
TORIC VECTOR BUNDLES AND PARLIAMENTS OF POLYTOPES

SANDRA DI ROCCO, KELLY JABBUSCH, AND GREGORY G. SMITH

ABSTRACT. We introduce a collection of convex polytopes associated to a torus-equivariant vector
bundle on a smooth complete toric variety. We show that the lattice points in these polytopes
correspond to generators for the space of global sections and we relate edges to jets. Using the
polytopes, we also exhibit toric vector bundles that are ample but not globally generated, and toric
vector bundles that are ample and globally generated but not very ample.

1. OVERVIEW OF RESULTS

The importance and prevalence of toric varieties stems from their calculability and their close
relation to polyhedral objects. The challenge is to emulate this success and enlarge the class of
varieties with both features. Rather than contemplating spherical varieties or all T -varieties, we
extend the theory of toric varieties by studying torus-equivariant vector bundles and their projective
bundles. Motivated by the ensuing simplifications in the toric dictionary between line bundles and
polyhedra, we concentrate on vector bundles over a smooth complete toric variety. The goal of this
paper is to give explicit polyhedral interpretations for properties of these vector bundles.

To accomplish this goal, we fix a smooth complete toric variety X , over C, associated to the fan Σ.
Let M denote the character lattice of the dense torus in X and write v1,v2, . . . ,vn ∈HomZ(M,Z) for
the unique minimal generators of the rays in Σ. A toric vector bundle on X is a torus-equivariant
locally-free OX -module E of finite rank r. The celebrated Klyachko classification proves that E
corresponds to a finite-dimensional vector space E ∼= Cr equipped with compatible decreasing
filtrations E ⊇ ·· · ⊇ E i( j) ⊇ E i( j+1) ⊇ ·· · ⊇ 0 where 1 6 i 6 n and j ∈ Z; see Section 2. This
collection of linear subspaces embeds into the lattice of flats for a distinguished matroid M(E ). For
each element e in the ground set of the matroid M(E ), we introduce the convex polytope

Pe :=
{

u ∈M⊗ZR : 〈u,vi〉6max
(

j ∈ Z : e ∈ E i( j)
)

for all 16 i6 n
}
.

The set of all such polytopes Pe is called the parliament of polytopes for E ; see Section 3. Although
the defining half-spaces for the polytopes Pe together with the elements e in the ground set of M(E )
encode the filtrations, the polytopes themself may be empty; compare with Remark 3.6.

The following result gives the first substantive connection between the parliament of polytopes
and the toric vector bundle.

Proposition 1.1. The lattice points in the polytopes of the parliament for E correspond to the
torus-equivariant generators for the space of global sections of E .

Example 3.5 recovers the polytope associated to a toric line bundle on X . However, when the rank
of E is greater than 1, Example 3.8 demonstrates that the lattice points in the polytopes of the
parliament need not yield a basis for the space of global sections. This highlights the key difference
between higher-rank toric vector bundles and toric line bundles: toric vector bundles depend on
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both the combinatorics of the polytopes Pe and the properties of the elements e in the ground set of
the matroid M(E ). For line bundles, we may overlook the elements indexing the polytope because
linear algebra in a one-dimensional vector space is trivial. Our criterion for deciding whether a toric
vector bundle is globally generated underscores this distinction.

To outline this criterion, consider a maximal cone σ ∈ Σ. The restriction of the toric vector
bundle E to the affine open toric variety Uσ splits equivariantly as a direct sum of toric line bundles.
Since toric line bundles on Uσ correspond to lattice points in M, we obtain a multiset u(σ)⊂M of
associated characters for each maximal cone σ ∈ Σ; see Section 2. With this notation, we have our
second result.

Theorem 1.2. A toric vector bundle is globally generated if and only if, for all maximal cones σ ∈ Σ,
the associated characters in u(σ) are vertices of polytopes in the parliament and the elements
indexing these polytopes form a basis in the matroid M(E ).

Example 4.4 demonstrates that global generation is not simply a property of the individual polytopes
in the parliament, and Example 5.5 shows that the higher-cohomology groups of a globally-generated
ample toric vector bundle may be nonzero.

The parliament of polytopes for E gives new insights into the projective bundle P(E ). This
is particularly relevant for the positivity properties of E defined by the corresponding attribute
for the tautological line bundle OP(E )(1). For instance, we may picture the restriction of E to a
torus-invariant curve in X as the normalized distances between appropriately matched characters
associated to E ; see Section 4. Hence, Theorem 2.1 in [HMP] allows us to quickly recognize ample
and nef toric vector bundles. Exploiting our polyhedral interpretations, Example 5.3 exhibits a
toric vector bundle F on P2 that is ample but not globally generated, and Example 6.4 exhibits a
toric vector bundle H on P2 that is ample and globally generated but not very ample. Better still,
Proposition 5.4 and Remark 6.8 prove that F and H have the minimal rank among all toric vector
bundles on Pd with the given traits. Beyond answering Question 7.5 in [HMP], these examples
reinforce the conventional wisdom that versions of positivity that coincide for line bundles diverge
for higher-rank vector bundles.

The discrete geometry within the parliament of polytopes nevertheless captures the positivity
of jets. In contrast with the conventional wisdom, several forms of higher-order positivity are
equivalent for toric vector bundles. A vector bundle E separates `-jets for ` ∈ N if, for every closed
point x ∈ X with maximal ideal mx ⊆ OX , the natural map H0(X ,E )→ H0(X ,E ⊗OX OX/m

`+1
x ) is

surjective; see Section 6. As an enhancement of Theorem 1.2, Theorem 6.2 establishes that a toric
vector bundle E separates `-jets if and only if certain edges in the polytopes of the parliament have
normalized length at least `. This leads to the following equivalences.

Theorem 1.3. A toric vector bundle E separates `-jets if and only if it is `-jet ample. Moreover, a
toric vector bundle E separates 1-jets if and only if it is very ample.

Unlike arbitrary vector bundles on a smooth projective variety, these versions of positivity coincide
for toric vector bundles. Specializing to line bundles, we recover the main theorems in [DiR]. We
also obtain a polyhedral characterization for very ampleness; see Corollary 6.7.
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Future directions. The introduction of the parliament of polytopes for a toric vector bundle
suggests some new research projects. The most straightforward advances would provide polyhedral
interpretations for other properties of toric vector bundles. For example, we suspect that a toric
vector bundle is big if and only if some Minkowski sum of the polytopes in the parliament is full-
dimensional. For a globally-generated toric vector bundle E , the complete linear series of OP(E )(1)
maps the projective bundle P(E ) into projective space. Can one characterize the homogeneous
equations of the image in terms of combinatorial commutative algebra? If so, then one expects a
description of the initial ideals via regular triangulations; compare with Section 8 in [Stu]. Since
there exists ample, but not globally generated, line bundles on varieties of the form P(E ), this class
of varieties makes an interesting testing ground for Fujita’s conjecture; see Conjecture 10.4.1 in
[La2]. More ambitiously, for an ample toric vector bundle E , one could even ask for an effective
polyhedral bound on m ∈ N such that Symm(E ) is globally generated or very ample. Finally, we
wonder if there are natural topological hypotheses on the parliament of polytopes which imply that
all of the higher-cohomology groups vanish.

Conventions. Throughout the document, N denotes the nonnegative integers and X is a smooth
complete toric variety over the complex numbers C. The linear subspace generated by the vec-
tors e1,e2, . . . ,em in a C-vector space is denoted by span(e1,e2, . . . ,em), and the polyhedral cone
generated by the vectors v1,v2, . . . ,vm in a R-vector space is denoted by pos(v1,v2, . . . ,vm).

Acknowledgements. We thank Alex Fink, Milena Hering, Nathan Ilten, Diane Maclagan, Bernt
Ivar Utstøl Nødland, Sam Payne, Vic Reiner, Mike Roth, and Frank Sottile for helpful conversations.
We especially thank an anonymous referee for wonderfully constructive feedback and for suggesting
Example 3.7. The first author was partially supported by the Vetenskapsrådet grants NT:2010-5563
and NT:2014-4736, the second was partially supported by the Göran Gustafsson Stiftelse, and the
third was partially supported by NSERC.

2. BACKGROUND ON TORIC VECTOR BUNDLES

In this section, we collect the needed definitions and notation for toric varieties and vector bundles.
Let X be a smooth complete d-dimensional toric variety, over C, determined by the strongly

convex rational polyhedral fan Σ in N⊗ZR∼= Rd , where N is a lattice of rank d. The dual lattice is
M := HomZ(N,Z), and the dense algebraic torus acting on X is T := SpecC[M]. For σ ∈ Σ, the
corresponding affine toric variety is Uσ := SpecC[σ∨∩M], where σ∨ denotes the dual cone. The
j-dimensional cones of Σ form the set Σ( j). For each maximal cone σ ∈ Σ(d), the corresponding
T -fixed point is xσ ∈ X . We order the 1-dimensional cones Σ(1) (also known as rays) and, for
1 6 i 6 n, we write vi ∈ N for the unique minimal generator of the i-th ray. The i-th ray also
corresponds to the irreducible T -invariant divisor Di on X , and the divisors D1,D2, . . . ,Dn generate
the group DivT (X)∼=Zn of T -invariant divisors. Since X is complete, there is a short exact sequence

0−→M div−−→ DivT (X)−→ Pic(X)−→ 0
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where divu := 〈u,v1〉D1 + 〈u,v2〉D2 + · · ·+ 〈u,vn〉Dn and the second map is the projection from
the group of divisors to the Picard group. The invertible sheaf or line bundle associated to a divisor
D ∈ DivT (X) is denoted by OX(D). For more information on toric varieties, see [CLS] or [Ful].

