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Basic Setup
For concreteness, consider finite subsets Λ ⊂ Zd , and assume
Hx ∼= Cn, for all x ∈ Zd . The Hilbert space describing the total
system is

HΛ =
⊗
x∈Λ

Hx .

The algebra of observables of the system is

AΛ =
⊗
x∈Λ

B(Hx ) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ. The algebra of local observables Aloc is then
defined by (inductive limit):

Aloc =
⋃

Λ⊂Zd

AΛ.
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The C∗-algebra A
Since Aloc is built from the net of matrix algebras B(HΛ), it
inherits a natural ∗-operation and norm (note ‖A⊗ 1l‖ = ‖A‖)
from them with the following basic properties:

I Aloc is an algebra with unit 1l (1l∗ = 1l, ‖1l‖ = 1);
I A∗∗ = A, (A + B)∗ = A∗ + B∗, (λA)∗ = λA∗, (AB)∗ = B∗A∗;
I the positive elements are defined as all A of the form B∗B;
I ‖A∗A‖ = ‖A‖2, ‖A + B‖ ≤ ‖A‖+ ‖B‖, ‖AB‖ ≤ ‖A‖ ‖B‖,
‖λA‖ = |λ| ‖A‖, ‖A‖ = 0⇒ A = 0.

All these properties carry over from properties for bounded
linear operators on a Hilbert space, although Aloc is not
obviously a set of operators on a Hilbert space. By definition, a
C∗-algebra is an algebra with all these properties which, in
addition, is complete for the norm topology. Later we will use
this compeltion denoted by AZd = Aloc, or A for short.
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States

For any algebra of observables A as above (e.g., AΛ, Aloc, or
AZd ), a state on A is linear functional ω : A → C with the
following two properties:

Positivity: ω(A∗A) ≥ 0, for all A ∈ A;

Normalization: ω(1l) = 1.

finite dimensional, it yields the set of all the density matrices.

Theorem
Let H = Cn and ω a state on B(H), then there exists a unique
density matrix ρ ∈ B(H) (ρ ≥ 0, Trρ = 1) such that
ω(A) = TrρA, for all A ∈ B(H).

The proof is an exercise.
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Bloch sphere

Example/Exercise:
Let H = C2. Then all states ω on B(H) ∼= M2(C) are of the form

ω(A) = TrρA, ρ =

(
r µ

µ 1− r

)
(1)

where r ∈ [0,1] and µ ∈ C s.t. |µ|2 ≤ r(1− r). The parameters
have a simple interpretation in terms of the basic observables

(S1,S2,S3) = 1
2(σ1, σ2, σ3) (2)

TrρS1 = Reµ, TrρS2 = Imµ, TrρS3 = r − 1
2 (3)

Exercise: ρ is a rank-1 projection and ω = 〈ψ, ·ψ〉 for a unit
vector ψ ∈ H iff |µ|2 = r(1− r).
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General Properties of States

Theorem
Let ω be a state on A. Then:

1. ω(A∗) = ω(A)

2. |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) (Cauchy-Schwarz ineq.)

3. |ω(A)| ≤ ‖A‖

4. |ω(A∗BA)| ≤ ‖B‖ω(A∗A)

For proofs of these properties in the case of arbitrary A, see
Bratteli & Robinson, vol 1.
The set of all states on a given algebra A is convex. The
extreme points of this set are called pure states.
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Hamiltonian Dynamics
A quantum spin model is typically defined by specifying for a
family of finite Λ, the Hamiltonian: HΛ = H∗Λ ∈ AΛ. Then,
Ut = e−itHΛ , is unitary for all t ∈ R.
The dynamics on AΛ is defined by

αt (A) = U∗t AUt (4)

The maps αt have the following properties:
I αt : AΛ → AΛ is linear;
I αt (AB) = αt (A)αt (B)

I αt (A∗) = αt (A)∗

I αt (1l) = 1l

I ‖αt (A)‖ = ‖A‖, ∀A ∈ AΛ

These properties characterize each αt as an automorphism of
the C∗-algebra AΛ.
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Furthermore, the family {αt | t ∈ R} has the properties

I α0 = id;

I αtαs = αt+s, for all t , s ∈ R;

I limt→0 ‖αt (A)− A‖ = 0, for all A ∈ AΛ

We say that {αt} a strongly continuous one-parameter group of
automorphisms of AΛ. This dynamics on observables is the
so-called Heisenberg picture. At = αt (A) satisfies the
Heisenberg equation

d
dt

At = i[H,At ] ≡ iδ(At ) (5)

and
αt = eitδ = eit[H,·] (6)

δ is a derivation on AΛ: It is linear and δ(AB) = δ(A)B + Aδ(B).
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The Schrödinger picture is given by ψt = Utψ0, which is the
solution of the Schrödinger equation:

d
dt
ψt = −iHΛψt

In the case of dimH =∞, and H a densely-defined
(unbounded) self adjoint operator, this equation can still be
solved by a group of unitaries Ut = e−itH .

