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Two genuinely quantum mechanical models for an antiferromagnetic linear
chain with nearest neighbor interactions are constructed and solved exactly,
in the sense that the ground state, all the elementary excitations and the free
energy are found. A general formalism for caleulating the instantaneous corre-
lation between any two spins is developed and applied to the investigation of
short- and long-range order. Both models show nonvanishing long-range
order in the ground state for a range of values of a certain parameter A which
is analogous to an anisotropy parameter in the Heisenberg model. A detailed
comparison with the Heisenberg model suggests that the latter has no long-
range order in the isotropic case but finite long-range order for any finite
amount of anisotropy. The unreliability of variational methods for determin-
ing long-range order is emphasized. It is also shown that for spin 14 systems
having rather general isotropic Heisenberg interactions favoring an antiferro-
magnetic ordering, the ground state is nondegenerate and there is no energy
gap above the ground state in the energy spectrum of the total system.

I. INTRODUCTION

For an infinite chain of spins interacting with nearest neighbors via a Heisen-
berg interaction, the exact energy eigenstates were found, in principle, many
years ago by Bethe (1) and the ground-state energy was found somewhat later
by Hulthén (2). The problem has nevertheless occasioned a persistent theoretical
interest. This is because the exact method of Bethe does not seem capable of
generalization to the more interesting cases of two and three dimensions. The aim
has generally been to construct approximate methods that give accurate results
in one dimension, as determined by a comparison with the known exact results,
but which can bhe generalized to two or three dimensions with some degree of
confidence and simplicity. Unfortunately, the erucial test for any approximate
method is how well it describes the long-range order; but it is precisely this test
which has been impossible, because the long-range order has never been calcu-
lated exactly by the method of Bethe.

There is, in fact, still considerable doubt about the nature of the long-range
order in one or more dimensions. On the one hand, spin wave methods used by
Anderson (3) and Kubo (4) have predicted long-range order in two or three
dimensions, although Anderson (but not Xubo) predicts no long-range order in
one dimension. Variational methods of Kasteleijn (5) generalized to two and
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three dimensions by Taketa and Nakamura (6), and of Marshall (7), all related
to a variational method of Hulthén (2), indicate no long-range order in one, two,
and three dimensions for the completely isotropic interaction. On the other
hand, they all predict the onset of long-range order for a certain critical amount
of anisotropy—the same amount at which a kink is predicted for the short-range
order. Exact calculations by Orbach (8) on the anisotropic case, generalizing the
method of Bethe, show the kink to be spurious for the one-dimensional case,
but throw no further light on the long-range order. Walker (9) has observed that
the ground-state energy calculated by Orbach has a power series expansion
around the limiting case of the completely anisotropic interaction (Ising limit)
which seems to give a good representation of the ground-state energy even for
the isotropic case, although he observes that a similar expansion for the long-
range order suggests the long-range order might vanish when the anisotropy
falls below a certain critical value. Ruijgrok and Rodriguez (10) have developed
a variational method for the one-dimensional case which gives a good value for
the ground-state energy, significantly better than previous variational methods,
and which also predicts finite long-range order. Davis (17) has performed a
perturbation theoretic calculation which indicates, to the order to which it has
been carried, a long-range order in any number of dimensions even for the iso-
tropic case.

There are two questions raised by all these investigations. I'irst, can a purely
isotropic Heisenberg interaction between nearest neighbors produce long-range
order in any number of dimensions? Second, if such an ordering tendency exists
in, say, two or three dimensions, will it also exist in only one dimension, or would
the absence of order in one dimension prove nothing at all about order in two or
three dimensions?

The purpose of the present paper is to gain further insight into the effects of
anisotropy in one dimension. Two models will be constructed which can be
solved exactly in considerable detail and which bear a reasonably close re-
semblance to the Heisenberg model. The investigation of the first of these
models strongly suggests that the isotropic Heisenberg model has no long-range
order but that such order exists for any finite amount of anisotropy. Both models
emphasize the subtle nature of long-range order and the insufficiency of vari-
ational methods as a reliable approach to this question. The question of the
relation of these results to two- and three-dimensional cases is left completely
open.