A toric vector bundle is a locally-free OX -module E of finite rank r equipped with a T -action
that is compatible with the T -action on X . In other words, there exists a T -action on the variety
V(E ) := Spec(SymE ) such that the projection map π : V(E )→ X is T -equivariant and T acts
linearly on the fibres. For all σ ∈ Σ, there is also an induced T -action on the C-vector spaces of
sections H0(Uσ ,E ), where Uσ is the corresponding affine toric variety. Given a lattice point u ∈M,
the trivial line bundle OX(divu) has a canonical T -equivariant structure. Explicitly, for all σ ∈ Σ,
we have

H0(Uσ ,OX(divu)
)
=

⊕
u′∈σ∨∩M

C ·χu′−u ⊂ T ,

where χu′,χu are the characters associated to the lattice points u′,u ∈ M; the identity in this
semigroup is χ−u. As in [HMP], we follow the standard convention in invariant theory for the
action of the group on the ring of functions, even though the opposite sign convention is more
common in the toric literature.

Every toric line bundle on the affine toric variety Uσ is T -equivariantly isomorphic to a line bundle
OX(divu)|Uσ

, where the class u of the lattice point u in Mσ := M/(σ⊥∩M) is uniquely determined.
In addition, any toric vector bundle on an affine toric variety splits T -equivariantly as a direct sum
of toric line bundles whose underlying line bundles are trivial; see Proposition 2.2 in [Pa1]. Hence,
for all σ ∈ Σ, there is a unique multiset u(σ)⊂Mσ such that E |Uσ

∼=
⊕

u∈u(σ)OX(divu)|Uσ
, where

u ∈M is any lift of u. If σ is a maximal cone, then the multiset u(σ)⊂M is uniquely determined
by the toric vector bundle E and the d-dimensional cone σ . We call the multisets u(σ), for all
σ ∈ Σ(d), the associated characters of the toric vector bundle E .

Toric vector bundles are classified in Theorem 0.1.1 of [Kl1] by canonical filtrations. To summa-
rize this classification, let E be the fibre of E over the identity of the torus T , so E is a C-vector
space isomorphic to Cr. The category of toric vector bundles on X is naturally equivalent to the
category of finite-dimensional C-vector spaces E with separated exhaustive decreasing filtrations
{E i( j)} j∈Z, for all 16 i6 n, that satisfy the compatibility condition:

(CC)
For each maximal cone σ ∈ Σ(d), there exists a decomposition
E =

⊕
u∈u(σ)

Lu such that E i( j) = ∑〈u,vi〉> j Lu.

This compatibility condition is equivalent to the T -equivariant splitting into a direct sum of toric
line bundles on the affine open toric variety Uσ , for all σ ∈ Σ(d); see Theorem 1.3.2 in [Kl2].
Indirectly, the decreasing filtrations provide the gluing data needed to assemble these direct sums
into a toric vector bundle. The filtrations being separated and exhaustive, for each 16 i6 n, means
that E i( j) = 0 for all j� 0 and E i( j) = E ∼=Cr for all j� 0, so each filtration contains only finitely
many distinct linear subspaces. Hence, for a fixed i, we may conveniently describe the filtration
{E i( j)} j∈Z via a labelled basis e1,e2, . . . ,er for E ∼= Cr, where each vector ek ∈ E is labelled by an
integer and the linear subspace E i( j) is simply the span of the basis vectors with labels greater than
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or equal to j. For a self-contained exposition of this classification, we recommend Subsection 2.3 in
[Pa1]; Subsection 2.4 in [Pa1] also provides a brief historical summary.

Given a toric vector bundle E , the filtrations {E i( j)} j∈Z have a couple different geometric
interpretations. For all cones σ ∈ Σ and all lattice points u ∈M, evaluating sections at the identity of
the torus T gives an injective map H0(Uσ ,E )u ↪→ E. The image of this map is the linear subspace
Eσ

u ⊆ E. Following Subsection 4.2 in [Pa2], we define a linear subspace Ev( j)⊆ E for all v ∈ N
and all j ∈ Z. Since X is complete, there exists a unique cone σ ∈ Σ containing the lattice point v
in its relative interior. Set Ev( j) := ∑〈u,v〉> j Eσ

u . For any lattice point v ∈ N, the family of linear
subspaces {Ev( j)} j∈Z give a separated exhaustive decreasing filtration of E. When the lattice point
v equals vi for some 16 i6 n, we obtain the filtration {E i( j)} j∈Z.

For the second interpretation of the filtrations, consider a cone σ ∈ Σ and suppose that we have
E |Uσ

∼=
⊕

u∈u(σ)OX(divu)|Uσ
. If the linear subspace Lu ⊆ E is the fibre of OX(divu) over the

identity of the torus T , then we obtain a decomposition E =
⊕

u∈u(σ)Lu. Hence, the linear subspace
Eσ

u′ is spanned by the linear subspaces Lu for which u−u′ ∈ σ∨ and Ev( j) =
⊕
〈u,v〉> j Lu. For each

maximal cone σ ∈ Σ, there exists a subset u(σ)⊂M and a decomposition E =
⊕

u∈u(σ)Eu such
that, for all v ∈ σ and for all j ∈ Z, we have Ev( j) =

⊕
〈u,v〉> j Eu. It follows that Eu =

⊕
u∈u(σ)Lu,

so dimEu equals the multiplicity of u in the multiset u(σ) and u(σ) is the underlying set of
elements in u(σ).

3. GLOBAL SECTIONS AND LATTICE POLYTOPES

This section introduces explicit T -equivariant generators for the global sections of the toric vector
bundle that correspond to the lattice points in a collection of polytopes. Each toric line bundle L
on X corresponds to a rational convex polytope in M⊗ZR. We generalize this correspondence by
associating a finite collection of convex polytopes to a toric vector bundle E . The polytopes in this
collection are indexed by the elements in the ground set of a matroid associated to E .

To describe this matroid, we first observe that the toric vector bundle E determines the finite
poset L(E ), consisting of all the linear subspaces V :=

⋂n
i=1 E i( ji)⊆ E, where ( j1, j2, . . . , jn) ∈ Zn,

ordered by inclusion. Since the filtrations {E i( j)} j∈Z are separated, exhaustive, and decreasing,
we see that 0 ∈ L(E ), E ∈ L(E ), and L(E ) is closed under intersection. Hence, the pair

(
L(E ),∩

)
forms a meet-semilattice. The next result shows that L(E ) embeds into the lattice of flats for a
distinguished representable matroid.

Proposition 3.1. For a toric vector bundle E , there exists a unique matroid M(E ), representable
over C, such that

(M1) the poset L(E ) is isomorphic to a meet-subsemilattice in the lattice of flats,
(M2) among all matroids satisfying (M1), the number of elements in the ground set is minimal, and
(M3) among all matroids satisfying (M1) and (M2), the number of circuits is minimal.

In the language of linear subspace arrangements (and ordering the subspaces by reversed inclusion),
Proposition 3.1 is equivalent to Theorem I.4.9 in [Zie].
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Proof. We verify that Algorithm 3.2 returns a representable matroid M with the desired conditions.
By construction, each linear subspace V in L(E ) is generated by a subset of vectors in the ground

Algorithm 3.2 (Construction of the representable matroid associated to a toric vector bundle).

Input: The poset L(E ) of linear subspaces associated to the toric vector bundle E .
Output: The canonical matroid M(E ) associated to E .

Set r to be the dimension of the largest linear subspace E in L(E );
Initialize G to be a set consisting of a basis vector for each one-dimensional subspace in L(E );
For each integer k from 2 to r do

For each k-dimensional linear subspace V in L(E ) do
Set G′ to be the subset of elements in G that lie in V ;
If the linear subspace span(G′) is a proper subspace in V then

Append to G a basis for a complementary subspace to span(G′) in V ;
Return the linear matroid defined by the vectors in G.

set of the matroid M. The subset of the ground set consisting of all elements contained in V is the
flat FV in M corresponding to V . It follows that span(FV ) =V , rank(FV ) = dim(V ), and the induced
injective map from the poset L(E ) into lattice of flats for M is compatible with intersections. Thus,
the matroid M satisfies the condition (M1).

For any matroid, the lattice of flats is relatively complemented; see Proposition 3.4.4 in [Whi]. It
follows that, for any linear subspace V in L(E ) and any matroid satisfying condition (M1), there
exists a flat F ′ such that the join of FV and F ′ is FE and the meet of FV and F ′ is F{0}. By iterating
from the smallest to the largest linear subspaces in L(E ), the Algorithm 3.2 finds a minimal set of
complementary subspaces for L(E ). Adjoining these to L(E ), we obtain a new meet-semilattice L′

such that the complementary subspaces are minimal among the nonzero subspaces, and every linear
subspace is generated by some collection of minimal nonzero subspaces. Using the terminology
from Section 3.4 in [Whi], we see that the atoms in L′ are the one-dimension linear subspaces in
L(E ) together with the adjoined complementary subspaces. Moreover, L′ is the minimal atomistic
meet-semilattice containing L(E ).

Finally, we claim that the matroid M is the free expansion of L′; see Proposition 10.2.3 in [Whi].
By construction, the ground set of M consists of a basis for each atom in L′, so the number of
elements in the ground set of M equals the number of elements in the ground set of the free expansion
of L′. Moreover, the conditional statement in Algorithm 3.2 implies that a flat D in the matroid M is
dependent if and only if there exists a linear subspace W ∈ L′ such that |D∩FW |> dim(W ). We
conclude that M is the free expansion of L′. Therefore, Proposition 10.2.2 and Proposition 10.2.6 in
[Whi] establish that the matroid M satisfies conditions (M2) and (M3) respectively. �

Remark 3.3. Since E ∈ L(E ), Algorithm 3.2 shows that the number of elements in the ground set
of the matroid M(E ) is at least the rank r of E . To have equality, there must be a basis for E such
that every linear subspace in L(E ) is a direct sum of coordinate subspaces. Hence, the number of
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elements in the ground set of the matroid M(E ) equals r if and only if the toric vector bundle E
splits T -equivariantly into a direct sum of toric line bundles.

