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Quantum spin models with gapped ground
states
By quantum spin system we mean quantum systems of the
following type:

I (finite) collection of quantum systems labeled by x ∈ Λ,
each with a finite-dimensional Hilbert space of states Hx .
E.g., a spin of magnitude S = 1/2, 1, 3/2, . . . would have
Hx = C2,C3,C4, . . . .

I The Hilbert space describing the total system is the
tensor product

HΛ =
⊗
x∈Λ

Hx .

with a tensor product basis |{αx}〉 =
⊗

x∈Λ |αx〉
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We will primarily work in the Heisenberg picture so
observables, rather than state vectors, play the lead role:

I The algebra of observables of the composite system is

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ. Then

A =
⋃
X

AX

Our most common choice for Λ will be finite subsets of Zν ,
e.g., hypercubes of the form [1, L]ν or [−N ,N]ν .
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Interactions, Dynamics, Ground States
The Hamiltonian HΛ = H∗Λ ∈ AΛ is defined in terms of an
interaction Φ: for any finite set X , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X )

For finite-range interactions, Φ(X ) = 0 if diam X ≥ R .
Heisenberg Dynamics: A(t) = τΛ

t (A) is defined by

τΛ
t (A) = e itHΛAe−itHΛ

For finite systems, ground states are simply eigenvectors of HΛ

belonging to its smallest eigenvalue.
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Examples
1.The spin-1/2 Heisenberg model E.g., Λ ⊂ Zν , Hx = C2; the
Heisenberg Hamiltonian:

HΛ =
∑
x∈Λ

BS3
x +

∑
|x−y |=1

JxySx · Sy

The ground states of the ferromagnetic Heisenberg model
(B = 0, Jxy < 0), are easily found to be the states of maximal
spin.
The low-lying excitations are spin waves and in the limit of an
infinite lattice the excitation spectrum is gapless.
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2. The AKLT model (Affleck-Kennedy-Lieb-Tasaki, 1987).
Λ ⊂ Z, Hx = C3;

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Exact ground state is “frustration free” (Valence Bond Solid
state (VBS), Matrix Product State (MPS), Finitely Correlated
State (FCS)).
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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3. Toric Code model (Kitaev, 2003). Λ ⊂ Z2, Hx = C2.

a b
cd

tr
v u

H = −
∑

p hp −
∑

s hs

hp = σ3
aσ

3
bσ

3
cσ

3
d

hs = σ1
r σ

1
t σ

1
uσ

1
v

On a surface of genus g , the model has 4g frustration free
ground states.
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0-energy / frustration-free ground states
An algebraic approach to existence of frustration free ground
states of spin chains. x ∈ Z, Hx = Cd .

H[1,L] =
L−1∑
x=1

hx ,x+1,

with hx ,x+1 = h ∈ A[1,2], h ≥ 0, ker h = G ⊂ Cd ⊗ Cd

ker H[1,L] =
L−1⋂
x=1

Cd ⊗ · · ·Cd︸ ︷︷ ︸
x−1

⊗G ⊗ Cd ⊗ · · ·Cd︸ ︷︷ ︸
L−x−1

For which G is ker H[1,L] 6= {0} for all L ≥ 2?
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A few easy cases:

I If h1,2h2,3 = h2,3h1,2, all terms in the Hamiltonian are
simultaneously diagonalizable. Just need to check
whether there are eigenvectors with common eigenvalue
0. Example: Toric Code model.

I If, for some 0 6= φ ∈ Cd , φ⊗ φ ∈ G, then
φ⊗ φ · · · ⊗ φ︸ ︷︷ ︸

L

∈ ker H[1,L] for all L.

Example: ferromagnetic Heisenberg model.

I If G is the antisymmetric subspace of Cd ⊗ Cd ,
ker H[1,L] = {0} for L > d . Example: the Heisenberg
antiferromagnetic chain does not have a frustration free
ground state.
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Non-trivial solutions (joint work with RF Werner).

Observation: the existence of 0-eigenvectors of H[1,L] for all
finite L is equivalent to the existence of pure states ω of the
half-infinite chain with zero expectation of all hx ,x+1, x ≥ 1.
Let’s call such ω pure zero-energy states.

Each term in the Hamiltonian is minimized individually. Hence
the term frustration-free ground states.