In Section IT we consider the first of these models, the “XY model.” 1t is
shown that the Hamiltonian can be expressed as a quadratic form in creation and
annihilation operators for fermions, and this quadratic form can be diagonalized,
thereby giving the complete set of states, excitation energies, and partition sum.
In terms of these operators, general expressions for the order hetween any two
spins are derived involving a kind of Green function, G;; , which can be explicitly
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evaluated. The general relation between the order and G; is equally valid for
the Heisenberg model, but (,; itself is then not explicitly calculable. The short-,
intermediate-, and long-range order are calculated for various situations, and it
is shown that only for the isotropic case does the long-range order vanish. The
model is compared with the Heisenberg model for one special case from which
reasonable surmises may be made about the latter.

In Section III we consider the “Heisenberg-Ising model” in a similar way.
Although the excited states and statistical mechanics are considerably more
complicated, the conclusions about long-range order are much the same. An
application of the method of Ruijgrok and Rodriguez to this model emphasizes
the care with which one must interpret the results of variational caleulations
with regard to the ground-state energy.

II. THE XY MODEL

A. ForMuLATION

The first model consists of N spin 19’s (N even) arranged in a row and having
only nearest neighbor interactions. It is

Hy = 211 + m)8 8+ (1 — 880, (2.1)

where v is a parameter characterizing the degree of anisotropy in the xy-plane.

8%, 8%, and $°; may be represented by the usual Pauli spin matrices (£ = 1):

L 10 1\ _1(0 —5\ . _1{1 0
Si_i(l 0>’ 5@"§<i 0)’ S“2(o —1)'

Because the Hamiltonian only involves the x- and y- components of the spin
operators, we call this model the XY model.

The ends of the chain may be treated in at least two different but physically
reasonable ways:

(i) as free ends, in which case the range of the summation index is
1 £ ¢ £ N—1, a situation that is convenient for discussing the long-range order;

(ii) as a cyclic chain, in which case 1 <7 = Nand 8y = 81, 8% = S
This problem, or a slight variation of it (see below), is most convenient for
for calculating interesting physical quantities other than the long-range order.

The XY model is exactly soluble for all values of v, although we shall consider
only the range —1 =< v =< 1. Furthermore, it is strikingly similar to the gener-
alized Heisenberg model deseribed by the Hamiltonian

H, = Z[(l + S S+ (1 = (8% 8 + 85 S5l (2.1)

As v — 1 both models tend to the Ising model in which the x-components of
spin are completely order and the y- and z-components are completely dis-
ordered. Ior |y] # 1 both models are genuinely quantum mechanical because
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different components of S; appearing in H do not commute. The effect of the
“transverse terms” (those multiplied by 1 — ¥ in either Hamiltonian) in both
models is to oppose the ordering of the z-components but to favor the ordering
of the y-components (and, in the Heisenberg model, of the z-components, too).
Hitherto, it has not been clear for the Heisenberg model just how strong these
two effects are: for any particular positive value of v, do the transverse terms
either establish any long-range order among the y- and z-components or destroy
the long-range order of the z-components (which would imply absence of long-
range order for the y- and z-components as well)? For the XY model, as we shall
see, the transverse terms do neither until the limiting case y = 0, when they
succeed in destroying the order of the z-components. This result is highly sug-
gestive for the Heisenberg model, a subject we discuss in detail in Section IT F.

