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Introduction

The AKLT model, introducd by Affleck, Kennedy, Lieb, and
Tasaki in 1987, is a spin-1 chain with Hamiltonian

HAKLT
[a,b] =

b−1∑
x=a

[
1
3
+

1
2

Sx · Sx+1 +
1
6
(Sx · Sx+1)

2]

This was the first model to satisfy the Haldane phase
characteristics.
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Spin

The spin of a particle describes its possible angular momentum
values. The spin value of a particle is a half-integer j = n

2 . If a
particle has spin j its possible values of angular momentum are

j , j − 1, j − 2, . . . , −j

I The irreducible Lie-algebra representation of su2, which
describes a particle of spin j , has dimension d = 2j + 1.

I The three generators for the Lie-algebra representation are
denoted S1, S2, S3, and are often combined in the vector
S = (S1,S2,S3).

I A particle of spin j has a local Hilbert space Hx = Cd .
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Spin-1 Example

In the j = 1 case, the local Hilbert space is C3, and the spin
matrices that generate the irreducible Lie algebra are:

S1 =

 0 1 0
1 0 1
0 1 0

 S2 =

 0 −i 0
i 0 −i
0 i 0



S3 =

 1 0 0
0 0 0
0 0 −1


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Casimir Operator
The Casimir Operator for a representation of su2 is the element
S2 = (S1)2 +(S2)2 +(S3)2. Using the relation [Si , Sj ] = iεijkSk ,
we can show that [S2, Si ] = 0 for i = 1, 2, 3. Recall, for any
u(g) ∈ su2, we can write u(g) = ei(θ1S1+θ2S2+θ3S3). Expanding
u(g) into its Taylor series we can deduce that [S2, u(g)] = 0.

In the case of an irreducible representation of su2, Schur’s
Lemma indicates that S2 = c1l for some constant c. For the
irrep of dimension 2j + 1 the constant c = j(j + 1).

In the case of a reducible representation, S2 =
∑

j j(j + 1)P(j),
where each j corresponds to an irrep in the decomposition of
the representation, and P(j) is the projection onto that
subspace.
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Modeling a Quantum Spin Chain

Each individual particle in a quantum spin chain is modeled by
an irreducible representation of su2. To model the entire chain,
we tensor neighboring representations together.

Ex: Let D(j) be the (2j + 1)-irreducible representation of su2
describing a particle of spin j . If we wish to make a quantum
spin chain of three consecutive particles with respective spins
j1, j2, j3, the su2 representation of the chain is

D(j1) ⊗ D(j2) ⊗ D(j3)
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Modeling a Quantum Spin Chain

We can decompose a tensor of two spin representations into
irreducibles using the Clebsch-Gordan series

D(j1) ⊗ D(j2) ∼= D|j1−j2| ⊕ D|j1−j2|+1 ⊕ . . .⊕ D(j1+j2)

Ex: The decomposition of two spin-1’s is

D(1) ⊗ D(1) ∼= D(0) ⊕ D(1) ⊕ D(2)
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The AKLT Model

The AKLT model is a spin-1 chain with isotropic Hamiltonian:

HAKLT
[a,b] =

b−1∑
x=a

[
1
3
+

1
2

Sx · Sx+1 +
1
6
(Sx · Sx+1)

2
]

Each term hx ,x+1 = 1
3 + 1

2Sx · Sx+1 +
1
6(Sx · Sx+1)

2 describes a
nearest-neighbor interaction.

The local Hilbert space on each site is C3, so the global Hilbert
space is H[a,b] = (C3)⊗b−a+1.
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The AKLT Model

Using the Casimir Operator, we compute that

1
3
+

1
2

Sx · Sx+1 +
1
6
(Sx · Sx+1)

2 = P(2)
x ,x+1

Here, P(2)
x ,x+1 is the orthogonal projection onto the spin-2

subspace of the product of two spin-1’s located at the sites x ,
x + 1.

Since projections are always positive, it follows that the
Hamiltonian HAKLT

[a,b] =
∑b−1

x=a P(2)
x ,x+1 is positive as well. So if we

find a state ψ such that HAKLT
[a,b] ψ = 0, we know this is a ground

state. As we shall see such states exist.
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The Haldane Phase

Three properties characterize the Haldane phase:

1. A unique ground state in the infinite chain. For the AKLT
model, this means that for all choices ψL ∈ ker H[−L,L], such that
‖ψL‖ = 1, and for all finite subchains X and A ∈ AX , there is a
unique limit ω(A), where

ω(A) = lim
L→∞
〈ψL, AψL〉
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The Haldane Phase

2. A finite correlation length ξ > 0. For the AKLT model this
means there is C > 0 such that for any finite subchains X , Y ,
and all A ∈ AX , B ∈ AY ,

|ω(AB)− ω(A)ω(B)| ≤ C‖A‖‖B‖e
−d(X ,Y )

ξ

For the AKLT Model, ξ = 1
ln(3)
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The Haldane Phase

