
1

Introduction to Quantum Spin Systems
Lecture 1

Bruno Nachtergaele

Mathematics, UC Davis

MAT290-25, CRN 30216, Winter 2011, 01/03/11

2

Outline

What are Quantum Spin Systems?

Three reasons to study Quantum Spin Systems
Physics
Mathematics
Computer Science

Seminar organization



3

Quantum Systems with Finite-Dim. State Space

A Quantum Spin System (QSS) is a quantum system
consisting of a collection of subsystems, each with a
finite-dimensional Hilbert space of states.
States, for now, are ψ ∈ H, ‖ψ‖ = 1, where H is a complex
Hilbert space. At first, we will only consider finite collections of
spins and therefore dimH <∞, H ∼= Cn,n ≥ 2 (n = 1 is
possible but trivial).
We call ψ a state because it is the mathematical object that
allows one to calculate (model, predict, ...) the statistics of the
outcomes of any measurement (observation) that can be
performed on the corresponding physical system.
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In general, there may be more than one mathematical way to
represent a physical state of a system (e.g., density matrices).
In simple cases one can describe a procedure to recover ψ
from a set of measurements (quantum state tomography).
A measurable quantity is mathematically represented by an
observable, in this case a Hermitian linear transformation of H:
A = A∗ ∈ B(H) ∼= Mn(C).
The mean or expectation of A in the state ψ is given by

ωψ(A) = 〈ψ,Aψ〉.

Here, 〈·, ·〉 denotes the inner product of H. Following the
convention most common in mathematical physics (as in
physics, but not mathematics), our inner products are antilinear
in the first and linear in the second argument.
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Example: spin 1/2-system, aka two-level atom, aka qubit
(quantum bit). H = C2. The basic observables for this system
are the three Pauli matrices σ1, σ2, σ3, which together with the
identity matrix form a basis of M2(C):

σ0 = 1l =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

As observables, σ1, σ2, σ3 represent the components of the
spin thought of as a vector in R3.
Let (e1,e2) be the canonical orthonormal basis of C2. For
a,b ∈ C, |a|2 + |b|2 = 1, ψ = ae1 + be2 is normalized vector and

ωψ(σ1) = ab + ba, ωψ(σ3) = |a|2 − |b|2,etc.
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The spin matrices are Sα = 1
2σ

α, i = 1,2,3, and

[Sα,Sβ] = iεα,β,γSγ

I.e., they generate the Lie algebra su(2), closely related to the
rotations in R3.
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To be able to determine the full statistics of an observable
quantity, we should be able to determine its moments and
perhaps the characteristic function. It is therefore natural that
the mathematical objects representing observables form an
algebra of observables. If we lift the restriction that A is
Hermitian, we have A ∈ M2(C), which is indeed an algebra and
it makes sense to calculate quantities such as the variance of A:

ωψ((A− ωψ(A))2),

and the characterisitic function:

fψ,A(x) = ωψ(eixA).
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In general then, a finite quantum system is described by a
Hilbert space H and a subalgebra A of B(H) describing the
observables. We assume that A is closed for the ∗-operation
and the operator norm, making it a C∗-algebra. We will always
assume 1l ∈ A.
A state, in general, is a linear functional ω : A → C with the
properties ω(A∗A) ≥ 0, for all A ∈ A (positivity),and ω(1l) = 1
(normalization).
If A happens to be abelian, the Riesz theorem tells us that
states are in one-to-one correspondence with Borel probability
measures on a compact space. Quantum systems, however,
have non-abelian algebras of observables. In this sense, states
generalize the notion of probability measures.
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ρ ∈ B(H) is called a density matrix if ρ is non-negative definite,
trace class, and such that Trρ = 1. We will be primarily
concerned with the finite-dimensional case. In that case,
H = Cn, A = Mn, the complex n × n matrices and all matrices
are trace class.
Exercise: If ρ is a density matrix on Mn, then ω defined by

ω(A) = TrρA, (1)

is state on Mn.
Exercise: The states ω on A = Mn(C) are in one-to-one
correspondence with the n × n density matrices, i.e., for each
state ω, there exists a unique density matrix ρ ∈ Mn such that
(1) holds.

10

Interpretation: if A = A∗ ∈ Mn, we have a spectral
decomposition of the form A =

∑
i λiPi , where the Pi are

mutually orthogonal orthogonal projection and λi ∈ R. We can
assume

∑
i Pi = 1l. Then, pi = ω(Pi) ≥ 0 and

∑
i pi = 1 and

can be interpreted as the probabilities that A is found to take
the value λi in a physical measurement of the quantity
represented by A.
The problem in the physics and mathematics of quantum spin
systems is to define and analyze the specific states that
describe real experiments.
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Physics

The theory of quantum spin systems was started by
Heisenberg in 1926, shortly after the discovery that particles
(electron, nuclei, atoms,...) have an intrinsic angular
momentum called spin (Stern-Gerlach (1922, atoms),
Goudsmit and Uhlenbeck (1925)). Heisenberg (and
independently Dirac) proposed the exchange interaction. He
introduced the model Hamiltonian named after him which
remains till today the primary quantum spin model studied in
mathematics and physics. It is essential to describe magnetic
properties of matter and is an essential component in our
understanding of many phenomena in condensed matter.
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Mathematics

In 1931 Hans Bethe introduced his famous Ansatz, which
allowed him to ‘solve’ the one-dimensional Heisenberg model.
The Bethe Ansatz is now not just a tool, but almost a field of
research all by itself. Its development and application to a
variety of other models repeatedly gave rise to the introduction
of new structures and techniques studied in many areas of
mathematics (algebra, algebraic geometry, representation
theory, combinatorics,....)
The notion of quantum group is an example of an important
mathematical structure that arose directly out of work on the
Bethe Ansatz.
Its general impact on the development of representation theory
of infinite-dimensional Lie and affine algebras is hard to
overestimate.
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CS: Quantum Information and Computation

Church-Turing thesis: If we can compute a function f by a
terminating procedure (algorithm), then we can construct a
Turing machine for it.
Turing machine:
- tape that can hold a string of binary data: (. . . , si , si+1, . . .)

