Problem 1. (10 pts) Let A be the matrix

$$
\begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & 1 \\
2 & -2 & 2
\end{pmatrix}.
$$

(a) Find the inverse of A^{-1} of A.

(b) Use the inverse of A to find x such that

$$Ax = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Solution. The inverse of the matrix A, which we can calculate by row reducing the augmented matrix $(A | I)$, is

$$A^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1/2 & 0 & -1/4 \\ 3/2 & -1 & 1/4 \end{pmatrix}.$$

To answer part (b), we form the product

$$x = A^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1/4 \\ 1/4 \end{pmatrix}.$$
Problem 2. (15 pts) Let A be the matrix

$$
A = \begin{pmatrix}
1 & 1 & 2 & 2 & 2 \\
2 & 2 & 1 & 5 & 1 \\
-1 & -1 & 1 & 3 & 1 \\
-1 & -1 & 4 & -4 & 4
\end{pmatrix}
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) What is the rank of A?

Solution. The matrix A row reduces (without any rows being exchanged) to

$$
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
$$

From this, we see that the first, third, and fourth columns

$$
\begin{pmatrix}
1 \\
2 \\
-1 \\
-1
\end{pmatrix}, \quad
\begin{pmatrix}
1 \\
1 \\
4
\end{pmatrix}, \quad \text{and} \quad
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
$$

form a basis for the column space of A. We also see that the first three rows of A form a basis for the row space of A. Choosing x_2 and x_5 are free variables leads us to the basis

$$
\left\{ \begin{pmatrix}
-1 \\
1 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
0 \\
1
\end{pmatrix} \right\}
$$

for the null space of A. The rank of A is, of course, the dimension of the column space and so the rank of A is 3.
Problem 3. (15 pts) Suppose that A is a 3×3 matrix such that

$$A \cdot v_1 = v_1 - v_2$$
$$A \cdot v_2 = v_2 - v_3$$
$$A \cdot v_3 = v_3,$$

where

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \text{ and } v_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

(a) What is $A \cdot x$ where

$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

(b) Compute $\det(A)$.

(c) What is the characteristic polynomial of the matrix A?

Solution. In order to answer (a), we must find the coefficients of the vector x in the basis v_1, v_2, v_3. We can do so by row reducing the augmented matrix

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix}.$$

We find that $x = v_1 + v_2 + v_3$. This allows us to compute Ax:

$$Ax = A v_1 + A v_2 + A v_3 = (v_1 - v_2) + (v_2 - v_3) + v_3 = v_1.$$

To answer (b) and (c), we form the matrix of A with respect to the basis v_1, v_2, v_3, which is:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

We know that the matrix B is similar to A and so A and B have the same determinant and characteristic polynomial. So that determinant of A is

$$\det(A) = \det(B) = 1$$

and the characteristic polynomial is

$$\det(A - \lambda I) = \det(B - \lambda I) = (1 - \lambda)^3.$$
Problem 4. (15 pts) Let A be the matrix
\[
\begin{pmatrix}
7 & -1 & 2 \\
-1 & 7 & -2 \\
2 & -2 & 10
\end{pmatrix}.
\]

(a) What is the characteristic polynomial of A?

(b) Find all of the eigenvalues of A.

(c) For each eigenvalue λ of A find a basis for the vector space
$V_\lambda = \{v : Av = \lambda v\}$.

Solution. (a) The characteristic polynomial of A is
\[
\det(A - \lambda I) = \begin{vmatrix}
7 - \lambda & -1 & 2 \\
-1 & 7 - \lambda & -2 \\
2 & -2 & 10 - \lambda
\end{vmatrix} \\
= \begin{vmatrix}
6 - \lambda & -1 & 2 \\
6 - \lambda & 7 - \lambda & -2 \\
0 & -2 & 10 - \lambda
\end{vmatrix} \\
= \begin{vmatrix}
6 - \lambda & -1 & 2 \\
0 & 8 - \lambda & -4 \\
0 & -2 & 10 - \lambda
\end{vmatrix} \\
= (6 - \lambda)((8 - \lambda)(10 - \lambda) - 8) \\
= -(\lambda - 6)(\lambda - 6)(\lambda - 12).
\]

(b) The eigenvalues of A are $\lambda = 12$ and $\lambda = 6$.

(c) We find a basis for V_λ by finding a basis for the null space of $A - \lambda I$. Since
\[
A - 6I = \begin{pmatrix}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{pmatrix} \sim \begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\]
the vectors
\[
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
-2 \\
0 \\
1
\end{pmatrix}
\]
form a basis for V_6. A similar computation shows that
\[
\begin{pmatrix}
1 \\
-1 \\
2
\end{pmatrix}
\]
is a basis for V_{12}.
Problem 5. (15 pts) As usual, \(\mathbb{P}^n \) denotes the vector space of all polynomials of degree less than or equal to \(n \). Let \(L \) be the linear transformation \(\mathbb{P}^3 \to \mathbb{P}^4 \) defined by the formula

\[
L(p(t)) = p(0) + tp(t) + t^2 p'(t)
\]

where \(p'(t) \) denotes the derivative of \(p(t) \) with respect to \(t \).