For each maximal cone σ ∈ Σ(d), the compatibility condition (CC) is equivalent to saying that
the subposet of L(E ) consisting of the linear subspaces

⋂
vi∈σ E i( ji), where ji ∈ Z, is a distributive

lattice; see Remark 2.2.2 in [Kl1]. Equivalently, the matroid M(E ) contains a compatible basis
Bσ such that each component E i( j), for vi ∈ σ and j ∈ Z, is a direct sum of the corresponding
coordinate subspaces. Example 4.4 demonstrates that, for a given maximal cone σ , there may be
more that basis in M(E ) with this property.

Remark 3.4. For an element e in the ground set of the matroid M(E ) and a linear subspace
V ∈ L(E ), the relation e ∈ V depends only on the matroid M(E ) and not on the choice of a
representation for M(E ). Nevertheless, Algorithm 3.2 does produce a particular representation for
M(E ). This is analogous to a minimal free presentation for a finitely generated graded module over
a polynomial ring: the ranks of the free modules are intrinsic invariants, but the matrix representing
the map depends on the choice of bases; compare with Section 1B in [Eis].

For each element e in the ground set of the matroid M(E ), the associated convex polytope is

Pe :=
{

u ∈M⊗ZR : 〈u,vi〉6max
(

j ∈ Z : e ∈ E i( j)
)

for all 16 i6 n
}
.

Using a traditional term of venery (namely, the collective noun for owls), we call the collection
of all such polytopes Pe the parliament of polytopes for the toric vector bundle E . The number of
polytopes in the parliament for E is at least the rank of E and equals the rank of E precisely when
E splits into a direct sum of toric line bundles; see Remark 3.3.

Extending the classic theorem [CLS, Theorem 4.3.3] for line bundles on a toric variety, we have
the following interpretation for the lattice points in a parliament of polytopes.

Proposition 1.1. The lattice points in the polytopes of the parliament for E correspond to the
T -equivariant generators for the space of global sections of E :

H0(X ,E )∼= ∑
e

span(e⊗χ
−u : u ∈ Pe∩M)⊂ E⊗C T ,

where the sum is over all elements e in the ground set of the matroid M(E ).

Proof of Proposition 1.1. The T -action on the space of global sections yields a decomposition into
isotypical components H0(X ,E )u, where u ∈M. The regular T -eigenfunction χ−u is an element of
H0(X ,E )u and we have H0(X ,E ) =

⊕
u∈M H0(X ,E )u. Since X is complete, at most finitely many

of the isotypical components are nonzero. Following Corollary 4.1.3 in [Kl1], evaluation at the
identity of the torus T gives a canonical isomorphism

H0(X ,E )u =
⋂

σ∈Σ(d)

H0(Uσ ,E )u
∼=−−→

⋂
σ∈Σ(d)

Eσ
u =

n⋂
i=1

E i(〈u,vi〉) .

Since the linear subspace Vu :=
⋂n

i=1 E i(〈u,vi〉) belongs to the poset L(E ), Proposition 3.1 shows
that there exists a flat F in the matroid M(E ) such that span(F) = Vu. Hence, we obtain the
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isomorphism H0(X ,E )u ∼= ∑
e

span(e⊗χ−u : e ∈Vu). Because we have

e ∈Vu ⇐⇒ e ∈ E i(〈u,vi〉) for all 16 i6 n

⇐⇒ 〈u,vi〉6max
(

j ∈ Z : e ∈ E i( j)
)

for all 16 i6 n

⇐⇒ u ∈ Pe∩M ,

we conclude that H0(X ,E )u ∼= ∑
e

span(e⊗χ−u : u ∈ Pe∩M). �

As expected, we recover the description for the global sections of a line bundle.

Example 3.5. Every line bundle L on a smooth toric variety X equals OX(D) for some T -invariant
divisor D = a1D1 +a2D2 + · · ·+anDn. Theorem 6.1.7 in [CLS] establishes that the Cartier divisor
D is determined by a collection {uσ ∈M : σ ∈ Σ(d)}, so we obtain u(σ) = {uσ} for all σ ∈ Σ(d).
The associated continuous piecewise linear function ϕD : NR → R satisfies ϕD(vi) = −ai and
ϕD(v) = 〈uσ ,v〉 for all v ∈ σ . Following Subsection 2.3.1 in [Kl1], the decreasing filtrations
corresponding to L are

E i( j) :=
{
C if j 6 ai
0 if j > ai

for all 16 i6 n.

If e is any nonzero vector in E =C, then the ground set of the matroid M(L ) is {e} and the unique
polytope in the parliament is Pe = {u ∈M⊗ZR : 〈u,vi〉 6 ai}. It follows that Euσ

= E = C for
all σ ∈ Σ(d), so H0(X ,L )u = C when 〈u,vi〉6 ai for all 16 i6 n and H0(X ,L )u = 0 otherwise.
Therefore, we have H0(X ,L ) =

⊕
u∈Pe∩M span(e⊗χ−u). Be aware that we use the opposite sign

convention when compared to either Section 6.1 in [CLS] or Section 3.4 in [Ful]. 3

The polytopes in the parliament also have an attractive reinterpretation as toric line bundles.

Remark 3.6. For each flat F in the matroid M(E ), the associated T -invariant divisor on X is defined
to be DF := a1(F)D1+a2(F)D2+ · · ·+an(F)Dn, where ai(F) := max{ j ∈ Z : span(F)⊆ E i( j)}.
In particular, each flat F gives rise to an toric line bundle OX(DF). When a flat is defined by a
single element e in the ground set of M(E ), the polytope corresponding to OX(De) is simply the
polytope Pe from the parliament for E . By construction, there is a natural map from the filtrations
of the toric vector bundle

⊕
e OX(De) onto the filtrations for the toric vector bundle E . Hence, the

equivalence of categories yields a canonical surjective homomorphism

η :
⊕

e
OX(De)→ E ,

where the sum is over all elements e in the ground set of the matroid M(E ). Rephrasing Proposi-
tion 1.1, we see that the map η induces a surjection on global sections.

Our second example shows that the ground set of the matroid M(E ) may be strictly larger than
the union

⋃
σ∈Σ(d)Bσ of the bases for E that split the filtrations over the maximal cones.
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0

span(e1) span(e1 + e2) span(e1 + e3) span(e2) span(e3)

span(e1,e1 + e2,e2) span(e1 + e2,e1 + e3) span(e1 + e2,e3) span(e1 + e3,e2) span(e2,e3)span(e1,e1 + e3,e3)

E ∼= span(e1,e1 + e2,e1 + e3,e2,e3)

FIGURE 3.7.1. Hasse diagram for the lattice of flats

Example 3.7. To describe a toric vector bundle E of rank 3 on P1×P1, we first specify the fan:
the unique minimal lattice points generating the rays are v1 = (1,0), v2 = (0,1), v3 = (−1,0),
v4 = (0,−1) and the maximal cones are σ1,2 = pos(v1,v2), σ2,3 = pos(v2,v3), σ3,4 = pos(v3,v4),
σ1,4 = pos(v1,v4). If e1,e2,e3 denotes the standard basis of E = C3, then the decreasing filtrations
defining E are

E1( j) =


E if j6−1
span(e1,e2) if −1 < j6 0
span(e1 + e2) if 0 < j6 1
0 if 1 < j ,

E3( j) =


E if j6−1
span(e1,e3) if −1 < j6 0
span(e1 + e3) if 0 < j6 1
0 if 1 < j ,

E2( j) =


E if j6 0
span(e2,e3) if 0 < j6 1
span(e2) if 1 < j6 2
0 if 2 < j ,

E4( j) =


E if j6 0
span(e2,e3) if 0 < j6 1
span(e2) if 1 < j6 2
0 if 2 < j .

It follows that the ground set of matroid M(E ) is {e1,e1+e2,e1+e3,e2,e3}. Figure 3.7.1 represents
its lattice of flats; the flats appearing in M(E ) but not in L(E ) are shaded. On each maximal cone,
the associated characters and the unique choice of compatible basis are

u(σ1,2) = {(1,0),(0,2),(−1,1)} , Bσ1,2 = {e1 + e2,e2,e3} ,
u(σ2,3) = {(−1,0),(1,2),(0,1)} , Bσ2,3 = {e1 + e3,e2,e3} ,
u(σ3,4) = {(−1,0),(1,−2),(0,−1)} , Bσ3,4 = {e1 + e3,e2,e3} ,
u(σ1,4) = {(0,−2),(1,0),(−1,−1)} , Bσ1,4 = {e2,e1 + e2,e3} .

Hence, the parliament for E consists of the following five convex polytopes: Pe1 = conv
(
(0,0)

)
,

Pe1+e2 = conv
(
(1,0)

)
, Pe1+e3 = conv

(
(−1,0)

)
, Pe2 =∅, and Pe3 =∅. Although e1 6∈

⋃
σ∈Σ(2)Bσ ,

we have span(e1) = E1(0)∩E3(0). 3

The lattice points in the parliament of polytopes for a toric vector bundle correspond to a basis if
and only if, for all u ∈M, the subset {e ∈ E : u ∈ Pe} is linearly independent. The next example
illustrates how a single lattice point can correspond to a dependent collection of global sections.

Example 3.8. Consider the tangent bundle TPd on Pd . The minimal lattice points vi gener-
ating the i-th ray in the fan of Pd equals the i-th standard basis vector in Cd for 1 6 i 6 d,
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Pv3

Pv2

Pv1

FIGURE 3.8.2. The parliament of polytopes for TP2

and the additional ray is generated by vd+1 := −v1 − v2 − ·· · − vd . The maximal cones are
σi := pos(v1,v2, . . . ,vi−1,vi+1,vi+2, . . . ,vd+1) for 16 i6 d +1; compare with Example 3.1.10 in
[CLS] or Section 1.4 in [Ful]. Following Subsection 2.3.5 of [Kl1], we identify the fibre E of TPd

over the identity of the torus T with N⊗ZC∼= Cd . Hence, the vectors v1,v2, . . . ,vd also form the
standard basis for E = Cd and the decreasing filtrations defining TPd are

E i( j) =

{E if j 6 0
span(vi) if j = 1
0 if j > 1

for 16 i6 d +1.

