MAT128A: Numerical Analysis
Lecture Fifteen: Chebyshev Interpolation, Again

October 31, 2018
We first showed the existence of interpolating polynomials.

Theorem

If x_0, x_1, \ldots, x_N are distinct points on the real line and $f : \mathbb{R} \rightarrow \mathbb{R}$, then there is a unique polynomial p of degree N which interpolates f at the points x_0, \ldots, x_N.

Recall that p interpolates f at the nodes x_0, \ldots, x_N means that

$$f(x_j) = p(x_j) \text{ for all } j = 0, 1, \ldots, N.$$
Next, we show that the truncated Chebyshev expansion for f interpolates f at the points of the Chebyshev grid.

Theorem

Suppose that $f : [-1, 1] \rightarrow \mathbb{R}$ is a continuous function, x_0, x_1, \ldots, x_N are defined by

$$x_j = \cos \left(\frac{j + \frac{1}{2}}{N + 1} \pi \right),$$

and a_0, a_1, \ldots, a_N are given by the formula

$$a_n = \frac{2}{N + 1} \sum_{j=0}^{N} f(x_j) T_n(x_j).$$

Then

$$\sum_{n=0}^{N} a_n T_n(x)$$

is the unique polynomial of degree N which interpolates f at the points x_0, x_1, \ldots, x_N.

We then developed a constructive formula for the polynomial interpolating a function at any given set of nodes.

Theorem

If \(x_0, x_1, \ldots, x_N \) *are distinct real numbers, then*

\[
L(x) = \sum_{j=0}^{N} f(x_j) \prod_{0 \leq i \leq N, i \neq j} \frac{x - x_i}{x_j - x_i}
\]

is the unique polynomial of degree \(N \) *such that*

\[
L(x_i) = f(x_i) \quad \text{for all} \quad i = 0, 1, \ldots, N.
\]
Finally, we developed an expression for interpolation error.

Theorem

Suppose that $f : [a, b] \to \mathbb{R}$ is an element of $C^{N+1}[a, b]$, that

$$x_0 < x_1 < \ldots < x_N$$

are points in $[a, b]$, and that p is the unique polynomial of degree N which interpolates f at the nodes x_0, \ldots, x_N. Then, for each $x \in [a, b]$, there is a point $\xi_x \in (a, b)$ such that

$$f(x) = p(x) + \frac{f^{(N+1)}(\xi_x)}{(N + 1)!} (x - x_0)(x - x_1) \cdots (x - x_N).$$
Good Interpolation Nodes

Now we will investigate the question of what interpolations nodes should be chosen.

An obvious strategy is to try to minimize the magnitude of the error term

\[\frac{f^{(N+1)}(\xi_x)}{(N+1)!} (x - x_0)(x - x_1) \cdots (x - x_N). \]

We cannot hope to control the magnitude of the \((N + 1)^{st}\) derivative of \(f\) if we want to choose nodes which do not depend on what function we are interpolating, but we can choose nodes

\[x_0, x_1, \ldots, x_N \]

which minimize the magnitude of

\[(x - x_0)(x - x_1) \cdots (x - x_N). \]
Good Interpolation Nodes

Before we state the next theorem about “good interpolation node,” let’s recall a few facts.

We say that a polynomial is monic if its leading coefficient is 1.

The uniform norm of a function $f : [-1, 1] \to \mathbb{R}$ is

$$\sup_{-1 \leq x \leq 1} |f(x)| .$$

We denote it by $\| f \|_{\infty}$.