Zero-energy states are certainly ground states (hx ,x+1 ≥ 0); it
is a separate question whether they are all the ground states.
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Theorem (Bratteli, Jørgensen, Kishimoto, Werner, 2000)

Any pure zero-energy state ω has an representation in operator
product form: there is a Hilbert space K, bounded linear
operators V1, . . . ,Vd on K, and Ω ∈ K, such that
span{Vα1 · · ·VαnΩ | n ≥ 0, 1 ≤ α1, . . . , αn ≤ d} = K

ω(|α1, . . . , αn〉〈β1, . . . , βn|) = 〈Ω,V ∗α1
· · ·V ∗αn

Vβn · · ·Vβ1Ω〉

and 1l is the only eigenvector with eigenvalue 1 of the operator

Ê ∈ B(B(K)) : Ê(X ) =
d∑

α=1

V ∗αXVα

and for all ψ ⊥ G, ψ =
∑

α,β ψαβ|α, β〉, we have the relation∑
α,β

ψαβ VαVβ = 0.
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This theorem is based on a theorem by Bratteli, Jørgensen,
Kishimoto, and Werner (J. Operator Theory 2000), about pure
states on the Cuntz algebra Od . States on half-infinite spin
chains can be canonically lifted to states on Od .
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In a number of cases we can describe the solutions of these
relations.
As a warm-up, consider

G = {antisymmetric subspace} = {ψ ∈ Cd ⊗Cd | Fψ = −ψ},

where F is the operator interchanging the two tensor factors.
E.g., in the case d = 2, this is the spin-1/2 Heisenberg
antiferromagnetic chain.
For a zero-energy state to exist, we would need to have a
Hilbert space K with V1, . . .Vd ∈ B(K) such that

VαVβ = −VβVα =⇒ V 2
α = 0 =⇒ Vα1 · · ·Vαr = 0 (r > d).

Hence Êr = 0, for r > d , which contradicts Ê(1l) = 1l.
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So, there are no solutions with G = the antisymmetric
subspace. This suggests that we next consider

G = {antisymmetric vectors} ⊕ Cψ,

where ψ is a symmetric vector. A spanning set for G⊥ is given
by the set |α, β〉+ |β, α〉 − 2〈ψ|α, β〉ψ, 1 ≤ α ≤ β ≤ d . We
refer to this situation as “antisymmetric plus one”.
The AKLT model is an example: G = the spin 0 and spin 1
vectors in the tensor product of two spin 1’s:

D(1) ⊗ D(1) ∼= D(0) ⊕ D(1) ⊕ D(2)

The irreps are alternatingly symmetric and anti-symmetric,
with the maximal spin always symmetric. In this case, D(1) is
the antisymmetric subspace and the singlet vector is
symmetric:

ψ = |1,−1〉 − |0, 0〉+ | − 1, 1〉
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In general, a standard result of linear algebra (Takagi) gives the
existence of an orthonormal basis {|α〉}1≤α≤d and coefficients
c1 ≥ c2 ≥ · · · ≥ cd ≥ 0 such that ψ =

∑
α cα|α, α〉.

Using this basis, we obtain the following relations for the
operators Vα:

VαVβ + VβVα = 2cαδαβX , X =

(∑
γ

cγV
2
γ

)
.

These relations also imply Ê(X ) = X , and therefore X = x1l
for a scalar x . Some further algebra gives

Vα = vαZα, with vα =

√
cα∑
α cα

, if cα > 0,

and Vα = 0 is cα = 0. Let r be the number on non-vanishing
cα.
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Then, the Zα, α = 1, . . . r , satisfy the standard relations of a
Clifford algebra:

ZαZβ + ZβZα = 2δαβ1l, 1 ≤ α, β ≤ r .

Since the Vα generate K, we must have an irreducible
representation of Cr , the Clifford algebra with r generators.
The irreps of the Clifford algebras are well-known:
If r is even, Cr ∼= M2r/2 , the square matrix algebra of dimension
2r , which has only one irrep.
If r is odd, Cr has a non-trivial central element:
Z0 = Z1 · · ·Zr , and a decomposition
Cr = (1l + Z0)Cr ⊕ (1l− Z0)Cr ∼= M2(r−1)/2 ⊕M2(r−1)/2 , leading to
two, equivalent, irreps.
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Conclusion: in the case G = {antisymmetric vectors} ⊕ Cψ,
there are always zero-energy states and the operators Vα are
(can be chosen to be) finite-dimensional (MPS).
E.g., with the choice

ψ =
1√
d

d∑
α=1

|αα〉,

we find a class of spin chains with SO(d) symmetry recently
analyzed in the literature (Tu & Zhang, PRB 78, 094404
(2008)). These models can be regarded as a new
generalization of the AKLT model d = 3. For odd d these
models have a unique ground state, for even d they are
dimerized (translation invariance is broken to period 2).
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The behavior of correlations in these ground states are
essentially determined by the spectrum of Ê. Amanda Young
worked out a few important cases in an REU project this past
summer.

Lemma
Let A = {α1, . . . , αk} ⊂ {1, . . . , r}, and VA = Vα1 · · ·Vαk

.

Then Ê(VA) = λAVA with

λA = (−1)|A|
(
1− 2x

∑
α∈A

cα
)
, (1)

where x =
(∑r

α=1 cα
)−1

.