Writing w1,w2, . . . ,wd for the dual basis of M corresponding to the basis v1,v2, . . . ,vd ∈N, we have
u(σi) = {w1−wi,w2−wi, . . . ,wi−1−wi,−wi,wi+1−wi,wi+2−wi, . . . ,wd−wi} for 16 i6 d, and
u(σd+1) = {w1,w2, . . . ,wd}. Hence, the ground set of the matroid M(TPd) is {v1,v2, . . . ,vd+1}
and the convex polytopes in the parliament for TPd are

Pvi =
{

u ∈M⊗ZR : 〈u,vi〉6 1 and 〈u,v j〉6 0 for all j 6= i
}
.

The lattice points in the parliament of polytopes for TPd correspond to the following (d + 1)2

global sections: vi⊗ χw j−wi for 1 6 i, j 6 d, vi⊗ χ−wi for 1 6 i 6 d, vd+1⊗ χwi for 1 6 i 6 d,
and vd+1⊗ χ0. The origin 0 ∈M is contained in all d + 1 polytopes, which yields d + 1 global
sections in a d-dimensional vector space. Following Remark 3.6, the flat {vi} in the matroid M(TPd)
corresponds to the toric line bundle OPd(Di) for 1 6 i 6 d + 1, and the flat given by the unique
circuit {v1,v2, . . . ,vd+1} in M(TPd) corresponds to OPd . Hence, we obtain the short exact sequence

0−→ OPd −→
d+1⊕
i=1

OPd(Di)
η−−→TPd −→ 0 ,

which is dual to the classic Euler sequence; see Theorem 8.1.6 in [CLS].
When d = 2, it is possible to visualize the parliament of polytopes. In this case, the associated

characters are u(σ1) = {(−1,0),(−1,1)}, u(σ2) = {(1,−1),(0,−1)}, u(σ3) = {(1,0),(0,1)},
and the convex polytopes are Pv1 = conv

(
(0,0),(1,0),(1,−1)

)
, Pv2 = conv

(
(0,0),(0,1),(−1,1)

)
,

Pv3 = conv
(
(0,0),(−1,0),(0,−1)

)
. In Figure 3.8.2, the associated characters are represented by

asterisks, diamonds, and squares respectively. The polytopes are represented by shaded triangles
and the other lattice point lying in the polytopes is represented by a circle. 3
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4. GLOBALLY GENERATED TORIC VECTOR BUNDLES

In this section, we establish our criterion for deciding whether a toric vector bundle is globally
generated. To detect the global generation of a toric vector bundle E from its parliament of polytopes,
we need a local description for a global section in coordinates near a T -fixed point.

To achieve this, consider a maximal cone σ ∈ Σ(d) and the T -fixed point xσ . By reordering the
rays (if necessary), we assume that σ = pos(v1,v2, . . . ,vd). Since X is a smooth toric variety, the
unique minimal generators w1,w2, . . . ,wd of the dual cone σ∨ form a Z-basis for M. By indexing
the underlying set u(σ) of associated characters, we have u(σ) = {uσ ,1,uσ ,2, . . . ,uσ ,s} ⊂M, for
some integer s satisfying 16 s6 r. Following Section 6.3 in [Kl1], we identify the fibre of E over
the T -fixed point xσ with the C-vector space⊕

u∈u(σ)

Eσ
u

Eσ
>u

=
s⊕

k=1

Eσ
uσ ,k

Eσ
>uσ ,k

∼= Exσ

∼= Cr ,

where Eσ
u :=

⋂d
i=1 E i(〈u,vi〉) and Eσ

>u := ∑06=u′−u∈σ∨ Eσ

u′ = ∑
d
i=1 Eσ

u+wi
; see Section 2. The linear

subspaces Eσ
u and Eσ

>u correspond to flats in the matroid M(E ) that are generated by subsets of any
compatible basis Bσ in M(E ). For a given compatible basis Bσ , this decomposition of the fibre
yields a partition of the set Bσ . Specifically, we have the disjoint union

Bσ =Bσ ,1tBσ ,2t·· ·tBσ ,s

where the subset Bσ ,k consists of all e ∈ Bσ such that e ∈ Eσ
uσ ,k
\Eσ

>uσ ,k
for 1 6 k 6 s. By con-

struction, we see that, for all 16 k 6 s, the quotient space Eσ
uσ ,k

/Eσ
>uσ ,k

is identified with the linear
subspace span(Bσ ,k)⊆ E and the multiplicity of uσ ,k in the multiset u(σ) of associated characters
equals the number of elements in Bσ ,k. With these preliminaries, we have the following technical
lemma.

Lemma 4.1. Let σ = pos(v1,v2, . . . ,vd) be a maximal cone, let u(σ)= {uσ ,1,uσ ,2, . . . ,uσ ,s} be the
underlying set of associated characters, and let Bσ =Bσ ,1tBσ ,2t·· ·tBσ ,s be the corresponding
partition of a compatible basis in M(E ). For each e ∈Bσ , consider the continuous piecewise linear
function on the fan Σ defined by ϕe(vi) := max{ j ∈ Z : e ∈ E i( j)} for all 16 i6 n. If e ∈Bσ ,k for
some 1 6 k 6 s, then we have ϕe(vi) = 〈uσ ,k,vi〉 for all 1 6 i 6 d. In particular, if e ∈ Bσ ,k and
uσ ,k ∈ Pe, then the lattice point uσ ,k is a vertex of the polytope Pe.

Proof. Fix an index k such that 16 k6 s and an element e∈Bσ ,k. Since e∈Bσ ,k ⊂ Eσ
uσ ,k

, it follows
that e ∈ E i(〈uσ ,k,vi〉) for all 1 6 i 6 d, so max{ j ∈ Z : e ∈ E i( j)} > 〈uσ ,k,vi〉 for all 1 6 i 6 d.
Suppose that, for some index i satisfying 16 i6 d, we have max{ j ∈ Z : e ∈ E i( j)}> 〈uσ ,k,vi〉.
It would follow that e⊂ Eσ

uσ ,k+w`
for some minimal generator w` of the dual cone σ∨. However,

this would imply that e ∈ Eσ
>uσ ,k

which contradicts the definition of Bσ ,k. Therefore, we conclude
that max{ j ∈ Z : e ∈ E i( j)}= 〈uσ ,k,vi〉 for all 16 i6 d. Moreover, when e ∈Bσ ,k, the piecewise
linear function ϕσ ,k is simply the support function for the polytope Pe in the parliament for E . Thus,
if e ∈Bσ ,k and uσ ,k ∈ Pe, then we see that the lattice point uσ ,k is a vertex of this polytope. �
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We can now give a local description for a global section around the T -fixed point xσ . The affine
semigroup ring C[σ∨∩M] is the coordinate ring for the affine open set Uσ ⊂ X and is isomorphic to
the polynomial ring C[y1,y2, . . . ,yd] where yi := χ−wi for 16 i6 d. For any compatible basis Bσ

and any vector e′ ∈ E, there exists unique scalars λe ∈ C, for all e ∈Bσ , such that e′ = ∑e∈Bσ
λe e.

By Proposition 1.1, a T -equivariant global section of E has the form e′⊗ χ−u, where e′ ∈ E and
u ∈M. Hence, the section e′⊗χ−u is given in local coordinates near xσ by

(∗) ∑
e∈Bσ

λe

(
e⊗

d

∏
i=1

y−〈u,vi〉+ϕe(vi)
i

)
.

Using this local description, we characterize the global generation of a toric vector bundle via its
parliament of polytopes.

Theorem 1.2. A toric vector bundle E is globally generated if and only if, for all σ ∈ Σ(d), the
associated character u(σ) are vertices of polytopes in the parliament and the elements indexing
these polytopes form a basis in the matroid M(E ).

Proof of Theorem 1.2. As Proposition 1.1 shows, the toric vector bundle E has a T -equivariant
basis of global sections. Hence, the locus in the toric variety X on which all global sections vanish
is closed and T -invariant. Since X is complete, it follows that the toric vector bundle E is globally
generated if and only if it is globally generated at every T -fixed point.

Fix a maximal cone σ = pos(v1,v2, . . . ,vd) ∈ Σ(d), let u(σ) = {uσ ,1,uσ ,2, . . . ,uσ ,s} be the
underlying set of associated characters, and let Bσ =Bσ ,1tBσ ,2t·· ·tBσ ,s be the corresponding
partition of a compatible basis in the matroid M(E ). The toric vector bundle E is globally generated
at the T -fixed point xσ if and only if the evaluation map

evσ : H0(X ,E )→ H0(X ,E ⊗OX/mxσ
)∼= span(Bσ )

is surjective. Since a T -equivariant global section e′⊗χ−u is given in local coordinates near xσ by
(∗), its evaluation at the T -fixed point xσ is given by

∑
e∈Bσ

λe

(
e⊗

d

∏
i=1

y−〈u,vi〉+ϕe(vi)
i

)∣∣∣∣
y1=y2=···=yd=0

.