We also recall that the leading coefficient of T_{n+1} is 2^n (this follows by induction and the recurrence relations).
Good Interpolation Nodes

Theorem

For each $j = 0, 1, \ldots, N$, let

$$x_j = \cos \left(\frac{j + \frac{1}{2}}{N + 1} \pi \right).$$

Then

$$(x - x_0)(x - x_1) \cdots (x - x_N) = \frac{1}{2^N} T_{N+1}(x)$$

is the monic polynomial of degree $N + 1$ with the smallest possible uniform norm, and that norm is 2^{-N}.
Proof:

First of all, let’s make sure we understand why

$$(x - x_0)(x - x_1) \cdots (x - x_N) = \frac{1}{2^N} T_{N+1}(x).$$

We know that T_{N+1} is a polynomial of degree $N + 1$, and the formula

$$T_{N+1}(x) = \cos((N + 1) \arccos(x))$$

implies that its roots are

$$\cos \left(\frac{j + \frac{1}{2} \pi}{N + 1} \right) \quad j = 0, 1, \ldots, N + 1$$

since the zeros of cosine are

$$\frac{\pi}{2} + k\pi \quad k \in \mathbb{Z}.$$
Since \(T_{N+1} \) and \((x - x_0)(x - x_1) \cdots (x - x_N)\) have the same roots, there must be a constant \(C \) such that

\[
T_{N+1}(x) = C(x - x_0)(x - x_1) \cdots (x - x_N).
\]

That the correct constant \(C \) is \(2^{-N} \) then follows from the fact that the leading coefficient (i.e., the coefficient of \(x^{N+1} \)) of

\[
(x - x_0)(x - x_1) \cdots (x - x_N)
\]

is 1 while the leading coefficient of \(T_{N+1} \) is \(2^N \).

So

\[
T_{N+1}(x) = 2^N (x - x_0)(x - x_1) \cdots (x - x_N).
\]

We will now show that \(2^{-N} T_{N+1} \) is the monic polynomial of degree \(N + 1 \) with the smallest uniform norm. That it is a monic polynomial means that its leading coefficient is 1.
Suppose that p is a monic polynomial of degree $N + 1$ such that

$$|p(x)| < 2^{-N}$$

for all $x \in [-1, 1]$. For each $j = 0, 1, \ldots, N, N + 1$, let

$$y_j = \cos \left(\frac{\pi}{N + 1} j \right).$$

These are the minima and maxima of the Chebysev polynomial T_{N+1} and the value of

$$T_{N+1} \left(\cos \left(\frac{\pi}{N + 1} j \right) \right)$$

alternatives between 1 and -1. It follows that

$$p(y_0) < 2^{-N} T_{N+1}(y_0)$$
$$p(y_1) > 2^{-N} T_{N+1}(y_1)$$
$$p(y_2) < 2^{-N} T_{N+1}(y_2)$$
$$\vdots$$
We let
\[q(x) = p(x) - 2^{-N} T_{N+1}(x). \]

Then \(q \) alternates signs between the points \(y_0, y_1, \ldots, y_N, y_{N+1} \), so it has at least \(N + 1 \) zeros. But \(q \) is a polynomial of degree at most \(N \) since the leading term in \(p \) and \(2^{-N} T_{N+1} \) cancel. It follows that \(q \) must be identically zero (the only way a polynomial of degree less than or equal to \(N \) can have \(N + 1 \) zeros is if it is identically zero). In other words, we must have
\[p(x) = 2^{-N} T_{N+1}(x). \]

But this contradicts our assumption that
\[\lvert p(x) \rvert < 2^{-N}, \]

since \(2^{-N} T_{nN1}(x) \) assumes the value \(2^{-N} \). We conclude that there can be no monic polynomial \(p \) such that
\[\lvert p(x) \rvert < 2^{-N} \]

for all \(x \in [-1, 1] \).
We conclude this theorem that Chebyshev nodes are reasonably good interpolation nodes.

Note, though, that this does not mean that the polynomial

\[
p(x) = \sum_{n=0}^{N} a_n T_n(x), \quad a_n = \frac{2}{N+1} \sum_{j=0}^{N} f \left(\cos \left(\frac{j + \frac{1}{2}}{N+1} \right) \right) T_n \left(\cos \left(\frac{j + \frac{1}{2}}{N+1} \right) \right)
\]

minimizes the error

\[
\{\|f - q\|_{\infty} : q \text{ is a polynomial of degree } N + 1\},
\]

only that it minimizes a factor which appears in one particular expression for the error in the Lagrange formula.
Minimax Approximations

Theorem

Suppose that \(f : [-1, 1] \to \mathbb{R} \) is a continuous function. There is a unique polynomial \(p^*_N \) of degree \(N \) such that

\[
\| f - p^*_N \|_{\infty} = \min \{ \| f - q \|_{\infty} : q \text{ is a polynomial of degree } N \},
\]

where \(\| \cdot \|_{\infty} \) is the uniform norm on \([-1, 1]\). We call \(p^*_N \) the minimax polynomial of degree \(N \) for the function \(f \).

