Below are a few practice problems for the first midterm. They are intended to be slightly longer and/or harder than the exam problems (the theory being if you can master these problems then the exam should be a piece of cake).

1. Show that
\[f(x) = \begin{cases}
\sin(1/x) & x \neq 0 \\
0 & x = 0
\end{cases} \]
is not continuous at \(x = 0 \) but
\[g(x) = \begin{cases}
x \sin(1/x) & x \neq 0 \\
0 & x = 0
\end{cases} \]
is continuous at 0 (Hint: the sine function is bounded by 1 in absolute value).

2. Prove that there is at least one \(x \in \mathbb{R} \) such that \(2^x = 2 - 3x \).

3. Given an example of a function \(f : \mathbb{R} \to \mathbb{R} \) such that \(f^2 \) is continuous but \(f \) is not.

4. Show that if \(f : [0, \infty) \to \mathbb{R} \) is continuous and
\[\lim_{x \to \infty} f(x) = L < \infty, \tag{1} \]
then \(f \) is bounded. Give a counterexample to show that the hypothesis (??) is necessary.

5. Show that if \(f : \mathbb{R} \to \mathbb{R} \) satisfies the inequality \(|f(x)| \leq x^2 \) for all \(x \in \mathbb{R} \), then \(f(0) = 0 \), \(f \) is differentiable at \(x = 0 \), and \(f'(0) = 0 \).