Winter 2006
MAT 21B
MAT 21B Section A
Professor Joseph Biello
Section
Time
TA: David

PRINT Name: ____________________________
(Last Name) (First Name)

- No calculators, no cell phones, no aids.
- This is a weekly midterm; you are expected to do your own work, and to adhere to the UC Davis Code of Academic Conduct.
- Please show all your work, and mark your answers clearly.
- Please indicate clearly if you continue work on the back of page.
- Please stop immediately when time is called.

Problem 1 (7 points each):
Find the volume of the solids generated by revolving the regions bounded by the curves and lines about the x-axis using disk, washer or shell methods:

(a) $y = x^3, \quad y = 0, \quad x = 2$

(b) $x = y^2, \quad x = -y, \quad y = 2, \quad y \geq 0$

20. $R(x) = x^3 \Rightarrow V = \int_0^2 \pi (R(x))^2 \, dx = \pi \int_0^2 (x^3)^2 \, dx$

$$= \pi \int_0^2 x^6 \, dx = \pi \left[\frac{x^7}{7} \right]_0^2 = \frac{128\pi}{7}$$

16. $c = 0, \, d = 2$:

$V = \int_2^4 2\pi \left(\text{shell radius} \right) \left(\text{shell height} \right) \, dy = \int_0^2 2\pi y \left[y^2 - (-y) \right] \, dy$

$$= 2\pi \int_0^2 (y^3 + y^2) \, dy = 2\pi \left[\frac{y^4}{4} + \frac{y^3}{3} \right]_0^2 = 16\pi \left(\frac{1}{4} + \frac{1}{3} \right)$$

$$= 16\pi \left(\frac{7}{12} \right) = \frac{28\pi}{3}$$
Problem 2 (6 points): Find the length of the curve.

\[X = t^{2/2}, \quad Y = (2t + 1)^{3/2}/3 \quad 0 \leq t \leq 4 \]

4. \(\frac{dx}{dt} = t \) and \(\frac{dy}{dt} = (2t + 1)^{1/2} \) \(\Rightarrow \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{t^2 + (2t + 1)} = \sqrt{(t + 1)^2} = |t + 1| = t + 1 \) since \(0 \leq t \leq 4 \)

\(\Rightarrow \text{Length} = \int_0^4 (t + 1) \, dt = \left[\frac{t^2}{2} + t \right]_0^4 = (8 + 4) = 12 \)
No calculators, no cell phones, no aids.
This is a weekly midterm; you are expected to do your own work, and to adhere to the UC Davis Code of Academic Conduct.
Please show all your work, and mark your answers clearly.
Please indicate clearly if you continue work on the back of page.
Please stop immediately when time is called.

Problem 1 (7 points each):
Find the volume of the solids generated by revolving the regions bounded by the curves and lines about the x-axis using disk, washer or shell methods:

(a) \(y = x - x^2, \quad y = 0 \)

(b) \(y = x, \quad y = 2x, \quad y = 2 \)

22. \(R(x) = x - x^2 \Rightarrow V = \int_0^1 \pi[R(x)]^2 \, dx = \pi \int_0^1 (x - x^2)^2 \, dx \)
 \[= \pi \int_0^1 (x^2 - 2x^3 + x^4) \, dx = \pi \left[\frac{x^3}{3} - \frac{2x^4}{4} + \frac{x^5}{5} \right]_0^1 \]
 \[= \pi \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right) = \frac{\pi}{30} (10 - 15 + 6) = \frac{\pi}{30} \]

20. \(c = 0, \, d = 2; \)

\[V = \int_0^2 \pi \left(\frac{\text{shell}}{\text{radius}} \right) \left(\frac{\text{shell}}{\text{height}} \right) dy = \int_0^2 2\pi y (y - \frac{2}{3}) dy \]
\[= 2\pi \int_0^2 y^2 dy = \frac{\pi}{3} \left[y^3 \right]_0^2 = \frac{8\pi}{3} \]
Problem 2 (6 points): Find the length of the curve.
\[x = 8 \cos t + 8 t \sin t, \quad y = 8 \sin t - 8 t \cos t, \quad 0 \leq t \leq \pi / 2 \]

6. \[\frac{dx}{dt} = 8 \cos t \text{ and } \frac{dy}{dt} = 8 t \sin t \Rightarrow \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(8 \cos t)^2 + (8 t \sin t)^2} = \sqrt{64 t^2 \cos^2 t + 64 t^2 \sin^2 t} \]

\[= |8t| = 8t \text{ since } 0 \leq t \leq \frac{\pi}{2} \Rightarrow \text{Length} = \int_0^{\pi/2} 8 t \, dt = \left[4t^2\right]_0^{\pi/2} = \pi^2 \]
Problem 1 (7 points each):
Find the volume of the solids generated by revolving the regions bounded by the curves and lines about the x-axis using disk, washer or shell methods:

(a) \(y = 5 \cos x, y = 0, x = -\pi/4, x = \pi/4 \)
(b) \(y = \sqrt{x}, y = 0, y = 2 - x \)

24. \(R(x) = \sec x \Rightarrow V = \int_{-\pi/4}^{\pi/4} \pi (R(x))^2 \, dx = \pi \int_{-\pi/4}^{\pi/4} \sec^2 x \, dx \)
 \[= \pi [\tan x]_{-\pi/4}^{\pi/4} = \pi [1 - (-1)] = 2\pi \]

22. \(c = 0, d = 1; \)
 \[V = \int_{-1}^{1} 2\pi \left(\text{shell radius} \right) \left(\text{shell height} \right) \, dy = \int_{0}^{1} 2\pi y [(2 - y) - y^2] \, dy \]
 \[= 2\pi \int_{0}^{1} (2y - y^2 - y^3) \, dy = 2\pi \left[y^2 - \frac{y^3}{3} - \frac{y^4}{4} \right]_{0}^{1} \]
 \[= 2\pi \left(1 - \frac{1}{3} - \frac{1}{4} \right) = \frac{\pi}{6} (12 - 4 - 3) = \frac{5\pi}{6} \]
Problem 2 (6 points): Find the length of the curve.

\[x = e^t \cos t, \quad y = e^t \sin t, \quad 0 \leq t \leq \pi \]

8. \(\frac{dx}{dt} = e^t (\cos t - \sin t) \) and \(\frac{dy}{dt} = e^t (\sin t + \cos t) \)

\[\Rightarrow \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{\left[e^t (\cos t - \sin t) \right]^2 + \left[e^t (\sin t + \cos t) \right]^2} = \sqrt{2e^{2t}} \]

\[= \sqrt{2} e^t \Rightarrow L = \int_0^\pi \sqrt{2} e^t \, dt = \left[\sqrt{2} e^t \right]_0^\pi = \sqrt{2}(e^\pi - 1) \]