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Introduction

The AKLT model, introducd by Affleck, Kennedy, Lieb, and
Tasaki in 1987, is a spin-1 chain with Hamiltonian

[é\-z’%]T Z[ Sx Sx—|-1 += (Sx SX+1)2]

This was the first model to satisfy the Haldane phase
characteristics.



Spin

The spin of a particle describes its possible angular momentum
values. The spin value of a particle is a half-integer j = 7. If a
particle has spin j its possible values of angular momentum are

j7j_17j_27---7_j

» The irreducible Lie-algebra representation of su,, which
describes a particle of spin j, has dimension d = 2j + 1.

» The three generators for the Lie-algebra representation are
denoted S', S2, S8, and are often combined in the vector
S = (8,82, 89%).

» A particle of spin j has a local Hilbert space #, = CY.



Spin-1 Example

In the j = 1 case, the local Hilbert space is C3, and the spin
matrices that generate the irreducible Lie algebra are:
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Casimir Operator

The Casimir Operator for a representation of su, is the element
8% = (S")? +(8?)2 + (S®)2. Using the relation [S', §/] = icju Sk,
we can show that [S2, S'] = 0 for i = 1, 2, 3. Recall, for any
u(g) € su,, we can write u(g) = ef(t:5'+02:8+0:5°)  Expanding
u(g) into its Taylor series we can deduce that [S?, u(g)] = 0.

In the case of an irreducible representation of su,, Schur’'s
Lemma indicates that S? = c1l for some constant ¢. For the
irrep of dimension 2j + 1 the constant ¢ = j(j + 1).

In the case of a reducible representation, % = 3 j(j + 1) PV,
where each j corresponds to an irrep in the decomposition of
the representation, and PU) is the projection onto that
subspace.



Modeling a Quantum Spin Chain

Each individual particle in a quantum spin chain is modeled by
an irreducible representation of su,. To model the entire chain,
we tensor neighboring representations together.

Ex: Let DY) be the (2j + 1)-irreducible representation of su,
describing a particle of spin j. If we wish to make a quantum
spin chain of three consecutive particles with respective spins
ft, Jo, J3, the su, representation of the chain is

D) & DUe) & pUs)



Modeling a Quantum Spin Chain

We can decompose a tensor of two spin representations into
irreducibles using the Clebsch-Gordan series

DU g pU) o~ plit—kl g pli—kI+1 o @ pli+i)
Ex: The decomposition of two spin-1’s is

DM & D) =~ p0) o p(1) g p2)



The AKLT Model

The AKLT model is a spin-1 chain with isotropic Hamiltonian:

O‘

HES = Z[ + sx Sy + = (sx S,i1)?

Each term hy xy1 = § + 3Sx - Sxi1 + §(Sx - Sx+1)? describes a
nearest-neighbor interaction.

The local Hilbert space on each site is C3, so the global Hilbert
space is H[ap = (C3)®P-at1,



The AKLT Model

Using the Casimir Operator, we compute that

1 1
7"— ESX.SX+1 +

1
3 Sx - SX+1)2 = P)((,z))(+1

5
Here, P! ))(+1 is the orthogonal projection onto the spin-2
subspace of the product of two spin-1’s located at the sites x,
X+ 1.

Since projections are always positive, it follows that the
Hamiltonian HAKET = S°0~1 P2)_ s positive as well. So if we
find a state ¢ such that HQ’EL]T@Z) 0, we know this is a ground

state. As we shall see such states exist.
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The Haldane Phase

Three properties characterize the Haldane phase:

1. A unique ground state in the infinite chain. For the AKLT
model, this means that for all choices v, € ker H_ 1}, such that

llvc]| = 1, and for all finite subchains X and A € Ay, there is a
unique limit w(A), where

W(A) = <¢L7 A¢L>

lim
L—oo



The Haldane Phase

2. A finite correlation length ¢ > 0. For the AKLT model this
means there is C > 0 such that for any finite subchains X, Y,
andallAe Ay, Be Ay,

w(AB) — w(A)w(B)| < Cl|A][Ble %"

For the AKLT Model, ¢ = ( )
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The Haldane Phase

3. A nonzero spectral gap. For AKLT this means there is a
positive number ~ such that the distance between the ground
state eigenvalue \g, and any positive eigenvalue ), is bounded
from below. Thus

A= Aol >

We will discuss why the AKLT model satisfies the first two
conditions of the Haldane phase.
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Unique Ground State/Finite Correlation Length

Definition: An intertwiner V : C2s+1 — C%¥*1 @ €251 is an
isometry with the added requirement that, for any Ués) e D),
we have VU},S) = Ug) ® Ués) V.



Unique Ground State/Finite Correlation Length

Recall that D(1/2) @ D(1/2) =~ p(1) ¢ D(O), So one way to view a
spin-1 particle is as the highest irreducible representation of a
two spin-1/2 system. We call s = 1/2 an auxiliary spin. Let

W : C® — C2 ® C? be the intertwiner embedding

D) c p(1/2) @ p(1/2), The embedding W induces an
embedding of A € M3 into A’ € M> @ M>, where A” = WAW*.
Let ¢ € C2 @ C? be the singlet state

(\ = 1)

S\
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Unique Ground State/Finite Correlation Length

For every n> 1, and any |a), |8) € C?, we define the following
vector ngg € Hyy,m by

P =W oW .. o W)(a)eee...00(3)

Since W* : C® — C2 @ C? is an intertwiner, we can show that
(W*)®n . (C3)®" — (C2 @ C2)®" is also an intertwiner.
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Unique Ground State/Finite Correlation Length

