MAT 249, 2021, Day 4, Fields

- (1) Fall 2020 Problem 5: Let F be a field of characteristic p that is not prefect (so, not every element in F is a p-th power of another). Show that there exist inseparable irreducible polynomials in F[x].
- (2) **Fall 2020 Problem 6:** Suppose that E is a Galois extension of a field F such that $[E, F] = 5^3 \cdot 43^2$. Prove that there exist fields K_1 and K_2 lying strictly between F and E with the following properties:
 - (a) each K_i is a Galois extension of F
 - (b) $K_1 \cap K_2 = F;$
 - (c) $K_1 K_2 = E$.
- (3) Fall 2019 Problem 3: Let $\zeta = \exp(2\pi i/5)$ a primitive fifthroot of unity.
 - (a) Find the degree of the field extension [Q[ζ] : Q], and describe a basis of Q[ζ] as a vectorspace over Q.
 - (b) Show that $G = \operatorname{Aut}(\mathbb{Q}\zeta]/\mathbb{Q})$ is isomorphic to \mathbb{Z}_4 .
 - (c) Describe the action of G as matrices in the basis from the first part.
 - (d) Let H ⊂ G be the order two subgroup {1, a²}, where a is a generator of G. Describe the field F of elements of Q(ζ) preserved by his subgroup. What's the degee [F : Q]?
- (4) Fall 2018 Problem 3: Let $f = x^4 14x^2 + 9 \in \mathbb{Q}[x]$. Compute the Galois group of f.
- (5) **Fall 2017 Problem 1:** Suppose that $F \subseteq K$ is an inclusion of fields and let $\alpha, \beta \in K$ be two elements which are algebraic over F. Show that $\alpha + \beta$ is also algebraic over F.
- (6) Fall 2017 Problem 2: Let $f \in \mathbb{Q}[x]$ be the minimal polynomial of $1 + \sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} , and let K be the splitting field for f over \mathbb{Q} . What is $[K:\mathbb{Q}]$ and what is $\operatorname{Gal}(K/\mathbb{Q})$? (Note that you are not required to find f.)
- (7) **Fall 2016 Problem 5:** Let F be a finite field and let L be a subfield of F generated by elements of the form x^3 for all $x \in F$. Prove that if $L \neq F$, the F has exactly 4 elements.
- (8) Fall 2015 Problem 6: Find the \mathbb{Q} dimension of the splitting field over \mathbb{Q} of $x^5 3$.
- (9) **Fall 2013 Problem 5:** Is it possible to have a field extension $F \subseteq K$ with [K:F] = 2, where both fields F and K are isomorphic to the field $\mathbb{Q}(x)$?
- (10) Fall 2013 Problem 6: Compute $[\mathbb{Q}(\sqrt{2},\sqrt{3}) : \mathbb{Q}]$ and find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} .
- (11) **Fall 2009 Problem 2:** The field extensions $\mathbb{Q}(\sqrt{\sqrt{2}})/\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ are both Galois. Show that $\mathbb{Q}(\sqrt{\sqrt{2}})/\mathbb{Q}$ is not Galois.
- (12) Fall 2004 Problem 6: Construct infinitely many nonisomorphic quadratic extensions of \mathbb{Q} and use these to show that the Abelianization of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ is not finitely generated.