To solve the XY model, we first introduce the raising and lowering operators

a’ = 8 4+ 8 and a; = S, — 8% (2.2a)
in terms of which the Pauli spin operators are
S%=(at+a:))/2; 8= (ar—a)/2; S =ata,— 1% (2.2b)
and the Hamiltonian is

H, = %2 [(af'aip + vaiaca’) + hel. (2.3)

These operators partly resemble Fermi operators in that
{a;, ey = 1; o = (a") = 0; (2.4a)
and they partly resemble Bose operators in that
[, aj] = [af, ai"] = [ai, @] =0, @5} (2.4b)

It is therefore not possible to diagonalize the quadratic form appearing in (2.3)
directly with a canonical transformation; principal axis transformations of the
a’s and as do not preserve this mixed set of canonical rules. However, it is
possible to transform to a new set of variables that are strictly Fermi operators
and in terms of which the Hamiltonian is just as simple.' Let

1 This transformation from a set of Pauli spin operators to a set of fermion creation and
annihilation operators dates back at least as far as the classical paper on second quantiza-
tion of fermion fields by Jordan and Wigner (12). It is described in that context, for example,
by Kramers (12). It was used as the basis for approximate calculations of the ground-state
energy of the isotropic Heisenberg model independently by Meyer (12), and by Rodriguez
(12). The more sophisticated variational calculation of an approximate ground-state energy
and long-range order by Ruijgrok and Rodriguez (10) is also based on this transformation. A
somewhat different procedure, based on the same idea of converting nearest neighbor pairs
of ““paulions’’ to nearest neighbor pairs of fermions, was applied to precisely H,_o by Nambu
(12). The spirit of our paper is, however, entirely different from the work of the previous
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i—1
¢; = exp [m’ > a,-*aj:la.i (2.5a)
1
and
i—1
et = afexp [—mf > a,-*(zj} (2.5b)
1
Then
¢fe; = ata;, (2.6)

so that the inverse transformation is simply

i—1
a;t = exp l:—m' ; c,-’fcjjlc,-, (2.7a)
i—1
a;" = ¢;t exp [m’ ; cﬁc]]. (2.7b)
The ¢’s and ¢!’s are Fermi operators:
%Ci y CjT} = 6“‘ y (28&)
lei, et = e, effy = 0. (2.8b)
Because ¢,'c; is an oceupation number having values 0 or 1,
exp(wic;fc;) = exp(—wicjic;). (29)
Furthermore, for¢ = 1,2, ..., N — 1,
alai = ¢l (2.10a)
and
ata " = ¢fe i, (2.10b)

so that, for the case of free ends, the Hamiltonian is

N—1
H, =15 > l(effeiy + veleln) + heel. (2.11)
1
For the eyclie chain, we need also
aytar = — cyley exp (dn9) # en'e (2.12a)
and
ax'a,’ = — extelm exp (7)) = exlelt, (2.12b)

authors, and the results are rather more extensive. Because the cases of particular interest
(v # 0, free ends) contain complications not previously encountered, we present here a de-
tailed exposition of the mathematical tricks needed for the ultimate solution.
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where

N N
N = ; cile; = Zl: (87, + 19). (2.13)
The Hamiltonian is

N
Hy =15 3 [(ef'cim + veifehn) + huel
! (2.11")

— Y[(entey + yen'et) + he] (exp (4r30) + 1).

That is, in terms of the Fermi operators ¢; and ¢;f, H, no longer has a simple
cyclic structure. For large systems we may neglect the correction term propor-
tional to exp (M) + 1 in which case we call it the “c-cyelic” problem (the
original problem being the “a-cyclic” problem). Actually it is not difficult to
solve the a-cyclic problem exactly, but we shall first consider the simpler e-cyclic
one.

In all cases, the Hamiltonian is a simple quadratic form in Fermi operators
and can be exactly diagonalized. The particular simplicity of H. depends on the
fact that the spins can be arranged in a definite order, that interactions occur
only between neighboring spins in this ordering, and that the z-components of
spin do not enter. If the interactions were to extend to nth nearest neighbors,
H ., would involve a polynomial of order 2n in the ¢’s. In two-dimensijonal models,
it can be readily seen that any ordering and nontrivial scheme of interactions
must lead to a Hamiltonian involving a polynomial roughly of order 2N for a
system of N” spins. Thus we are making maximum use of the nearest neighbor
character of the interactions and the one-dimensionality of the system.