The polynomial \(p^*_N \) is called the minimax polynomial because

\[
\| f - p^*_N \|_{\infty} = \min_{q \in \mathbb{P}^n} \max_{x \in [-1, 1]} |f(x) - q(x)|,
\]

where \(\mathbb{P}^n \) denotes the vector spaces of polynomials of degree less than or equal to \(N \).
Minimax Approximations vs Chebyshev Approximations

Computing the minimax polynomials is computationally difficult, and there is very little profit in it, as the next theorem demonstrates.

Theorem

Suppose that \(f : [-1, 1] \to \mathbb{R} \) is a continuous function, that \(p_N^* \) is the minimax polynomial of degree \(N \) for \(f \), that \(\{a_n\} \) are the Chebyshev coefficients of \(f \) — that is,

\[
a_n = \frac{2}{\pi} \int_0^\pi f(x) T_n(x) \frac{dx}{\sqrt{1 - x^2}}
\]

— and that

\[
p_N(x) = \sum_{n=0}^N a_n T_n(x).
\]

Then

\[
\|f - p_N\|_\infty \leq \left(4 + \frac{4}{\pi^2} \log(N) \right) \|f - p_N^*\|_\infty
\]

and

\[
\frac{\pi}{4} |a_{N+1}| \leq \|f - p_N^*\|_\infty.
\]
Minimax Approximations

We will not prove the preceding theorem, but we will discuss some of its implications.

We note first that the theorem bounds the error in the approximation of f by the truncated Chebyshev expansion with exact coefficients. This is not a serious difficulty, though, because we know that if

$$
\tilde{P}_N(x) = \sum_{n=0}^{N} \tilde{a}_n T_n(x) \quad \text{with} \quad \tilde{a}_n = \frac{2}{N+1} \sum_{j=0}^{N} f \left(\cos \left(\frac{j + \frac{1}{2}}{N} \pi \right) \right) T_n \left(\cos \left(\frac{j + \frac{1}{2}}{N} \pi \right) \right),
$$

then

$$
\left\| P_N(x) - \tilde{P}_N(x) \right\|_\infty \leq \sum_{n=N+1}^{\infty} |a_n|.
$$

This means that if the Chebyshev coefficients of f decay rapidly, then

$$
P_N(x) \approx \tilde{P}_N(x)
$$

once N is of moderate size.
The logarithm is a very slowly growing function:

This means that unless N is very large, the inequality

$$\|f - p_N\|_\infty \leq \left(4 + \frac{4}{\pi^2} \log(N)\right) \|f - p^*_N\|_\infty$$

shows that the minimax approximation of the continuous function f is not that much better than the Chebyshev approximation.
Minimax Approximations vs Chebyshev Approximations

Moreover, the second bound

\[\frac{\pi}{4} |a_{N+1}| \leq \| f - p_N^* \|_\infty \]

is useful for showing that if the Chebyshev coefficients of a function decay rapidly, then the minimax approximation is not much better than the Chebyshev approximation.

For instance, suppose that \(|a_n| \leq r^{-n} \). Then

\[\| f - p_N \|_\infty \leq \sum_{n=N+1}^{\infty} |a_n| \leq \sum_{n=N+1}^{\infty} r^{-n} = \frac{r^{-N}}{1 - r} = \frac{r}{1 - r} |a_{N+1}| \leq \frac{4r}{\pi(1 - r)} \| f - p_N^* \|_\infty. \]

This bound can be improved, but in this form it already shows that if \(f \) is analytic then accuracy of the Chebyshev approximation of \(f \) is within a constant factor of the accuracy of the minimax approximation.

The same can be shown to be true if \(f \) is \(C^k \), although doing so requires a much more involved argument.