Find the matrix of \(L \) with respect to the bases

\[
S = \{1, 1 + t, 1 + t^2, 1 + t^3\}
\]

and

\[
T = \{1, 1 + t, 1 + t^2, 1 + t^3, 1 + t^4\}.
\]

Note: \(S \) is a basis for \(\mathbb{P}^3 \) and \(T \) is a basis for \(\mathbb{P}^4 \), so the “input basis” for \(L \) is \(S \) and the “output basis” is \(T \).

Solution. We first compute \(L(s_j) \) for each vector \(s_j \) in \(S \):

\[
L(1) = 1 + t \\
L(1 + t) = 1 + t(1 + t) + t^2(1) = 1 + t + 2t^2 \\
L(1 + t^2) = 1 + t(1 + t^2) + t^2(2t) = 1 + t + 3t^3 \\
L(1 + t^3) = 1 + t(1 + t^3) + t^2(3t^2) = 1 + t + 4t^4.
\]

Now we must write each of the vectors \(L(s_j) \) with respect to the basis \(T \). We do that by row reducing the augmented matrix

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 2 & -3 & -4 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 4
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 2 & -3 & -4 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 4
\end{pmatrix}.
\]

So the matrix of \(L \) with respect to \(S \) and \(T \) is

\[
\begin{pmatrix}
0 & 2 & -3 & -4 \\
1 & 1 & 1 & 1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{pmatrix}.
\]
Problem 6. (10 pts) Suppose that \(\{v_1, \ldots, v_n\}\) and \(\{w_1, \ldots, w_n\}\) are vectors in \(\mathbb{R}^n\) such that

\[
v_i \cdot w_j = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j,
\end{cases}
\]

where \(v_i \cdot w_j\) is the inner product of \(v_i\) and \(w_j\). Show that the set \(\{v_1, \ldots, v_n\}\) is linearly independent.

Solution. In order to show that \(\{v_1, \ldots, v_n\}\) is linearly independent, we must show that

\[
\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0,
\]

then \(\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0\). To do that we take the inner product of (1) with \(w_j\); that is, suppose

\[
\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0.
\]

Then

\[
w_j \cdot (\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n) = 0.
\]

But

\[
w_j \cdot (\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n) = \alpha_1 (w_j \cdot v_1) + \ldots + \alpha_j (w_j \cdot v_j) + \ldots \alpha_n (w_n \cdot v_n)
\]

\[
= \alpha_j.
\]

And so (1) implies that \(\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0\).
Problem 7. (10 pts) Find orthonormal bases for the column space and null space of the matrix

\[A = \begin{pmatrix} 2 & -2 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 2 & -2 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{pmatrix}. \]

Solution. We first row reduce the matrix \(A \) in order to find a bases for the column space and null space of \(A \). The matrix \(A \) is row equivalent to

\[\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \]

From this we see that

\[\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \} \]

is a basis for the column space of \(A \) and

\[\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \} \]

is a basis for the null space. In order to find orthonormal bases for these subspaces, we will use the Gram-Schmidt algorithm to orthonormalize these bases. To form an orthonormal basis for the column space, we first set

\[\tilde{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} \]

and then let

\[v_1 = \tilde{v}_1/\|\tilde{v}_1\| = \tilde{v}_1/\sqrt{10}. \]

Then we let

\[\tilde{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot v_1 \]

\[= \frac{2}{5} \begin{pmatrix} 1 \\ -2 \\ 1 \\ -2 \end{pmatrix}. \]

Finally, we set

\[v_2 = \tilde{v}_2/\|\tilde{v}_2\| = \frac{\sqrt{10}}{4} \tilde{v}_2. \]
So

\[
\begin{bmatrix}
\frac{1}{\sqrt{10}} & 2 \\
1 & 1 \\
2 & 1
\end{bmatrix}, \quad \frac{1}{\sqrt{10}} \begin{bmatrix}
1 \\
-2 \\
1 \\
-2
\end{bmatrix}
\]

is an orthonormal basis for the column space of A. The same procedure applied to the basis for the null space will give us an orthonormal basis for the null space of A.
Problem 8. (10 pts) Consider the linear transformation $L : \mathbb{P}^2 \to \mathbb{R}^3$ defined by

$$L(a + bt + ct^2) = \begin{pmatrix} a - b + c \\ b + c \\ a - b - c \end{pmatrix}.$$

(a) Find a basis for the kernel of L.
(b) Find the rank of L.
(c) Is L one-to-one?
(d) Is L onto?

Solution. We first find a matrix A for the linear transformation L with respect to the canonical bases $\{1, t, t^2\}$ for \mathbb{P}^2 and $\{e_1, e_2, e_3\}$ for \mathbb{R}^3. That matrix is

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}.$$

We can now answer all of the questions (a)-(d) by row reducing the matrix A. We see that A is row equivalent to the identity matrix, and so:
(a) The kernel of A is $\{0\}$.
(b) The rank of L is 3.
(c) L is indeed one-to-one (since the kernel is $\{0\}$).
(d) L is also onto.