B. Grounp-StareE ENercY, ELEMENTARY EXciraTioNs, AND [REE ENERGY

The diagonalization of quadratic forms such as occur in (2.11) or (2.11%)
is discussed in Appendix A. The Hamiltonian is reduced to the diagonal form

H, = Z Aymifne + constant (2.14)
7

by the linear transformation

D) )

e = Z ¢Ic7,' ; ‘pki ¢ + d)kf - \bki CiT (2.15&)

mt =3 % i_ AP 5 Vi, (2.15b)

where ¢; and 1, considered as N-component vectors, are real solutions to
certain matrix equations. For the c-cyclic problem, the relevant matrices
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(0 1 1
1 0 1
. 0
A — 1) S , (2.162)
0 1 0 1
1 10
[ 0 1 —-1)
-1 0 1
0|
B — %7 S , (2.16b)
0 -1 0 1
1 -1 0
(A—-B)(A+B)=
2044 0 1-4 - : : 1=y 0
0 2(14++) 0 1—¢ 11—+
11—+ 0 201+4H) 0 11—+ 0
. (2.16¢)
0 1—+" 0 20+4++) 0 1—+
1—7 -+ 0 20445 0
0 i-9 -y 0 20+49
The vectors are the real solutions of the eigenvalue equation
A complete set of solutions is
(2/N )% sin &y
b5 {2.182)

a (Q/N)% cos kj

belonging to the set of cigenvalues

Al =1— (1 —~)sin’k, (2.18b)
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where
k = 2zm/N, m=—LWN - 0,1, ---,lgN — 1. (2.18¢)
In (2.18a) we take the upper solution for ¢,; if & > 0, the lower solution if
k £0.For Ay # 0, (4 — 7a) gives
Vi = A (cos k ¢+ v sin k ¢_ij), (2.18d)
whileif A, = 0
Vi = = ¢ij. (2.18d")

A: = 0 is an eigenvalue only if vy = 0 and N /4 is an integer. To simplify the
discussion, let us assume that N /4 is not an integer and therefore that A, = 0.

The sign of A; being arbitrary, we shall take it always to be positive. This
corresponds to a particle-hole picture for the g-particles, where the ground state
has no elementary fermions and the elementary fermion excitations both above
and below the Fermi surface have positive energies.” A is shown in Fig. 1 for
the isotropic and extreme anisotropic (Ising) cases and for one intermediate
case. Remark that only for the isotropic case is there no energy gap.

The ground state ¥, is the state with no elementary excitations:

ﬂk\I’Q = 0, all k. (219)
The ground-state energy, according to (A-12) is

Ey=— 152 A (2.20)
k
In the limit N — =, the sum can be replaced by an integral giving

Ey/N = —(Yx) [ di[1 — (1 = 4°) sin® k]! (221)

—(1/m)e(1 — +%),

where &(&%) is one of the complete elliptic integrals (13). Eo/N goes smoothly
between the limiting cases

Eo/N = — 1/, isotropic case, vy = 0, (2.22a)
and
Eo/N = — 14, Ising case, v = 1. (2.22b)

2 The “Fermi surface’” consists of the points & = £#/2. The alternate picture in which
all excitations are ‘““particles’’ (in the isotropic case, a ““particle’”’ is an up spin) would be ob-
tained by letting A; have the sign of cos k. The Fermi sea would then be defined by | k |>
x/2. The particle-hole picture is preferred because it somewhat simplifies the algebra.
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Fic. 1. Energy of elementary excitations in XY model as function of wave vector for three
different degrees of anisotropy.