- a head which holds one of a finite number of internal states q
- a function (s,q) 7→ (s′,q′,±1).
The head reads state si at position i , depending on its state q,
computes (s′i ,q

′), and determines to move right or left (±1).
Repeat until halt.
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The classical computer

The classical programmable computer is a universal Turing
machine, meaning that it can simulate any Turing machine,
much like a real computer but without the size limit. Universal
or not, we can think of the Turing machine as executing a
sequence of transformations on a string of bits (logic circuit):
- memory to hold the internal states, the input bit string, and
blank space
- an implementation of the algorithm as a sequence of logical
gates acting on k bits at a time.
For all we know, the Church-Turing thesis holds.
Can be generalized to include the use of random bits:
probabilistic algorithms.
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Quantum computation (QC)

New ideas about the physical implementation of computation
may change our ideas of what computable means, and perhaps
the Church-Turing thesis does not hold in a more general
context.
In QC bit strings are replaced by complex linear combinations
of bit strings: ψ ∈ HN ,

ψ =
∑

s1,...,sN =±1

cs1,...,sN |s1, . . . , sN〉 ,

and logic gates are replaced by unitary transformations.
Instead of reading of the answer at the end, perform a
measurement following the prescriptions of quantum
mechanics.
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Quantum circuits

Input + ancillas (internal states, spare memory) stored as a unit
vector

ψ ∈ HN = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
N

Logic gates now become unitary operators on H. They are
assumed to k -local, meaning that they act as the identity on all
but at most k of the tensor factors.
It is sometimes useful to replace qbits by qdits with a d
dimensional state space Cd .
The circuit is then of the form

C =
T∏

i=1

U(i)
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Without loss of generality (properly interpreted) we can assume
that each U(i) acts on 2 bits and is taken from a finite set of
fundamental gates (Kitaev).
The circuit then takes the following form:
figure
In the simplest case the measurement is represented by an
orthogonal projection P. The result of the computation is ‘yes’
(1), with probability ‖PCψ‖2. If this probability is, say, 3/2 when
the answer is in fact ‘yes’, we can verify this with any degree of
certainty we want, by independently repeating the computation
a number of times.
Quantum circuits generalize deterministic and probabilistic
classical logic circuits.

18

Quantum circuits include the classical case

The classical logic gates can be represented by permutations
of the set of standard basis vectors in HN (provided we use
ancillas).
The set of quantum circuits is vastly richer than the subset that
represents the classical ones.
There is a lot of good evidence (but no proof yet) that quantum
computers are qualitatively more powerful than classical
computers.
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The Hamiltonian class
Consider finite quantum systems of the following form:

I finite collection of quantum systems (spins, qubits, qudits,
atoms, quantum dots, ... ) labeled by x ∈ Λ.

I Each system has a finite-dimensional Hilbert space Hx .
For simplicity, we assume dimHx = r , for all x ∈ Λ. The
Hilbert space describing the total system is

HΛ =
⊗
x∈Λ

Hx .

I The algebra of observables of the system is

AΛ =
⊗
x∈Λ

B(Hx ) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ.
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Interactions

The subsystems (qdits) interactions modeled by map Φ from
the set of subsets of Λ to AΛ such that Φ(X ) ∈ AX , and
Φ(X ) = Φ(X )∗, for all X ⊂ Λ. The Hamiltonian is

H =
∑
X⊂Λ

Φ(X ).

One says that H is k -local if for all X with |X | > k , Φ(X ) = 0. In
the quantum computation it is common to assume that
‖Φ(X )‖ ≤ 1, for all X ⊂ Λ.
The Schrödinger dynamcis is defined by the unitary group
U(t) = e−itH on HΛ.
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Ground states and the spectral gap

HΛ: finite system, includes boundary conditions described by
additional terms in the Hamiltonian.
Ground state: eigenvector with eigenvalue E0 = inf specH.
Spectral gap above the ground state: if dimHΛ <∞, and H has
eigenvalues E0 < E1 < E2 < . . ., we define γ = E1 − E0 > 0. In
general

γ = sup{δ ≥ 0 | specHΛ ∩ (E0,E0 + δ) = ∅} ≥ 0 .

If E0 is simple, one says that the system has a unique (or
non-degenerate) ground state.
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Organization

I Credit: 1 unit for attending, 3 units for giving a presentation
on a topic mutually agreed upon with the instructor. If you
signed up for 3 units, or plan to, please see me this week.

I Notes will be posted on ˜bxn. Look for the link
Introduction to Quantum Spin Systems under Seminars.
http://www.math.ucdavis.edu/˜bxn/

introduction_to_qss.html

I I will be away January 10, February 21, March 7.

http://www.math.ucdavis.edu/~bxn/introduction_to_qss.html
http://www.math.ucdavis.edu/~bxn/introduction_to_qss.html
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