why it is infinite.
- (5) **Fall 2016 Problem 6.** Show that the \mathbb{R} -modules $L = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $M = \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic.
- (6) **Fall 2014 Problem 6.** If R is a commutative ring with identity, and S a multiplicative subset, then every ideal J of $S^{-1}R$ is of the form $S^{-1}I$ for some ideal I of R. Is I uniquely determined by J? Why or why not?
- (7) Fall 2013 Problem 2. Consider an attempt to make an R-linear map

$$f:\mathbb{C}\otimes_{\mathbb{C}}\mathbb{C}\to\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$$

or

$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}\to\mathbb{C}\otimes_{\mathbb{C}}\mathbb{C},$$

in either direction given be the formula $f(x \otimes y) = x \otimes y$. In which direction is this map well defined? Is it then surjective? Is it injective?

- (8) Winter 2009 Problem 4: Let P be any set of primes in Z. Find a commutative ring R containing Z for which the irreducible elements are precisely units times elements of P. (Hint: consider Z[1/2] = {a/2r} ⊆ Q).
- (9) Fall 2009 Problem 5: Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \oplus \mathbb{C}$ are isomorphic as \mathbb{C} -algebras.
- (10) Winter 2008 Problem 5: What are the possible orders of the tensor product as Z modules of two Abelian groups which each have order 25?