At this point let us remark on the simplification resulting from the considera-
tion of the c-cyclic rather than the a-cyclic problem. According to (2.11’), the
Hamiltonian for the a-cyclic problem is complicated by the presence of the
ferm

— L[(exfey + vexTer™) + hee] (exp (4791) + 1).

Although 9T is not invariant under the transformation (2.15), its evenness or
oddness is invariant, so that exp (¢#91) is invariant. Now in the ground state
of the c-cyclic problem, and in all states with an even number of excitations,
the number of c-particles is odd (assuming N/4 is not an integer, the k’s are
occupied symmetrically around k = 0, except that k = # but not k = —nris
occupied). Therefore, the additional term gives zero acting on such states and
they remain eigenstates of the a-cyelic problem. States with an odd number of
excitations, on the other hand, have 3 even, giving the additional term

— L3(eater + vew'er + hiel)

in the Hamiltonian. This has the effect of making changes of order 1/N in the
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ks, ¢’s, and dy’s, all of which can be exactly caleulated and are negligible in
the calculation of real physical quantities. Strictly speaking though, the ele-
mentary excitations are not independent for the a-cyclic problem because of
this dependence on the evenness or oddness of the total number of execitations
present, and this is why we have preferred to consider the c-cyclic problem.

The free energy is the grand potential of such a system of noninteracting
fermions with zero chemical potential (8 = 1/kT):

2 T /2
F,/N = —kT l:ln 24+ = f dk In cosh (13 BAk):I . (2.23)
™ Jo
In the isotropic limit we obtain
T /2
Fisotrop./N = —kT [ln 2+ 2 f dk In cosh (14 8 cos k):l ;o (2.24a)
T Jo

while in the Ising limit, we obtain the classical result,
Freine/N = — kT(In 2 4 In cosh 158). (2.24b)

Neither case exhibits any singular behavior as a function of temperature, a
result to be expected in view of the one-dimensional nature of the model.

C. SHORT- AND LoNG-RANGE ORDER IN THE GROUND STATE

The long-range order for the Heisenberg model is often defined in terms of
two sublattices (in the case of the linear chain, the sublattices of all even sites
and of all odd sites). It is taken to be the preponderance of spins up to spins
down on one of the sublattices, or of spins up on one sublattice to spins up on
the other. Because of the invariance of the Hamiltonian under translations
by any number of sites and also under 180° rotations about the -, y-, and z-
axes in spin space, it is clear that for a nondegenerate stationary state such a
definition of long-range order must give zero, even if by any reasonable definition
the state were ordered. That the ground state is nondegenerate is shown in
Appendix B. The completely ferromagnetic states can have long-range order
by this definition only because they are so highly degenerate. The definition
has nevertheless been useful because the approximate states considered have
not always had the full symmetry of the Hamiltonian. A much better measure
of the long-range order is the quantity

pim = (¥o| Si-S.. | o). (2.25)
This is the contraction at ¢ = 0, of the time-dependent spin correlation tensor
o (l) = (¥y| $;(0)S..(1) | ¥o) (2.26)

which enters in the calculation of any process, such as neutron scattering, con-
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ceived to measure the order directly. Because of the nature of the model, we
wish to calculate separately the various contributions to this order parameter:

pim = (¥o| 878", | ¥o) = Li(¥y | (ai' + a)(a. + an) | W), (2.27a)
Pim = (To| 808" | Ty) = Li(Wo | (@) — a))(an! — an) | W),  (2.27h)
pim = (¥y| 8585, | W) = (o (ala; — L3)(an'an — 15) | ¥o).  (2.27¢)

I

We shall derive general expressions which reduce the caleulation of these con-
tributions to quadratures.