The e-th summand in this expression has neither a zero nor a pole at (y1,y2, . . . ,yd) = (0,0, . . . ,0)
if and only if we have −〈u,vi〉+ϕe(vi) = 0 for all 16 i6 d. By Lemma 4.1, it follows that there
exists an index k such that e ∈Bσ ,k and u = uσ ,k. In this case, the lattice point uσ ,k is also a vertex
of the polytope Pe in the parliament for E . Hence, the image of a T -equivariant global section under
the evaluation map evσ is nonzero in the fibre at xσ if and only if the global section has the form
∑e∈Bσ ,k

λe(e⊗ χ−uσ ,k), for some 16 k 6 s, which evaluates to ∑e∈Bσ ,k
λe e ∈ Exσ

. Therefore, the
evaluation map evσ is surjective if and only if there exists a compatible basis Bσ such that each
e⊗χ−uσ ,k , for e ∈Bσ ,k and 16 k 6 s, is a global section. �

Using Theorem 1.2, we create a low-rank toric vector bundle on P2 that is not globally generated;
Example 5.3 will show that this low-rank toric vector bundle is also ample.
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Pe1

Pe3

Pe2−e3

Pe1−e2

FIGURE 4.2.3. The parliament of polytopes for F

Example 4.2. To describe a second toric vector bundle F of rank 3 on P2, we use the notation
introduced in Example 3.8. Specifically, the minimal lattice points generating the rays in the
fan are v1 = (1,0), v2 = (0,1), v3 = (−1,−1), and the maximal cones are σ1 = pos(v2,v3),
σ2 = pos(v1,v3), σ3 = pos(v1,v2). If e1,e2,e3 denotes the standard basis of E = C3, then the
decreasing filtrations defining F are

E1( j) =


E if j6−1
span(e1,e2) if −1 < j6 0
span(e1) if 0 < j6 4
0 if 4 < j ,

E3( j) =


E if j6−1
span(e2− e3,e1− e2) if −1 < j6 2
span(e1− e2) if 2 < j6 3
0 if 3 < j ,

E2( j) =


E if j6−2
span(e2,e3) if −2 < j6 0
span(e3) if 0 < j6 3
0 if 3 < j .

It follows that the ground set of the matroid M(F ) is {e1,e1−e2,e2,e2−e3,e3}. On each maximal
cone, the associated characters and the unique choice of compatible bases are

u(σ1) = {(−1,−2),(−2,0),(−2,3)} , Bσ1 = {e1− e2,e2− e3,e3} ,
u(σ2) = {(4,−3),(0,−3),(−1,−1)} , Bσ2 = {e1,e1− e2,e2− e3} ,
u(σ3) = {(4,−2),(0,0),(−1,3)} , Bσ3 = {e1,e2,e3} ,

so the convex polytopes in the parliament for F are

Pe1 = conv
(
(3,−2),(4,−2),(4,−3)

)
, Pe2−e3 = conv

(
(−2,0),(−1,0),(−1,−1)

)
,

Pe1−e2 = conv
(
(−1,−2),(0,−2),(0,−3)

)
, Pe3 = conv

(
(−2,3),(−1,3),(−1,2)

)
,

Pe2 =∅ .

In Figure 4.2.3, the associated characters are represented by asterisks, diamonds, and squares
respectively. The polytopes are represented by shaded triangles and the other lattice points lying
in the polytopes are represented by circles. The square with empty interior represents the unique
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associated character (0,0) that does not lie in any of the polytopes. Therefore, Theorem 1.2 shows
that F is not globally generated. 3

Remark 4.3. Our diagrams for parliaments of polytopes, such as the one appearing in Figure 4.2.3,
have at least some superficial similarities to the twisted polytopes appearing in Section 6 of [KT]. It
would be interesting to develop a more substantive connection.

If all the polytopes in the parliament for a toric vector bundle E correspond to globally-generated
line bundles, then the toric vector bundle E itself is globally-generated. However, the converse is
false. We close this section with a globally-generated toric vector bundle in which some members
of the parliament of polytopes do not correspond to globally-generated line bundles.

Example 4.4. To describe our toric vector bundle G of rank 2 on the first Hirzebruch surface
X = P

(
OP1⊕OP1(1)

)
, we first specify the fan. The minimal lattice points generating the rays are

v1 = (1,0), v2 = (0,1), v3 = (−1,1), v4 = (0,−1), and the maximal cones are σ1,2 = pos(v1,v2),
σ2,3 = pos(v2,v3), σ3,4 = pos(v3,v4), σ1,4 = pos(v1,v4). If e1,e2 denotes the standard basis of
E = C2, then the decreasing filtrations defining G are

E1( j) =

{E if j6−2
span(e1) if −2 < j6 4
0 if 4 < j

E3( j) =

{E if j6 0
span(e2) if 0 < j6 5
0 if 5 < j

E2( j) =

{E if j6 2
span(e1) if 2 < j6 3
0 if 3 < j

E4( j) =

{E if j6−1
span(e1 + e2) if −1 < j6 3
0 if 3 < j .

It follows that the ground set of the matroid M(G ) is {e1,e1 + e2,e2}. On the maximal cones, the
associated characters and a choice of compatible bases are

u(σ1,2) = {(−2,2),(4,3)} Bσ1,2 = {e2,e1}
u(σ2,3) = {(−3,2),(3,3)} Bσ2,3 = {e2,e1}
u(σ3,4) = {(−4,1),(−3,−3)} Bσ3,4 = {e2,e1 + e2}
u(σ1,4) = {(−2,−3),(4,1)} Bσ1,4 = {e1 + e2,e1} .

The convex polytopes in the parliament for G are

Pe1 = conv
(
(1,1),(3,3),(4,3),(4,1)

)
, Pe2 = conv

(
(−4,1),(−3,2),(−2,2),(−2,1)

)
,

Pe1+e2 = conv
(
(−3,−3),(−2,−2),(−2,−3)

)
.

The set {e1+e2,e1} also forms a compatible basis on σ1,2, but the character (−2,2) does not belong
to the polytope Pe1+e2 . In Figure 4.4.4, the associated characters are represented by squares, asterisks,
diamonds, and pentagons respectively. The polytopes are represented by shaded regions and the
other lattice points lying in the polytopes are represented by circles. We see that each associated
character lies in a unique polytope in the parliament. Moreover, for each maximal cone, the
elements indexing polytopes containing the associated characters are equal to our chosen compatible
bases, so Theorem 1.2 shows that G is globally generated. Remark 3.6 shows that the elements
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Pe1
Pe2

Pe1+e2

FIGURE 4.4.4. The parliament of polytopes for G

{e1,e1+e2,e2} correspond to the toric line bundles OX(4D1+3D2−D4), OX(−2D1+2D2+3D4),
and OX(−2D1 +2D2 +5D3−D4) respectively. The first two line bundles are very ample, but the
third is not even globally generated. The third line bundle is globally generated at the T -fixed points
xσ3,4 and xσ1,4 , but not at the other T -fixed points. 3

5. CONTRASTING NOTIONS OF POSITIVITY

In this section, we distinguish the ampleness of a toric vector bundle from other algebraic notions
of positivity. Following Definition 6.1.1 in [La2], a vector bundle E on X is ample or nef if the
tautological line bundle OP(E )(1) on the projectivized bundle P(E ) is ample or nef, respectively.
Theorem 2.1 in [HMP] states that a toric vector bundle on a complete toric variety is ample if
and only if its restriction to every torus-invariant curve is ample. This provides the key tool for
recognizing ample toric vector bundles.

To be more precise, consider a T -invariant curve C in X corresponding to the cone τ ∈ Σ(d−1).
Since X is complete, there are two maximal cones σ and σ ′ in Σ(d) that contain τ and C∼=P1. Given
two lattice points u and u′ in M that agree as linear functionals on τ , the toric line bundle Lu,u′ on
the union Uσ ∪Uσ ′ is constructed by gluing Lu|Uσ

and Lu′|Uσ ′ via the transition function χu−u′ ,
which is regular and invertible on Uτ . If the lattice vector vτ ∈ σ is dual to the primitive generator of
τ⊥, then the line bundle Lu,u′|C is isomorphic to OP1(〈u,vτ〉D1−〈u′,vτ〉D2) where D1 and D2 are
the irreducible T -invariant divisors on P1. Corollary 5.5 and Corollary 5.10 in [HMP] show that the
restriction E |C splits T -equivariantly into a sum of line bundles Lu1,u′1|C⊕Lu2,u′2|C⊕·· ·⊕Lur,u′r |C
and the pairs (ui,u′i) are unique up to reordering. This pairing can be visualized as line segments
parallel to τ⊥ joining the associated characters in u(σ) and u(σ ′). Edges in the parliament of
polytopes of E are contained in such line segments, but these line segments may connect disjoint
polytopes. For each individual summand, we have Lu,u′|C ∼= OP1(a) where u−u′ is a times the
primitive generator of τ⊥ that is positive on σ . Pictorially, the integer a is the normalized lattice
distance between the associated characters in the one-dimensional lattice (τ⊥+u)∩M.
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To demonstrate this apparatus, we reestablish that the tangent bundle on projective space is ample;
compare with Remark 2.4 and Example 5.6 in [HMP].

Example 5.1. Using the notation from Example 3.8, the characters associated to the tangent
bundle TPd are u(σi) = {w1−wi,w2−wi, . . . ,wi−1−wi,−wi,wi+1−wi,wi+2−wi, . . . ,wd−wi} for
1 6 i 6 d, and u(σd+1) = {w1,w2, . . . ,wd}. On the T -invariant curve Ci, j corresponding to the
cone τi, j := σi∩σ j ∈ Σ(d−1) where 16 i < j 6 d, the characters in u(σi) and u(σ j) are paired
as follows: (−wi,wi−w j), (w j−wi,−w j), and (wk−wi,wk−w j) for all k 6= i or j. Thus, we
deduce that TPd |Ci, j = OP1(D1 +D2)⊕

(⊕d−1
j=1 OP1(D2)

) ∼= OP1(2)⊕
(⊕d−1

j=1 OP1(1)
)
. A similar

calculation for the curve Ci,d+1, which corresponds to the cone τi,d+1 := σi∩σd+1 ∈ Σ(d−1) where
16 i6 d, yields TPd |Ci,d+1

∼=OP1(2)⊕
(⊕d−1

j=1 OP1(1)
)
. When d = 2, we also see from Figure 3.8.2

that the normalized lattice distance between matched pairs of associated characters is either 1 or 2.
Since the restriction to every T -invariant curve is ample, we conclude that TPd is ample. 3

With these tools, we can also prove directly that the cotangent bundle on a smooth toric variety is
never ample; compare with Section 6.3B in [La2].

