Problem 1. (20 pts) Let \(A \) be the \(4 \times 3 \) matrix

\[
A = \begin{pmatrix}
1 & 2 & 1 \\
-1 & 2 & 2 \\
3 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

(a) Find a basis for the column space of \(A \).
(b) Find a basis for the null space of \(A \).
(c) Find a basis for the row space of \(A \).

Solution. The matrix \(A \) is row equivalent to

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
\]

which is in RREF. We see from this that

(a) the three columns of \(A \) are a basis for the column space of \(A \),
(b) The null space of \(A \) is \(\{0\} \)
(c) The vectors

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
\]

form a basis for the row space of \(A \). Alternately, the first three rows of \(A \) form a basis for the row space of \(A \). Note, however, that the last three do not.
Problem 2. (15 pts) Consider the polynomials
\[p_1(t) = 1 + t \]
\[p_2(t) = 1 + 2t \]
\[p_3(t) = 1 - t + 2t^2 + t^3 \]
\[p_4(t) = 1 - t + t^2 + t^3. \]
Show that \(\{ p_1, p_2, p_3, p_4 \} \) is a basis for the vector space of polynomials of degree less than or equal to 3.

Solution. First we form the matrix \(P \) of the coefficients of the polynomials \(p_1, \ldots, p_4 \) with respect to the canonical basis \(\{1, t, t^2, t^3\} \) for the vector space of polynomials of degree \(\leq 3 \):
\[
P = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & -1 & -1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}.
\]
The polynomials \(p_1, p_2, p_3, p_4 \) form a basis if and only if this matrix can be row reduced to the identity, so this problem can be solved by row reducing the matrix \(P \).

Alternately, one can compute the determinant of \(P \) (recall that the determinant of a \(n \times n \) matrix is nonzero if and only if it can be row reduced to the identity). We compute:
\[
\det P = \begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & -1 & -1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 1
\end{vmatrix} = \begin{vmatrix}
1 & 0 & 1 & 0 \\
1 & 1 & -1 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & 1 & 0
\end{vmatrix} = \begin{vmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{vmatrix} = \begin{vmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{vmatrix} = 1,
\]
where the last step follows since the determinant of an upper triangular matrix is the product of its diagonal entries. It follows that the polynomials \(p_1, \ldots, p_4 \) form a basis.
Problem 3. (15 pts) Let

\[A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]

(a) What is the rank of \(A \)?
(b) What is the dimension of the null space of \(A \)?
(c) What is the dimension of the row space of \(A \)?
(d) What is the rank of \(B \)?
(e) What is the dimension of the null space of \(B \)?
(f) What is the dimension of the row space of \(B \)?

Solution. Since both \(A \) and \(B \) are already in RREF, we can answer each of the above questions very easily.
(a) The rank of a matrix is the dimension of its column space (which is also equal to the dimension of its row space). Since \(A \) has two leading ones, the answer is 2.
(b) The dimension of the null space of \(A \) is the number of columns of \(A \) minus its rank, which in this case is 1.
(c) The dimension of the row space of \(A \) is also equal to the number of leading ones, which is again 2.
(d) 3
(e) 0
(f) 3
Problem 4. (10 pts) Which of the following subsets of \mathbb{R}^3 are subspaces?

\[V_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y = 0 \right\} \]

\[V_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = y = 0 \right\} \]

\[V_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = 2 \right\} \]

Solution. V_1 and V_2 are subspaces of \mathbb{R}^3 and V_3 is not a subspace. The question did not ask for us to justify our answer, but we will do so here anyway.

The subspaces V_1 and V_2 are both null spaces of matrices; for instance, V_1, is the null space

\[\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \left| \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right. \right\}. \]

One the other hand, it is easy to see that the vector

\[v = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \]

is in the set V_3 while its scalar multiple $2v$ is not.
Problem 5. (20 pts) Let T be the mapping $\mathbb{R}^3 \to \mathbb{R}^1$ defined by $Tv = \|v\|$ where $\|v\|$ is the length of the vector v; i.e.,

$$\|v\| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Show that T is not a linear transformation.

Solution. We must produce a counterexample to show that T does not satisfy one or both of the two properties required of linear transformations.

Let v be the vector

$$v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

and let λ be the scale $\lambda = -1$. Then

$$T(v) = 1$$

but

$$T(\lambda v) = 1 \neq -T(v) = \lambda T(v).$$
Problem 6. (10 pts) Suppose that A is an 3×3 matrix of rank 3. Show that the system of equations $Ax = 0$ has only the trivial solution $x = 0$.

Solution. The rank of a $m \times n$ matrix plus the dimension of its null space is equal n. So, since A has 3 columns, we know that

$$3 = \text{rank}(A) + \dim \text{null}(A).$$

Since we are told that rank(A) is 3, it follows that the dimension of the null space of A is 0. That is,

$$\text{null}(A) = \{0\}.$$

In other words, the only solution to $Ax = 0$ is the trivial solution $x = 0$.
Problem 7. (10 pts) What is the angle between the vectors

\[v = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \]

and

\[w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \]?

Solution. We use the formula

\[\cos(\theta) = \frac{v \cdot w}{\|v\|\|w\|} \]

where \(\theta \) is the angle between \(v \) and \(w \). Since

\[v \cdot w = 1 \cdot 1 + (-2) \cdot 1 + 1 \cdot 1 = 0, \]

it follows that the angle \(\theta \) between \(v \) and \(w \) is \(\pi/2 \) (or ninety degrees).