Consider pj,, In terms of the ¢’s and ¢'’s:
m—1

i ci*ci>(cm* + Cm) "I’o>

pim = 11 /‘1’0

(et 4 ¢1) exp (ﬂ'

| m—1 \ (2.28)
=} \‘1’0 (e)f — ¢) exp (ri ; CiTC.L')(CmT + ¢n) \Ifo/ .
Now observe that
exp (wic'e;) = (e + i) (e — ¢i), (2.29a)

a result that is readily verified in the representation diagonalizing ¢;l¢; . Defining
Ad;,=¢ 4+ ¢, and B, =¢f — ¢, (2.30)

we have
pim = 3a(¥o | BidiiBr -+ AyaBuoid n | Yo (2.31a)

In a similar way, using

exp (wicife;) = — (ef — ci)(eif 4+ ¢i), (2.29b)

we have
pln = (—1)" 1T | ABrnd iy - BuidwoiBa | %) (2.31b)

Finally, because

afa; — }5 = — Jg(at + a)(at — a)) = — Lolei + ¢i) (et — ¢), (2.29¢)
we have
pim = Y2(¥o | AiBiA B | o). (2.31¢)

To evaluate expectation values such as appear in (2.31a, b, ¢), we make use
of the well-known Wick Theorem® in quantum field theory, which allows us to
express the vacuum expectation value of a product of operators, all of which

3 See Wick (14) or subsequent books on quantum field theory.
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obey anticommutation rules, in terms of so-called contractions of pairs, i.e.,
vacuum expectation values of products of just two operators. Explicitly, if

01, -+ ,0s, are a set of such operators, then
(W] 01 -+ 00 | W) = 2 (—=1)" I (contraction of the pair),
all pairings all pairs

where the contraction (9,0,) is defined to be (¥;| 0,0, | Vo), and where p’ is
the signature of the permutation, for a given pairing, necessary to bring operators
of the same pair next to one another from the original order.

A particular simplification occurs in evaluating (2.31a, b, ¢) because certain
kinds of contractions vanish. In fact, the basic contractions that arise are readily
calculated:

(4:4;) = kz‘i’kid’kj = by, (2.32a)
(B:Bj) = — § Vs = —Bis (2.32b)
(Bid;) = —(A;B;) = —Zk:lﬁkifblcj = Gy;. (2.32¢)

Because (4;A4;) and (B;B;) never occur, only pairings in which all contractions
are of the type (B.A4 ;) contribute in (2.31a, b, ¢).
The most straightforward pairing contributing to pi, is

(BidinXBinAye) -+ (Buadw)-

All other pairings can be obtained from this one by permuting the 4’s among
themselves with the B’s fixed. Because the number of crossings of B’s by A’s
is then always even, the sign associated with a given permutation is (—1)%,
where p’ is the signature of the permutation of the A’s. Thus

P?m = }.i ; (—1>p Gl.P(H—l) Tt Gm—l,P(m)

G Guie - G | (2.33a)
=1y : P
Gm—l,H—l Tt Gm—l,m
Similarly, because 4,814, = —Biad, ete.
G G 0 G '
pim = Y4 i : . (2.33b)
Gml et Gm,m—l

Thus, both pi and p}r, are particular subdeterminants of det G. pin, is immediately
calculable from (2.31c) and Wick’s theorem. For [ < m,

pim = 24({AB)(AnBun) — (AiBn)A,B)))
= ,]/i(Gllem - GmlGlm>-

(2.33¢)
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Let us now consider the detailed properties of the G;/s. First observe that
(;; , considered as an element of an N X N matrix is just

Gij = — ("), (2.34)

where ¢ and ¢ are the matrices ¢; and ¥, . It is immediately obvious that
G is unitary because ¢ and 1 are unitary:

GG" = 49" = ¢y = 1. (2.35)

The determinant of G is thus 1. The actual sign, which will be nceded in the
following section, is readily calculated:

det G = det (—4"¢) = (—1)" det " o.
But from (A-7a)
(¢ = ((A—B)"$"A ),
where
(A = Mbpr -
Thus, using det ¢ = &1, we obtain
det G = (—1)" det A7 det (A — B).
Now det A™' > 0, because A > 0 for all k. Thus
det G = (—1)" det (A — B)/|det (A — B)|. (2.36)
A second important property of (7;; is that, for the cyclic problem,
G =0G;=0G,, (2.37)

a result which can be proved either from the invariance properties of the cyelic
Hamiltonian or from direct evaluation of the sums in (2.32¢).