3. A nonzero spectral gap. For AKLT this means there is a
positive number γ such that the distance between the ground
state eigenvalue λ0, and any positive eigenvalue λ, is bounded
from below. Thus

|λ− λ0| ≥ γ

We will discuss why the AKLT model satisfies the first two
conditions of the Haldane phase.
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Unique Ground State/Finite Correlation Length

Definition: An intertwiner V : C2s+1 → C2j+1 ⊗ C2s+1 is an
isometry with the added requirement that, for any U(s)

g ∈ D(s),
we have VU(s)

g = U(j)
g ⊗ U(s)

g V .
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Unique Ground State/Finite Correlation Length

Recall that D(1/2) ⊗ D(1/2) ∼= D(1) ⊕ D(0). So one way to view a
spin-1 particle is as the highest irreducible representation of a
two spin-1/2 system. We call s = 1/2 an auxiliary spin. Let
W : C3 → C2 ⊗ C2 be the intertwiner embedding
D(1) ⊂ D(1/2) ⊗ D(1/2). The embedding W induces an
embedding of A ∈ M3 into A′ ∈ M2 ⊗M2, where A′ = WAW ∗.
Let φ ∈ C2 ⊗ C2 be the singlet state

φ =
1√
2
(| ↑↓〉 − | ↓↑〉)
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Unique Ground State/Finite Correlation Length

For every n ≥ 1, and any |α〉, |β〉 ∈ C2, we define the following
vector ψ(n)

αβ ∈ H[1,n] by

ψ
(n)
αβ = (W ∗ ⊗W ∗ ⊗ . . .⊗W ∗)(|α〉 ⊗ φ⊗ . . .⊗ φ⊗ |β〉)

Since W ∗ : C3 → C2 ⊗ C2 is an intertwiner, we can show that
(W ∗)⊗n : (C3)⊗n → (C2 ⊗ C2)⊗n is also an intertwiner.
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Unique Ground State/Finite Correlation Length
Notice that HAKLT

[1,n] ψ
(n)
αβ = 0 iff P(2)

x ,x+1ψ
(n)
αβ = 0 for all x . Since

P(2)
x ,x+1 is the projection onto the spin-2 subspace, if we can

show ψ
(n)
αβ belongs locally to the spin-1 or spin-0 irrep, this

condition will be satisfied. If S2 is the Casimir operator for
(C3)⊗n, and J2 is the Casimir operator for (C2 ⊗ C2)⊗n, then by
properties of intertwiners,

S2ψ
(n)
αβ = (W ∗)⊗nJ2(|α〉 ⊗ φ⊗ . . .⊗ φ⊗ |β〉)

Since |α〉, |β〉 ∈ C2 are the only two components that can
contribute a nonzero spin, and C2 is the Hilbert space of D(1/2),
it follows that S2ψ

(n)
αβ = cψ(n)

αβ , where c ≤ 2. Therefore, the total

spin of ψ(n)
αβ cannot exceed 1 and it follows directly that

P(2)
x ,x+1ψ

(n)
αβ = 0 for all x .
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Unique Ground State/Finite Correlation Length

Recall that HAKLT
[1,n] =

∑n−1
x=1 P(2)

x ,x+1. Since P(2)
x ,x+1 is the projection

onto the spin-2 subspace of any two neighboring spin-1
particles, it follows that P(2)

x ,x+1ψ
(n)
αβ = 0 for all x . Thus, ψ(n)

αβ is a
ground state for HAKLT

[1,n] .

Exercise: Show that all vectors of the form ψ
(n)
αβ span ker H[1,n].

To do this, first consider a chain of length 3, and then induct.

Notice that this result implies that dim(ker H[1,n]) = 4.
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Unique Ground State/Finite Correlation Length

To show uniqueness in the thermodynamic limit, we choose any
ground state ψ(n)

αβ and evaluate an arbitrary observable
A1 ⊗ A2 ⊗ . . .An on ωn. Hence

ωn(A1 ⊗ A2 ⊗ . . .An) =
〈ψ(n)

αβ , A1 ⊗ A2 ⊗ . . .Anψ
(n)
αβ 〉

〈ψ(n)
αβ , ψ

(n)
αβ 〉

Exercise: Show that for any two vectors |ψ〉, |φ〉,
〈ψ, φ〉 = Tr(|φ〉〈ψ|)
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Unique Ground State/Finite Correlation Length

We can use the previous exercise to rewite ωn(A1 ⊗A2 ⊗ . . .An)

as

ωn(A1 ⊗ A2 ⊗ . . .An) = cnTrPαEA1 ◦ EA2 ◦ . . . ◦ EAn(Pβ)

The operator EA : M2 → M2 is defined as EA(B) = V ∗(A⊗ B)V ,
where V : C2 → C3 ⊗ C2 is the intertwiner defined by

V |α〉 = (W ∗ ⊗ 1l)(|α〉 ⊗ φ)