Note the eigenvector V0 = V1 · · ·Vr with eigenvalue −1 if r is
even. This is why dimerization occurs in the SO(d) models
with odd d
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G = the symmetric subspace
In this case G⊥ = the anti-symmetric subspace, a basis for
which is given |α, β〉 − |β, α〉, α < β. The algebraic conditions
on the Vα are then

VαVβ = VβVα, for all α, β

Hence, Ê(Vα) = Vα, and we conclude Vα = φα1l, for all α.
Therefore, K is one-dimensional, and the state must be a
homogeneous product state. This is the situation of the
spin-1/2 Heisenberg ferromagnetic chain.
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A small twist with a big effect
Consider d = 2 and let q ∈ (0, 1) and define
G = span{|1, 1〉, |2, 2〉, |1, 2〉+ q|2, 1〉}.
Then, G⊥ = Cψ with ψ = q|1, 2〉 − |2, 1〉. Hence, the
commutation relation of the generators is

V2V1 = qV1V2.

The corresponding nearest neighbor interaction is |ψ〉〈ψ|,
which is equivalent to the spin-1/2 XXZ chain with twisted
boundary conditions:

H[a,b] = −
b−1∑
x=a

(
σ1

xσ
1
x+1 + σ2

xσ
2
x+1 +

2

q + q−1
(σ3

xσ
3
x+1 −

1

4
1l)

)
+

1

2

1− q2

1 + q2
(σ3

b − σ3
a).
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To make a long story short, there is an infinite family of
solutions, which can all be derived from a “mother solution”
on an infinite-dimensional Hilbert space K, given as follows.
Let K be the separable Hilbert space with orthogonal basis
{φn}n≥0 and inner product 〈φn, φm〉 = λnδn,m, with

λ0 = 1, λn =
n∏

m=1

q2m

1− q2m+2
, n ≥ 1.

Two bounded operators V1 and V2 can then be defined on K
by

V1φn = qnφn

V2φ0 = 0, V2φn = qn−1φn−1, for n ≥ 1

It is then easily seen that V ∗1 = V1 and

V ∗2 φn =
λn

λn+1
qnφn+1 = (q−n − qn+2)φn+1.
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It is noteworthy that V1 and V2 are a concrete representation
of SUq(2), regarded as a compact matrix quantum group in
the sense of Woronowicz. This means bounded operators
satisfying the relations

V ∗1 V1 + V ∗2 V2 = 1l, V2V1 = qV1V2

V1V
∗
1 = V ∗1 V1, V2V

∗
1 = qV ∗1 V2, V2V

∗
2 + q2V1V

∗
1 = 1l

The first two relations in are the normalization condition and
the commutation relation we require. The next two relations
are trivially satisfied since V1 is self-adjoint. The last relation
is one we did not require but it is straightforward to verify
using the definitions of V1 and V2.
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What is a quantum ground state phase?
The frustration free models we have discussed, are just a few
example of a much larger class. It is believed that any type of
gapped ground state is adequately described by a frustration
free model (Fannes, N, Werner, 1992 & ff).
But how should one define “type”?
When are two gapped ground states representing the same
“gapped phase”?
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Definition of “gapped phase”
(joint work with Bachmann, Michalakis, and Sims)
In arXiv:1004.3835, Local unitary transformation, long-range
quantum entanglement, wave function renormalization, and
topological order, Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen
(Phys. Rev. B 82, 155138 (2010)), give the following
definition (paraphrasing):
Two states Ψ0 and Ψ1 are in the same phase if there is a
family of Hamiltonians H(s), 0 ≤ s ≤ 1, such that H(s) has a
non-vanishing gap above the ground state for all s and Ψi is
the ground state of H(i), i = 0, 1.
(see also arXiv:1008.3745 by the same authors)
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In the same paper we also find the statement/conjecture:

Two gapped states Ψ0 and Ψ1 belong to the same phase if
and only if they are related by a local unitary evolution

We recently proved a precise version of this statement using
Lieb-Robinson bounds (Lieb & Robinson 1972, N & Sims
2006, Hastings & Koma, 2006) and “quasi-adiabatic
continuation” (Hastings 2004, Hastings & Wen, 2005).
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Theorem
Let Φ0 and Φ1 be two exponentially interactions for a
quantum spin system on Zν , and suppose we have an
interpolating Φ(s), such that for all s, HΛn(s) has a gap
≥ γ > 0 above the ground states for all s ∈ [0, 1] and all Λn in
a nice sequence of Λn ↑ Zν . Let S(s) be the set of
thermodynamic limits of ground states of HΛn(s).
Then, there exist automorphisms αs of the quasi-local algebra

A =
⋃

Λ⊂Zν
AΛ

such that S(s) = S(0) ◦ αs , for s ∈ [0, 1].

The automorphism α is constructed as the thermodynamic
limit of the “time” evolution at s = 1 for an interaction
Ω(X , s), which decays almost exponentially.