To calculate G, explicitly we consider the limit N — o with r fixed. It is
shown in Appendix C that

Gr _[l/é(l + 7>Lr+l + 1’2(1 - ’Y)LrAl]y r Oddv

i

and

G,

if

0, r even, (2.38a)

where
/2
L.y) = (2/7) f dk cos kr (1 — (1 — +3) si? K™ = L.(y). (2.38h)
0

1t is thus evident that vy — —+ is equivalent to r — —r. In the isotropic limit
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(v = 0), (2.38), reduces to

G, = (=1)*""2/mr,  rodd,
and
G, =0, 7 even. (2.39a)
In the extreme anisotropic limit (y = 1)
G_l = —1,
and
G, =0, r# —1, (2.39b)

In the general anisotropic case, G, is not so simply evaluated. The special cases
of ¢, and G_; (all that are needed for the nearest neighbor order in the cyelic
chain) can be expressed in terms of the complete elliptic integrals (13) K (k)
and D(k%)

G = —(2/mK(L =) = (1 7)1 — ). (2.40)

The asymptotic behavior of G, for r — =, crucial for the long-range order, can
be obtained by repeated integrations by parts. Assuming v # 0 and r even,
one finds for L,

Lo(y) = L 1/"2(0) = (=) (n/2)]

- %[f““(o) — (=1 (x/2) + fm disf 7 (k) cos kr:l,

where
fik) = (2/m)L = (1 — o) sin® k] (2.41)°
Thus for sufficiently large odd r

1

G~ =S 171(0) + 2y (= 1) (/)] + 001/

ar
|G, | <A/t for |r| >, (2.42)

where 4 and ry are constants depending on v but not on r. For general values
of 7, the following series for L, (r even) is convenient:

w2 1 = a1
L(y) = (=1)" [go grp —=In (1 = N\°) — ZV(* ~ gzgw)] (2.43a)
1+ v g 1 wl

4 This behavior is found because f'(0) = f'(x/2) = 0, which is true only if v 5 0.
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where
A=(10=7)/0+7) (2.43b)
and
‘) 1
g =27 (‘ll> ~ (=) (243¢)
loxo

This series is readily obtained using the relations
1 — (1= sin’ k) = 2/(1 + )] 2 (—=\)"P,, (cos 2k),
0

P, (cos 2k) = 2 gigm_i cos [(m — 20)2K],
=0

and
gi~ (xl)h

Actual numerical evaluation for N’ = 25 or y = 0.10102 gives Table I. Tt
should be remarked that L,, G, , the various contributions to the order param-
eter, and the ground-state energy are all nonanalytic functions of vy at the
point v = 0, although they are analytic at ¥ = 41. This is, of course, the reason
for the different asymptotic behavior of 7, fory = 0 and vy # 0. This suggests
that a perturbation treatment should converge if the totally anisotropic case is
considered as the zeroth order Hamiltonian, a result observed by Walker (9)
for the full anisotropic Heisenberg model of the antiferromagnetic chain.

We now investigate the short-, intermediate-, and long-range order for the

TABLE 1

QuanTiTIEs UsEFUL IN CALCULATING ORDER BErwEeEN DIFFERENT SPINS FOR
tHE XY Mopel with v = 0.10102

v 131+ oy G, G-
1 1.2917 —0.4560 —0.8029
3 —0.5986 0.1047 0.2850
5 0.3841 —0.0455 —0.1652
7 —0.2680 0.0242 0.1091
9 0.1946 —0.0143 —0.0765
11 —0.1446 0.0089 0.0555
13 0.1092 —0.0058 —0.0412
15 —0.0833 0.0039 0.0310
17 0.0641 —0.0027 —0.0236