Example 5.2. Let ΩX be the cotangent bundle on a smooth toric variety X , and let Σ be the fan of X .
Identifying the fibre E over the identity of the torus T with M⊗ZC∼= Cd as done in Section 2.3.5
in [Kl1], the decreasing filtrations for ΩX are

E i( j) =

E if j 6−1
v⊥i if j = 0
0 if j > 0

for all 16 i6 n.

Consider two adjacent cones σ ,σ ′ ∈ Σ(d). Since X is smooth, we have σ = pos(v1,v2, . . . ,vd)
where v1,v2, . . . ,vd is a basis for N. We may assume that σ ′ = pos(v1,v2, . . . ,vd−1,vd+1) where
vd+1 = a1v1 + a2v2 + · · ·+ ad−1vd−1 − vd for some a j ∈ Z. If w1,w2, . . . ,wd ∈ M form the
dual basis to v1,v2, . . . ,vd , then the associated characters are u(σ) = {−w1,−w2, . . . ,−wd} and
u(σ ′) = {−w1−a1wd,−w2−a2wd, . . . ,−wd−1−ad−1wd−1,wd}. Along the T -invariant curve C
corresponding to the cone τ = σ ∩σ ′ ∈ Σ(d−1), the characters are paired as follows: (−wd,wd)

and (−wi,−wi−aiwd) for 16 i6 d−1. Therefore, we obtain ΩX |C ∼=OP1(−2)⊕
(⊕d−1

i=1 OP1(ai)
)

which implies that ΩX is not ample. 3

More significantly, we next exhibit an ample toric vector bundle on a smooth toric variety that is
not globally generated. In particular, this supersedes Examples 4.15–4.17 in [HMP] and answers
the second part of Question 7.5 in [HMP].

Example 5.3. Consider the toric vector bundle F on P2 appearing in Example 4.2. Having
already established that F is not globally generated, it remains to show that F is ample. Let
Ck denote the T -invariant curve in P2 corresponding to the cone τi, j := σi∩σ j ∈ Σ(d−1) where
{i, j,k} = {1,2,3}. From the line segments in Figure 4.2.3 joining diamonds to squares, we see
that the characters in u(σ2) and u(σ3) are paired on C1 as

(
(−1,3),(−1,−1)

)
,
(
(0,0),(0,−3)

)
,
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(4,−2),(4,−3)

)
, so we obtain

F |C1 = OP1(3D1 +D2)⊕OP1(3D2)⊕OP1(−2D1 +3D2)∼= OP1(4)⊕OP1(3)⊕OP1(1) .

Similar calculations give F |C2
∼=OP1(5)⊕OP1(2)⊕OP1(1) and F |C3

∼=OP1(6)⊕OP1(1)⊕OP1(1).
Since the restriction to every T -invariant curve is ample, the toric vector bundle F is ample. 3

The vector bundle F has minimal rank among all ample toric vector bundles on P2 that are not
globally generated. More than that, the ensuing proposition proves that, for low-rank toric vector
bundles on Pd , nef is equivalent to globally generated.

Proposition 5.4. If E is a toric vector bundle on Pd with rank at most d, then E is globally
generated if and only if it is nef.

Proof. As follows from Example 1.4.5 in [La1], every globally generated vector bundle is nef, so
it suffices to prove the converse implication. Moreover, a line bundle on a complete toric variety
is nef if and only if it is globally generated; see Theorem 6.3.13 in [CLS]. Hence, the proposition
follows immediately when E splits as a direct sum of line bundles. If the rank of E is less than d,
then Corollary 3.5 in [Kan] or Corollary 6.1.5 in [Kl1] imply that E splits into a direct sum of line
bundles. Therefore, we may assume that E is indecomposable and has rank equal to d.

Under these hypotheses, Theorem 4.6 in [Kan] establishes that E is isomorphic to either Q(`) or
Q∗(`) for some ` ∈ Z, where Q is defined by the short exact sequence

0−→ OPd
[ya1

1 ya2
2 ··· y

ad+1
d+1 ]

−−−−−−−−−−−−→
d+1⊕
k=1

OPd(akDk)−→Q −→ 0 ,

a1,a2, . . . ,ad+1 are positive integers, and D1,D2, . . . ,Dd+1 are the T -invariant divisors on Pd . Using
the notation from Example 5.1, let Ci, j denote the T -invariant curve corresponding to the cone
τi, j = σi∩σ j ∈ Σ(d−1) where 16 i < j 6 d+1. Restricting the short exact sequence to the curve
Ci, j, we obtain Q|Ci, j

∼= OP1(ai +a j)⊕
(⊕d+1

k=1,k 6=i, j OP1(ak)
)
.

If E =Q(`) and E is nef, then we have ak+`> 0 for all 16 k6 d+1 which means that the vector
bundle S :=

⊕d+1
k=1 OPd(ak +`) is globally generated. Since E is a quotient of S , we conclude that

E is also globally generated; see Example 6.1.4 in [La2]. If E = Q∗(`) and E is nef, then we have
`−ak > 0 for all 16 k6 d+1 and `−ai−a j > 0 for all 16 i< j6 d+1. The functorial properties
of the dual imply that Q∗(`) ↪→

⊕d+1
k=1 OPd(`−ak) and Q∗(`)∼=

(∧d−1 Q∗(`)
)∗⊗det

(
Q∗(`)

)
. It

follows that E is a quotient of the vector bundle S ′ :=
(∧d−1(⊕d+1

k=1 OPd(`−ak)
))∗⊗det

(
Q∗(`)

)
.

Since
∧d−1(⊕d+1

k=1 OPd(`− ak)
) ∼=⊕

16k1<k2<···<kd−16d+1 OPd
(
(d− 1)`− ak1 − ak2 − ·· ·− akd−1

)
and det

(
Q∗(`)

)∼= OPd(d`−a1−a2−·· ·−ad+1), we see that S ′ is a direct sum of line bundles
of the form OPd(`−a j−ak) which implies that both S ′ and E are globally generated. �

To complement Examples 4.9–4.10 in [HMP], we end this section by illustrating that the higher
cohomology groups of a globally-generated ample toric vector bundle on a smooth toric variety
may be nonzero.
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Example 5.5. Consider the globally-generated toric vector bundle G appearing in Example 4.4.
Restricting to the T -invariant curves gives G |C1

∼= OP1(5)⊕OP1(2), G |C2
∼= OP1(1)⊕OP1(1),

G |C3
∼= OP1(6)⊕OP1(1), G |C4

∼= OP1(8)⊕OP1(1), and shows that G is ample. Furthermore,
Theorem 4.2.1 in [Kl1] establishes that the T -equivariant Euler characteristic of G is

χ(G ) = ∑
i
(−1)i dimH i(X ,G )u · tu =

t−2
1 t2

2+t4
1 t3

2
(1−t1)(1−t2)

+
t−3
1 t2

2+t3
1 t3

2
(1−t1)(1−t−1

1 t−1
2 )

+
t−4
1 t2+t−3

1 t−3
2

(1−t1)(1−t1t2)
+

t−2
1 t−3

2 +t4
1 t2

(1−t−1
1 )(1−t2)

= t4
1 t3

2 + t4
1 t2

2 + t4
1 t2 + t3

1 t3
2 + t3

1 t2
2 + t3

1 t2 + t2
1 t2

2 + t2
1 t2 + t1t2

−t−1
1 + t−2

1 t2
2 + t−2

1 t2 + t−2
1 t−2

2 + t−2
1 t−3

2 + t−3
1 t2

2 + t−3
1 t2 + t−3

1 t−3
2 + t−4

1 t2 ,

so we have H1(X ,G )(−1,0) 6= 0. Using Theorem 4.1.1 in [Kl1], a longer calculation confirms that
H1(X ,G )u ∼= C when u = (−1,0) and H1(X ,G )u = 0 when u 6= (−1,0). In Figure 4.4.4, the
triangle represents the unique character for which the higher cohomology groups do not vanish. 3

Remark 5.6. Using the techniques from Example 5.5 or Example 4.3.5 in [Kl1], we see that
H1(P2,F )u 6= 0 where u = (1,−1) and F is the toric vector bundle appearing in Example 4.2. In
Figure 4.2.3, the triangle represents the unique character for which the higher cohomology groups
do not vanish.

6. HIGHER-ORDER JETS

This final section relates positivity of higher-order jets to properties of the associated parliament
of polytopes. In particular, we determine which results for jets of line bundles on smooth toric
varieties extend to higher-rank toric vector bundles. For toric vector bundles, we also provide an
explicit polyhedral characterization for very ampleness.

Fix ` ∈ N. A vector bundle E separates `-jets if, for every closed point x ∈ X with maximal ideal
mx ⊆OX , the map J`x : H0(X ,E )→ H0(X ,E ⊗OX OX/m

`+1
x ), which evaluates a global section and

its derivatives of order at most ` at x, is surjective; compare with Definition 5.1.15 in [La1]. When
X is a toric variety, this map is T -equivariant, because differentiation is C-linear. As a special case,
we see that a vector bundle separates 0-jets if and only if it is globally generated. A vector bundle
that separates `-jets is also called `-jet spanned.

As a stronger attribute, we say that a vector bundle E is `-jet ample if, for all distinct closed points
x1,x2, . . . ,xt ∈ X and for all positive integers `1, `2, . . . , `t satisfying ∑

t
i=1 `i = `+1, the natural map

ψ : H0(X ,E )→ H0(X ,E ⊗OX OX/(m
`1
x1 ·m

`2
x2 · · ·m`t

xt
)
)
=
⊕t

i=1 H0(X ,E ⊗OX OX/m
`i
xi) is surjective.