Notice that Hﬁ"f,L]T@b(” =0iff P, ") = 0 for all . Since
P(z)+1 is the projection onto the spin-2 subspace, if we can

show ¢ beIongs locally to the spin-1 or spin-0 irrep, this
condltlon will be satisfied. If 82 is the Casimir operator for
(C2)®n, and J? is the Casimir operator for (C2 @ C?)®", then by
properties of intertwiners,

S2y(") = (W) (la) © ... © 6 © |B))

Since |a), |3) € C? are the only two components that can
contribute a nonzero spin, and C2 is the Hilbert space of D(1/2),
it follows that Szw(ﬁ = ¢y 5, where ¢ < 2. Therefore, the total
spin of %g cannot exceed 1 and it follows directly that

P () =0forall x.
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Unique Ground State/Finite Correlation Length

Recall that HAKLT = 577} P%) . Since P)_ | is the projection
onto the spin-2 subspace of any two neighboring spin-1
particles, it follows that P)((?ngg = 0 for all x. Thus, zp(”ﬁ) is a

(0%
ground state for Hﬁfﬁ]T.

Exercise: Show that all vectors of the form 10(%) span ker Hy -
To do this, first consider a chain of length 3, and then induct.

Notice that this result implies that dim(ker H}y ) = 4.
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Unique Ground State/Finite Correlation Length

To show uniqueness in the thermodynamic limit, we choose any
ground state ¢£¥”ﬁ) and evaluate an arbitrary observable
AT ® A ®...A;0on wy Hence
W), Ay A . A
<¢aﬁa w >

Exercise: Show that for any two vectors |¢), |¢),

(¥, @) = Tr(|o) (1)

wn(A1 ®A2®An):
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Unique Ground State/Finite Correlation Length
We can use the previous exercise to rewite wy(A1 ® A2 ® ... Ap)
as
Wn(A‘] ® A2 ® .o An) == CnTrPaEA1 o EAg o0...0 EAn(P,B)

The operator E4 : Mo — Mo is defined as E4(B) = V*(A® B)V,
where V : C?2 — C8® ® C? is the intertwiner defined by

Viey = (W* @ T)(|e) © ¢)

Here, ¢ is a normalization constant and P, Pg are 2 x 2
matrices depending only on «, 3, respectively. It is
straightforward that Ey, (12) = 1.
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Unique Ground State/Finite Correlation Length

When taking the thermodynamic limit, it is desirable to calculate
E’lfs for larges values of k. Hence it is convenient to diagonalize
the operator E. Notice that for all 2 x 2 matrices B we can write
B in the basis

B = byl + bio' + boc? + byo®

Notice that since the Pauli matrices are traceless, it is
straightforward to calculate by = @. To diagonalize E, it is
only necessary to know how it acts on ¢/, and we can calculate
Ei(o') = —%UI.



Unique Ground State/Finite Correlation Length

Using the previous calculations we find that for any B € M,
[E1,(B) diagonalizes as:

1
3

We use this diagonalization to show that

1 1
Ei(B) = 5(T1B)lz — z(B— 5 TrBl,)

1 —1\k 1
Ef,(B) = 5(TB)Iz + (3) (B~ 5TrBIg)
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Unique Ground State/Finite Correlation Length

The formula for E’lfa(B) makes it straightforward to calculate the
thermodynamic limit

im Wi (1®.. 010A0...0AR1®...0 1)

|—00, r—oo

= %TrE/h 0...0 EAn(]lg)

Since this is independent of our choice of ¢§fg, the ground state
of the infinite chain is unique.
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Unique Ground State/Finite Correlation Length

Using the diagonalization of Ey,, the respective linearities of the
trace and E, we can show, for two observables A, B located k
sites away, that

W(AB) = w(A)w(B) + ¢ <_31> '

where the constant ¢ only depends on A and B. This is enough
to show that the correlation length for the AKLT model is m%s)
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Appendix

Here are some slides to help show
wn(A1 & A2 X ... An) = chrPaIEA1 o EAz 0...0 EAn(PB)'

Let |8) € C2. Since | 1), | ) € C? are a basis for C? there are
elements by, b, € C such that |3) = by| 1) + by| |). Define the
vector |3) as:

1B) =b1] 1) — bo| T)
It follows that (1, ® (3])6 = |8)
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Appendix

| will show the formula for the case n = 1. Consider any
observable A € A. Then

(Wre) ©16), AW*|er) © |5))
(W) ©6), WHe) ©18))

Using the exercise (¢, ¢) = Tr(|¢) (»|) We rewrite w{(A) as

iy (A) = TUWAW'[a) © 18)(al © (5])
1 Tr(ja) @ [8){a] ® (B])

Let ¢ be the constant ¢ = Tr(Ja) ® |3) (o] ® (B]|) and from now
on only consider the numerator.

wi(A) =
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Appendix

Let |4) be the singlet vector from D(1/2) g D(1/2) = p(1) & p(0),
Using the cyclicity of the trace we find:

THWAW[a) © 8) o] @ (3)

— T(WAW (0} © (12 (B[ (ol @ (01129 15))))

= DHWAW © 1) (1) © 1 © 1) (I @ 1 (B)(1e @ |9))
(12 @ (])(I2 ® 12 @ |B))((a] @ Tz @ T)]

= 1T @ o @ ) (o] @ G)(W e I)(A® T)
(W & 1)) @ [9))(12© Tz © (B))]

— 10} ol V" (A% 1B} EDV)] = 2T alEA(3) (D)



