MAT 249, 2021, Day 7, Rings

- (1) **Fall 2017 Problem 3.** Let $M_n(\mathbb{R})$ denote the ring of $n \times n$ matrices over \mathbb{R} , and consider a (possibly non-unital) ring homomorphism $f: M_{n+1}(\mathbb{R}) \to M_n(\mathbb{R})$. Can f be nonzero?
- (2) **Fall 2014 Problem 6.** If R is a commutative ring with identity, and S a multiplicative subset, then every ideal J of $S^{-1}R$ is of the form $S^{-1}I$ for some ideal I of R. Is I uniquely determined by J? Why or why not?
- (3) Fall 2011 Problem 1. Show that there is no commutative ring with identity whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} .
- (4) Fall 2011 Problem 6. Prove or disprove: $(\mathbb{Z}/35\mathbb{Z})^{\times} \cong (\mathbb{Z}/39\mathbb{Z})^{\times} \cong (\mathbb{Z}/45\mathbb{Z})^{\times} \cong (\mathbb{Z}/70\mathbb{Z})^{\times} \cong (\mathbb{Z}/78\mathbb{Z})^{\times} \cong (\mathbb{Z}/90\mathbb{Z})^{\times}$. Here $\cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ is the group of units in $(\mathbb{Z}/n\mathbb{Z})$.
- (5) **Fall 2010 Problem 5.** Let R be a ring with identity. Recall that $x \in R$ is called *nilpotent* if $x^n = 0$ for some n. Prove that if x is nilpotent, then 1 + x is invertible.
- (6) Winter 2008 Problem 3. Recall that if R is a ring, an R-module M is projective means: If f : A → B is a homomorphism between two other R-modules and if g : M → B is a homomorphism, then there is always a solution h : M → A to the equation g = fh. Prove that among Z-modules only the cyclic modules Z/n which is projective is Z/0 = Z.
- (7) Winter 2008 Problem 4. Prove that $M_n(\mathbb{C})$ the algebra of $n \times n$ complex matrices, has no non-trivial two-sided ideals.