Hence, a `-jet ample vector bundle does separate `-jets, and a vector bundle separates 0-jets if and
only if it is 0-jet ample. Proposition 4.2 in [BDS] proves that every 1-jet ample vector bundle on a
smooth projective variety is very ample, and Example 4.3 in [BDS] shows that the converse does
not always hold. If 06 m6 `, then a vector bundle that separates `-jets also separates m-jets, and a
vector bundle that is `-jet ample is also m-jet ample.

We start by placing ampleness into this hierarchy of positivity properties on a smooth toric variety.

Lemma 6.1. Every toric vector bundle that separates 1-jets is ample.
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Proof. Let E be a toric vector bundle that separates 1-jets. For any T -invariant curve C, the
restriction E |C separates 1-jets and splits T -equivariantly into sum of line bundles. For a line
bundle on a toric variety, Theorem 4.2 in [DiR] shows that separating 1-jets is equivalent to being
ample. Hence, if E |C ∼= OP1(a1)⊕OP1(a2)⊕·· ·⊕OP1(ar), then each line bundle OP1(ai) is ample.
Therefore, the restriction to every T -invariant curve is ample, which ensures that E is ample; see
Theorem 2.1 in [HMP]. �

We next characterize the toric vector bundles that separate `-jets by enhancing Theorem 1.2.

Theorem 6.2. A toric vector bundle E separates `-jets, for ` > 1, if and only if, for all maximal
cones σ ∈ Σ(d), the following conditions hold:

(i) the associated characters u(σ) are vertices of polytopes in the parliament for E ,
(ii) the edges adjacent to these vertices correspond to the generators of the dual cone σ∨,

(iii) the edges adjacent to these vertices have normalized length at least `, and
(iv) the elements indexing these polytopes form a basis in the matroid M(E ).

If we ignore the conditions on the edges, then we recover Theorem 1.2 which characterizes toric
vector bundles that separate 0-jets.

Proof. The locus in the toric variety X , on which H0(X ,E )→ H0(X ,E ⊗OX OX/m
`+1
x ) is not

surjective, is closed and T -invariant. Since X is complete, it follows that E separates `-jets if and
only if it separates `-jets at the T -fixed points.

Fix a maximal cone σ = pos(v1,v2, . . . ,vd) ∈ Σ(d), let u(σ) = {uσ ,1,uσ ,2, . . . ,uσ ,s} be the
underlying set of associated characters, and let Bσ =Bσ ,1tBσ ,2t·· ·tBσ ,s be the corresponding
partition of a compatible basis in the matroid M(E ); see Section 4. The vector bundle E separates
`-jets at the T -fixed point xσ if and only if the natural map

J`xσ
: H0(X ,E )→ H0(X ,E ⊗OX/m

`+1
xσ

)∼= span(Bσ )⊗CC(
`+d

d )

is surjective, where the standard basis for the vector space C(
`+d

d ) corresponds to the partial deriva-
tives of order less than `. Since a T -equivariant global section e′⊗χ−u is given in local coordinates
near xσ by (∗), the map J`xσ

sends e′⊗ χ−u to the first ` terms of the Taylor expansion about xσ .
Hence, for m = (m1,m2, . . . ,md) ∈ Nd satisfying m1 +m2 + · · ·+md 6 `, the m-th component of
J`xσ

(e′⊗χ−u) is given in local coordinates by

∑
e∈Bσ

λe

(
e⊗ 1

m1!m2! · · ·md!
∂ m1+m2+···+md

∂ m1y1∂ m2y2 · · ·∂ md yd

( d

∏
i=1

y
−〈u,vi〉+ϕ`,σ (vi)
i

))∣∣∣∣∣
y1=y2=···=yd=0

.

The e-th summand in this expression has neither a zero nor a pole at (y1,y2, . . . ,yd) = (0,0, . . . ,0)
if and only if we have −〈u,vi〉+ϕe(vi) = mi for all 16 i6 d. By Lemma 4.1, it follows that there
exists an index k such that e∈Bσ ,k and u = uσ ,k+m. In this case, the lattice point uσ ,k−∑

d
i=1 miwi,

where w1,w2, . . . ,wd are the unique minimal generators of the dual cone σ∨, belongs to the polytope
Pe in the parliament for E . Hence, the m-th component of J`xσ

(e⊗χ−u) is nonzero if and only if the
global section includes summands of the form ∑e∈Bσ ,k

λe(e⊗χ−uσ ,k−m), which map to ∑e∈Bσ ,k
λe e.
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For the map J`xσ
to be surjective, we need each vector e ∈ Bσ to appear in each component of

factor C(
`+d

d ). Therefore, the map J`xσ
is surjective if and only if there exists a compatible basis

Bσ such that each e⊗χ−uσ ,k−m1w1−m2w2−···−mdwd , for 16 k 6 s, e ∈Bσ ,k, and m ∈ Nd satisfying
m1 +m2 + · · ·+md 6 `, is a global section. By convexity, this characterization is equivalent to
requiring that the edges through the vertex uσ ,k in the directions of dual vectors wi have normalized
length at least `. �

With Theorem 6.2, we easily verify that the tangent bundle on projective space separates 1-jets.

Example 6.3. As computed in Example 3.8, the parliament of polytopes for the tangent bundle TPd

consists of Pvi = conv(0,wi−w1,wi−w2, . . . ,wi−wi−1,wi,wi−wi+1,wi−wi+1, . . . ,wi−wd) for
16 i6 d, and Pvd+1 = conv(0,−w1,−w2, . . . ,−wd). Hence, the associated characters are vertices
of polytopes in the parliament, the edges in each polytope have normalized length 1 and point in
directions corresponding to generators of the dual cone, and the elements indexing these polytopes
equal the unique choice of compatible basis. Therefore, the tangent bundle TPd separates 1-jets. 3

Since Example 4.2 exhibits an ample toric vector bundle that is not globally generated, the
converse to Lemma 6.1 is false. To sharpen this distinction, we present an ample toric vector bundle
that is globally generated but does not separate 1-jets.

Example 6.4. Using the notation from Example 4.2 and Example 5.3, consider the toric vector
bundle H of rank 3 on P2 defined by the following decreasing filtrations:

E1( j) =


E if j6−2
span(e1,e2) if −2 < j6−1
span(e1) if −1 < j6 2
0 if 2 < j

E3( j) =


E if j6 1
span(e3− e2,e1− e2) if 1 < j6 3
span(e1− e2) if 3 < j6 4
0 if 4 < j

E2( j) =


E if j6−2
span(e2,e3) if −2 < j6 0
span(e3) if 0 < j6 2
0 if 2 < j .

It follows that the ground set of the matroid M(H ) is {e1,e1−e2,e2,e2−e3,e3}. On each maximal
cone, the associated characters and the unique choice of compatible bases are

u(σ1) = {(−2,−2),(−3,0),(−3,2)} , Bσ1 = {e1− e2,e2− e3,e3} ,
u(σ2) = {(2,−3),(−1,−3),(−2,−1)} , Bσ2 = {e1,e1− e2,e2− e3} ,
u(σ3) = {(2,−2),(−1,0),(−2,2)} , Bσ3 = {e1,e2,e3} ,

so the convex polytopes in the parliament for H are

Pe1 = conv
(
(1,−2),(2,−2),(2,−3)

)
, Pe2−e3 = conv

(
(−3,0),(−2,0),(−2,−1)

)
,

Pe1−e2 = conv
(
(−2,−2),(−1,−2),(−1,−3)

)
, Pe3 = conv

(
(−3,2),(−2,2),(−2,1)

)
,

Pe2 = conv
(
(−1,0)

)
.



TORIC VECTOR BUNDLES AND PARLIAMENTS OF POLYTOPES 21

Pe1

Pe3

Pe3−e2

Pe1−e2

Pe2

FIGURE 6.4.5. The parliament of polytopes for H

In Figure 6.4.5, the associated characters are represented by asterisks, diamonds, and squares
respectively. The polytopes are represented by shaded regions and the other lattices points lying
in the polytopes are represented by circles. Using Theorem 1.2, we see that H is globally
generated. In contrast, Theorem 6.2 implies that H does not separate 1-jets because Pe2 is simply
a point. Lastly, restricting to the T -invariant curves gives H |C1

∼= OP1(3)⊕OP1(3)⊕OP1(1),
H |C2

∼= OP1(4)⊕OP1(2)⊕OP1(1), and H |C3
∼= OP1(5)⊕OP1(1)⊕OP1(1), so the toric vector

bundle is ample. 3

On a smooth projective variety, being 1-jet ample is generally a stronger condition than separating
1-jets, as Example 2.3 in [LM] and Example 4.6 in [Lan] demonstrate for line bundles. For line
bundles on a smooth complete toric variety, these conditions are equivalent; see [DiR]. Extending
this result, we prove that these conditions are equivalent for toric vector bundles on a smooth
complete toric variety.

Theorem 6.5. A toric vector bundle separates `-jets if and only if it is `-jet ample.

Proof. It suffices to show that every toric vector bundle E which separates `-jets is `-jet ample.
The locus in the toric variety ∏

t
i=1 X , on which H0(X ,E )→

⊕t
i=1 H0(X ,E ⊗OX OX/m

`i
xi) is not

surjective, is closed and T -invariant. Since X is complete, it follows that E is `-jet ample if and
only if it is `-jet ample at the T -fixed points. Thus, it is enough to prove that, for all distinct
T -fixed points xσ1 ,xσ2, . . . ,xσt and all positive integers `1, `2, . . . , `t satisfying ∑

t
i=1 `i = `+1, the

map ψ : H0(X ,E )→
⊕t

i=1 H0(X ,E ⊗OX OX/m
`i
xσi
) is surjective.

