MAT 249, 2021, Day 5, Ideals

- (1) Fall 2020 Problem 2. Let D be a Principal Ideal Domain (PID). Show that every proper ideal in D is a product $\mathbf{m}_1\mathbf{m}_2\cdots\mathbf{m}_k$ of maximal ideals, which are uniquely determined up to order.
- (2) Fall 2018 Problem 5. Solve the following questions:
 - (a) If F is a field, prove that F[x]/(f(x)) is a field if and only if f(x) is irreducible over F.
 - (b) Show that $f(x) = x^2 + 2x + 2$ is irreducible in $\mathbb{Q}[x]$, and find the inverse of 1 + x in $\mathbb{Q}[x]/(f(x))$.
- (3) **Fall 2017 Problem 4.** Find all maximal ideals in the ring $\mathbb{F}_7[x]/(x^2+1)$ and the ring $\mathbb{F}_7[x]/(x^3+1)$.
- (4) **Fall 2016 Problem 4.** Let $I, J \subseteq R$ be ideals in a principle ideal domain R. Prove that I + J = R iff $IJ = I \cap J$.
- (5) Fall 2015 Problem 4. Let *I* denote the ideal in the ring $\mathbb{Z}[x]$ generated by 5 and $x^3 + x + 1$. Is *I* a prime ideal?
- (6) Fall 2014 Problem 4. List all ideals of F_p[x]/(x² + x − 6) when
 (a) p = 7
 (b) p = 5.
- (7) **Fall 2012 Problem 4.** Let R be a commutative ring and I an ideal in R. Prove or disprove: The set $\sqrt{I} = \{a \in R : \exists n \in \mathbb{N}, n > 0, a^n \in I\}$ is an ideal.
- (8) Fall 2010 Problem 4. Consider the ring $R = \mathbb{Z}[x]$. Give an example, with a proof, of an ideal in R which is not principal and of an ideal that is not prime.