Theorem (Stone’s Theorem)
Let Ut be a strongly continuous one-parameter group
(limt→0 Utψ = ψ, for all ψ) of unitaries on H. Then there exists a
s.a. operator H with dense domain Dom(H) such that

Ut = e−itH (7)

and such that for all φ ∈ Dom(H), limt→0
Utφ−φ

t = −iHφ
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The Heisenberg Model

Example:
For x , y ∈ Zd , let |x − y | denote the lattice distance between x
and y . x and y are called nearest neighbors if |x − y | = 1. Let
Hx = C2, for all x .
The Hamiltonians of the spin-1/2 (homogeneous and isotropic)
Heisenberg ferromagnet on Λ is given by

HΛ = −
∑

x ,y∈Λ,|x−y |=1

Sx · Sy (8)

where S = (S1,S2,S3) = 1
2(σ1, σ2, σ3) and the subscript x

denotes that Si is considered as an element of A{x}.
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Ground states and the spectral gap

Some of the first and most important questions to address
about the Hamiltonians HΛ are the 1) what is the number of
ground states, 2) what is the magnitude of the spectral gap
above the ground state energy, and 3) what are the salient
features of the ground states and low-lying excited states.
Ground state: eigenvector with eigenvalue E0 = inf specH.
Spectral gap above the ground state: if dimHΛ <∞, and H has
eigenvalues E0 < E1 < E2 < . . ., we define γ = E1 − E0 > 0. In
general

γ = sup{δ ≥ 0 | specHΛ ∩ (E0,E0 + δ) = ∅} ≥ 0 .

If E0 is simple, one says that the system has a unique (or
non-degenerate) ground state.
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Back to the spin 1/2− Heisenberg Model

The Hamiltonian is

HΛ = −J
∑

|x−y |=1,x ,y∈Λ

Sx · Sy

with J > 0 (J < 0) corresponding to the (anti-)ferromagnet. It is
useful the introduce σ± such that

σ1 = σ+ + σ−, σ2 = i(σ− − σ+).

Then

Sx · Sy =
1
2

(σ+
x σ
−
y + σ−x σ

+
y ) +

1
4
σ3

xσ
3
y =

1
2

txy −
1
4

1l.

where txy ∈ A{x ,y} acting on C2 ⊗ C2 as the swap of the two
tensor factors: t(u ⊗ v) = v ⊗ u.
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Clearly the ground states of the ferromagnetic model are the
eigenvectors with smallest eigenvalue of the operator

H̃Λ = −
∑

|x−y |=1,x ,y∈Λ

txy

Consider Λ as a graph with N vertices x ∈ Λ and E edges (xy)

given by the nearest neighbor pairs.

Theorem
Suppose Λ considered as a graph is connected. Then, the
smallest eigenvalue of H̃Λ is −E and its eigenspace has
dimension N + 1 and consist of all vectors symmetric under
permutations of the vertices.
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Proof

Let {e−,e+} be an o.n. basis of C2, and λ0(A) the smallest
eigenvalue of a matrix A.
Observation 1)
For any Hermitian operators, λ0(A + B) ≥ λ0(A) + λ0(B). (For
any hermitian matrix the lowest eigenvalue satisfies the
variational principle λ0(A) = infψ 6=0〈A〉φ. Thus
λ0(A + B) = infψ 6=0〈A + B〉ψ, while for any ψ,
〈A + B〉ψ = 〈A〉ψ + 〈B〉ψ ≥ λ0(A) + λ0(B), which proves the
observation.) Apply this to H̃ to obtain λ0(H̃) ≥ −E .
Observation 2)

H̃(
⊗
x∈Λ

e+) = −E
⊗
x∈Λ

e+

which implies that λ0(H) does equal −E .
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Observation 3) If λ0(A + B) = λ0(A) + λ0(B) then
(A + B)φ = λ0(A + B) implies Aφ = λ0(A)φ and Bφ = λ0(B)φ.
(For a hermitian matrix A, ψ is an eigenvector for λ0(A) iff
〈A〉ψ = λ0(A). Now suppose λ0(A + B) = λ0(A) + λ0(B) and φ
is a ground state for A + B. Then

〈A〉φ + 〈B〉φ = 〈A + B〉φ = λ0(A + B) = λ0(A) + λ0(B)

Also, 〈A〉φ ≥ λ0(A) and 〈B〉φ ≥ λ0(B). So we have
〈A〉φ = λ0(A) and 〈B〉φ = λ0(B). And this implies Aφ = λ0(A)φ

and Bφ = λ0(B)φ.) Apply this to determine Hφ = −Eφ only if
txyφ = φ for all (xy) ∈ Λ.
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Observation 4) If Λ is a connected graph then any permutation
of its vertices, π, can be written as a product of transpositions
τxy where (xy) is an edge in the graph. Apply this to deduce
that for any ground state φ, Uπφ = φ for all permutations π,
where Uπ is the unitary determined by its action on simple
tensors:

Uπ(v1 ⊗ · · · ⊗ vN) = vπ1 ⊗ · · · ⊗ vπN
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So, all ground states have to be permutation-invariant vectors,
and vice-versa if Uπφ = φ for all π then txyφ = φ for all x , y
(because txy = Uτxy ). An o.n. basis of permutation invariant
vectors is given by

ψk =
1

N!

∑
π∈Perm(Λ)

Uπ((e− ⊗ · · · ⊗ e−)︸ ︷︷ ︸
k

⊗ (e+ ⊗ · · · ⊗ e+)︸ ︷︷ ︸
N−k

)

for k = 0,1, · · · ,N.
This is also the maximum spin irreducible representation
contained in ⊗x∈ΛD(1/2). More about that later.
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(Let G be the group generated by {τxy : (xy) ∈ Λ}. Prove by
induction that τxy ∈ G for all i and j , vertices in Λ. Induction is on

d(x , y) = min{n : (xx2), (x2x3), . . . , (xn−1y) ∈ Λ}

For d(x , y) = 0 it is trivial that τxx = id ∈ G. For the induction
step assume that τxy ∈ G whenever d(x , y) ≤ n. If
d(x , y) = n + 1 let x2, · · · , xn be a sequence s.t.
(xx2), . . . , (xny) ∈ Λ. Then τxxn , τxny ∈ G by the induction
hypothesis. So τxy = τxnyτxxnτxny ∈ G. Since the permutation
group is generated by all transpositions,
G = Perm({x : x ∈ Λ}).)
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