Since E separates `i-jets, for all `i 6 `, the map ψ surjects onto each individual summand.
Consider a T -equivariant global section e⊗χ−u where the element e belongs to the ground set of
the matroid M(E ) and 0 6= J`1−1

xσ1
(e⊗χ−u) ∈H0(X ,E ⊗OX OX/m

`1
xσ1

). To prove that ψ is surjective,

it is enough to show that J`2−1
xσ2

(e⊗χ−u) = 0 because we may reindex the T -fixed points. As in the

proof of Theorem 6.2, the hypothesis J`1−1
xσ1

(e⊗χ−u) 6= 0 implies that the global section e⊗χ−u

corresponds to the lattice u ∈ Pe and the lattice distance from the vertex uσ1 of Pe associated to the
maximal cone σ1 is at most `1−1. Similarly, if J`2−1

xσ2
(e⊗χ−u) 6= 0, then the lattice distance from
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u ∈ Pe to the vertex uσ2 of Pe associated to the maximal cone σ2 would also be at most `2−1. As E
separates `-jets at xσ1 , Theorem 6.2 implies that the lattice length of each edge in Pe emanating from
the vertex corresponding to σ1 is at least `. Since `1+ `2−26 `−1, the convexity of Pe guarantees
that the lattice point u cannot be simultaneously this close to both uσ1 and uσ2 . Therefore, we
conclude that J`2−1

xσ2
(e⊗χ−u) = 0 and ψ is surjective. �

For a line bundle on a smooth toric variety, Theorem 4.2 in [DiR] establishes that separating 1-jets
is equivalent to being very ample. As a final result, we generalize this equivalence to higher-rank
toric vector bundles on a smooth toric variety.

Theorem 6.6. A toric vector bundle separates 1-jets if and only if it is very ample.

Proof. It suffices to show that every very ample toric vector bundle E separates 1-jets at the T -fixed
points. Let X be the smooth toric variety determined by the fan Σ. Fix a maximal cone σ0 ∈ Σ(d) and
consider the blowing up π : X ′→ X of X at xσ0 with exceptional divisor D0 := π−1(xσ0). Since E is
very ample, Corollary 1 in [BSS] establishes that the toric vector bundle E ′ := π∗(E )⊗OX ′

OX ′(−D0)
is globally generated.

To complete the proof, we relate the parliament of polytopes for E ′ and E . First, we describe
the underlying fan for X ′. Let v1,v2, . . . ,vn be the primitive lattice vectors generating the rays
in Σ. By reordering these rays if necessary, we may assume that σ0 = pos(v1,v2, . . . ,vd). If
v0 := v1 +v2 + · · ·+vd and Σ′ is the fan of X ′, then the primitive lattice vectors generating the rays
in Σ′ are v0,v1, . . . ,vn, and the maximal cones are Σ′(d) =

(
Σ(d) \σ0

)
∪{σ1,σ2, . . . ,σd} where

σi := pos(v0,v1, . . . ,vi−1,vi+1,vi+2, . . . ,vd) for 16 i6 d; compare with Example 3.1.15 in [CLS].
We next specify the linear invariants which determine the toric vector bundle E ′′ := π∗(E ) on X ′.

The characters associated to E ′′ are uE ′′(σ
′) =uE (σ

′) for all σ ′ ∈ Σ(d)\σ0 and uE ′′(σi) =uE (σ0)
for all 16 i6 d. The compatible decreasing filtrations corresponding to E ′′ are identical to those for
E along the rays generated by vi for 16 i6 n. Along the new ray generated by v0, the decreasing
filtration for E ′′ is E ′′v0( j) = ∑〈u,v0〉> j Eσ0

u , where Eσ0
u is the linear subspace associated to E ; see

Section 2. It follows that B(E ′′)σi =B(E )σ0 for all 16 i6 d.
Finally, to analyze E ′, set L := OX ′(−D0). Writing w1,w2, . . . ,wd ∈M for the minimal genera-

tors the dual cone σ∨, Example 3.5 shows that the characters associated to the line bundle L are
uL (σ ′) = {0} for all σ ′ ∈ Σ(d) \σ0 and uL (σi) = {wi} for all 1 6 i 6 d. Combining this data
with that for E ′′, we see that the characters associated to toric vector bundle E ′ = E ′′⊗OX L are
uE ′(σ

′) =uE (σ
′) for all σ ′ ∈ Σ(d)\σ0 and uE ′(σi) = {u+wi : u ∈uE (σ0)} for all 16 i6 d. As

L is a line bundle, we also have B(E ′)σi =B(E ′′)σi =B(E )σ0 for all 16 i6 d. If u` ∈uE (σ0) cor-
responds to the vector e`,σ0 ∈ E, then the element u`+wi ∈ uE ′(σi) corresponds to the same vector
in E. Since E ′ is globally generated and E is very ample, Theorem 1.2 implies that u`+wi ∈ Pe`,σ0
and u` ∈ P̀ ,σ0 for all u` ∈ uE (σ0) and for all 16 i6 d. Applying Theorem 6.2, we conclude that
E separates 1-jets. �

An a consequence, we have a polyhedral characterization for very ample toric vector bundles.
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Corollary 6.7. A toric vector bundle E is very ample if and only if, for all maximal cones σ ∈ Σ(d),
the following conditions hold:

(i) the associated characters u(σ) are vertices of polytopes in the parliament for E ,
(ii) the edges adjacent to these vertices correspond to the generators of the dual cone σ∨,

(iii) the edges adjacent to these vertices have lattice length at least 1, and
(iv) the elements indexing these polytopes form a basis in the matroid M(E ).

Proof. Combine Theorem 6.2 and Theorem 6.6. �

Proof of Theorem 1.3. This follows immediately by combining Theorem 6.5 and Theorem 6.6. �

Remark 6.8. Combining Example 6.4 with Theorem 6.6, we see that the toric vector bundle H
is globally generated and ample but not very ample, answering the first part of Question 7.5 in
[HMP]. Modifying the proof of Proposition 5.4 by replacing some non-strict inequalities with strict
inequalities, we also obtain a partial converse to Lemma 6.1: if E is a toric vector bundle on Pd

with rank at most d, then E is ample if and only if it separates 1-jets. Hence, H has minimal rank
among all globally-generated ample toric vector bundles on P2 that are not very ample.
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[HMP] M. Hering, M. Mustaţǎ, and S. Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble)

60 (2010), no. 2, 607–640.
[Kan] T. Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J. 111 (1988), 25–40.
[KT] Y. Karshon and S. Tolman, The moment map and line bundles over presymplectic toric manifolds, J. Differential

Geom. 38 (1993), no. 3, 465–484.
[Kl1] A.A. Klyachko, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5,

1001–1039, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 337–375.
[Kl2] , Vector bundles and torsion free sheaves on the projective plane, Max-Planck Institute of Mathematics

preprint series 59 (1991), available at www.mpim-bonn.mpg.de/preblob/4712.
[Lan] A. Langer, A note on k-jet ampleness on surfaces, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998),

Contemp. Math. 241, American Mathematical Society, Providence, RI, 1999, pp. 273–282.
[LM] A. Lanteri and R. Mallavibarrena, Higher order dual varieties of projective surfaces, Comm. Algebra 27 (1999),

no. 10, 4827–4851.
[La1] R. Lazarsfeld, Positivity in algebraic geometry I, Classical setting: line bundles and linear series, Modern

Surveys in Mathematics 48, Springer-Verlag, Berlin, 2004.

http://dx.doi.org/10.1007/PL00004722
http://aif.cedram.org/cedram-bin/article/AIF_2010__60_2_607_0.pdf
http://projecteuclid.org/euclid.nmj/1118781050
https://www.mpim-bonn.mpg.de/preblob/4712
http://dx.doi.org/10.1090/conm/241/03639
http://dx.doi.org/10.1080/00927879908826733


24 S. DI ROCCO, K. JABBUSCH, AND G.G. SMITH

[La2] , Positivity in algebraic geometry II, Positivity for vector bundles, and multiplier ideals, Modern Surveys
in Mathematics 49, Springer-Verlag, Berlin, 2004.

[Pa1] S. Payne, Moduli of toric vector bundles, Compos. Math. 144 (2008), no. 5, 1199–1213.
[Pa2] , Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18

(2009), no. 1, 1–36.
[Stu] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, American Mathematical

Society, Providence, RI, 1996.
[Whi] N. White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications 26, Cambridge University

Press, Cambridge, 1986.
[Zie] G.M. Ziegler, Combinatorial models for subspace arrangements, Habilitations-Schrift, Technische Universität

Berlin, 1992.

SANDRA DI ROCCO, DEPARTMENT OF MATHEMATICS, ROYAL INSTITUTE OF TECHNOLOGY (KTH), 10044
STOCKHOLM, SWEDEN, dirocco@math.kth.se

KELLY JABBUSCH, DEPARTMENT OF MATHEMATICS & STATISTICS, UNIVERSITY OF MICHIGAN–DEARBORN,
4901 EVERGREEN ROAD, DEARBORN, MICHIGAN 48128-2406, USA, jabbusch@umich.edu

GREGORY G. SMITH, DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY, KINGSTON,
ONTARIO, K7L 3N6, CANADA, ggsmith@mast.queensu.ca

http://dx.doi.org/10.1112/S0010437X08003461
http://dx.doi.org/10.1017/CBO9780511629563
http://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/032PREPRINT.pdf
mailto:dirocco@math.kth.se
mailto:jabbusch@umich.edu
mailto:ggsmith@mast.queensu.ca

	1. Overview of Results
	2. Background on Toric Vector Bundles
	3. Global Sections and Lattice Polytopes
	4. Globally Generated Toric Vector Bundles
	5. Contrasting Notions of Positivity
	6. Higher-Order Jets
	References