Here, cn is a normalization constant and Pα, Pβ are 2× 2
matrices depending only on α, β, respectively. It is
straightforward that E1l3(1l2) = 1l2.
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Unique Ground State/Finite Correlation Length

When taking the thermodynamic limit, it is desirable to calculate
Ek

1l3 for larges values of k . Hence it is convenient to diagonalize
the operator E. Notice that for all 2× 2 matrices B we can write
B in the basis

B = b01l2 + b1σ
1 + b2σ

2 + b3σ
3

Notice that since the Pauli matrices are traceless, it is
straightforward to calculate b0 = Tr(B)

2 . To diagonalize E, it is
only necessary to know how it acts on σi , and we can calculate
E1l(σ

i) = −1
3σ

i .
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Unique Ground State/Finite Correlation Length

Using the previous calculations we find that for any B ∈ M2

E1l3(B) diagonalizes as:

E1l3(B) =
1
2
(TrB)1l2 −

1
3
(B − 1

2
TrB1l2)

We use this diagonalization to show that

Ek
1l3(B) =

1
2
(TrB)1l2 +

(
−1
3

)k

(B − 1
2

TrB1l2)



22

Unique Ground State/Finite Correlation Length

The formula for Ek
1l3(B) makes it straightforward to calculate the

thermodynamic limit

lim
l→∞, r→∞

ωl+n+r (1l⊗ . . .⊗ 1l⊗ A1 ⊗ . . .⊗ An ⊗ 1l⊗ . . .⊗ 1l)

=
1
2

TrEA1 ◦ . . . ◦ EAn(1l2)

Since this is independent of our choice of ψ(n)
αβ , the ground state

of the infinite chain is unique.
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Unique Ground State/Finite Correlation Length

Using the diagonalization of E1l3 , the respective linearities of the
trace and E, we can show, for two observables A, B located k
sites away, that

ω(AB) = ω(A)ω(B) + c
(
−1
3

)k

where the constant c only depends on A and B. This is enough
to show that the correlation length for the AKLT model is 1

ln(3) .
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Appendix

Here are some slides to help show
ωn(A1 ⊗ A2 ⊗ . . .An) = cnTrPαEA1 ◦ EA2 ◦ . . . ◦ EAn(Pβ).

Let |β〉 ∈ C2. Since | ↑〉, | ↓〉 ∈ C2 are a basis for C2 there are
elements b1, b2 ∈ C such that |β〉 = b1| ↑〉+ b2| ↓〉. Define the
vector |β̃〉 as:

|β̃〉 = b1| ↓〉 − b2| ↑〉

It follows that (1l2 ⊗ 〈β̃|)φ = |β〉
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Appendix

I will show the formula for the case n = 1. Consider any
observable A ∈ A. Then

ω1(A) =
〈W ∗|α〉 ⊗ |β〉, AW ∗|α〉 ⊗ |β〉〉
〈W ∗|α〉 ⊗ |β〉, W ∗|α〉 ⊗ |β〉〉

Using the exercise 〈ψ, φ〉 = Tr(|φ〉〈ψ|) We rewrite ω1(A) as

ω1(A) =
Tr(WAW ∗|α〉 ⊗ |β〉〈α| ⊗ 〈β|)

Tr(|α〉 ⊗ |β〉〈α| ⊗ 〈β|)

Let c be the constant c = Tr(|α〉 ⊗ |β〉〈α| ⊗ 〈β|) and from now
on only consider the numerator.
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Appendix

Let |φ〉 be the singlet vector from D(1/2) ⊗ D(1/2) ∼= D(1) ⊗ D(0).
Using the cyclicity of the trace we find:

Tr(WAW ∗|α〉 ⊗ |β〉〈α| ⊗ 〈β|)

= Tr(WAW ∗(|α〉 ⊗ (1l2 ⊗ 〈β̃|)|φ〉)(〈α| ⊗ (〈φ|1l2 ⊗ |β̃〉)))

=
1
2

Tr[(WAW ∗ ⊗ 1l2)(|α〉 ⊗ 1l2 ⊗ 1l2)(1l2 ⊗ 1l2 ⊗ 〈β̃|)(1l2 ⊗ |φ〉)

(1l2 ⊗ 〈φ|)(1l2 ⊗ 1l2 ⊗ |β̃〉)(〈α| ⊗ 1l2 ⊗ 1l2)]

=
1
2

Tr[(1l2 ⊗ 1l2 ⊗ |β̃〉)(〈α| ⊗ 〈φ|)(W ⊗ 1l2)(A⊗ 1l2)

(W ∗ ⊗ 1l2)(|α〉 ⊗ |φ〉)(1l2 ⊗ 1l2 ⊗ 〈β̃|)]

=
1
2

Tr[|α〉〈α|V ∗(A⊗ |β̃〉〈β̃|)V )] =
1
2

Tr[|α〉〈α|EA(|β̃〉〈β̃|)]