19 —0.0497
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eyclic case. The various contributions to the short-range order are readily cal-
culated:

x

piivt = o = 1iG,

= —(2m) 7 K(1 —¥") = (1 = 7)D(1 — %)), (2.44a)
pliv = p’ = WGh

— —2m (1 = ) — (14 D1 — )] (2.44b)
piiy = o = —MGG,

= —n (K(1 = ") — D(1 = 7)) = ¥(D(1 — 4))°]. (2.44c)

We plot these parameters and the total order o, = p,* + p¥ + o as functions
of v in Tig. 2.
For the intermediate-range order one must fall back on a numerical evalua-

50—

~PI

~p

Fic. 2. Various contributions to the short-range order as functions of the degree of
anisotropy in the XY model.
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tion of the relevant determinants. Because GG, = 0 for even r, these determinants
simplify somewhat. Thus

i = ViR, iR, (2.45a)
and
pin = WR, (2.45b)
where
G G5 - - - G_noy
G, G G !
R, = | . . . (2.46a)
' ‘ G, 'G_.l G_;
Gy G G,
and
Ro = 1. (2.46b)

Similar expressions can be derived for p3,—; and p;,. One has only to let
G, — G_,. Numerical evaluation of this determinant for several values of n
leads to a very slowly converging sequence for p,, even for v = 0, the case
expected to be most rapidly converging. Results for v = 0 and v = 0.10102
are summarized as shown in the tabulation.

n 1 2 3 4 5 6
paly = 0) —0.1592 0.1013 —0.0860 0.0730 —0.0661 0.0597
pn(y = 0.10102) —0.2007 0.1611 —0.1555 0.1500 —0.1483 0.1467

Now let us investigate the long-range order. The cases vy = Oand v #= 0 ex-
hibit entirely different long-range order characteristics because of the differ-
ence in asymptotic behavior of G, for these two cases. We first consider the
isotropic case, which is simpler and, as we now show, has no long-range order.

We seek the limits of p.%, p,%, and p,” as n — o for v = 0. The fact that we
have first taken the limit N — e« in passing from sums to integrals ensures that
we never come round the circle when n — .,
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[G_l Gy, - - - G_"\i
Go G G, '
o=t = g - D, (2470)
G
G, s Go G_ll
pul = Yobw — 4G.G, — —(mn) 7 — 0. (2.47b)

An upper bound to| D, | may be obtained with Hadamard’s Theorem (15),
which states that

| det, C|* < H( 03]-) =[1di., (2.48)
il \7=1 =1
if d;., is the norm of the ¢th row of C. The equality holds only when the rows
are all mutually orthogonal. We divide the rows of D, into three groups, those
near the top (the first ny rows, where n, is independent of n and «n), those
near the bottom (the last no rows) and those in the middle. Because d , < 1 for

all ¢ from the unitarity of G, we may replace d;., by 1 for the first and third
groups in (2.48):

pl= II 4. (2.49)
i=ny+1
In the middle group
n . ) , M(i,n)—1
& =2Gia;=1-2 3 G-
j=1 M(3,%) m(i.n} ,
L 4 e
Gl < exp l:—Z Z G} — Z Gr2],
M m
where
M(i,n) = max (4 — 1,n+ 2 — 2) (2.51a)
and
m(i,m) = min (1 — 1,n + 2 — 7). (2.51b)
But

b

b
: S N U
zo: Gr Z (2/"’) ’2“ -~ k= dk = (2/7[') 5 (a + 1 5) , (252)
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so that

nﬁﬂ di, < exp{—(Z/r)gé [ > (——1-— + l>

i=mngy+1 ng+1<i<i(n+3) \N + 2 —q 1

1 1
t H(n+3)<ign—ng (2 —1 * n+3 — 1>:|}

Zb: (1/k) =z fb (dk/k) = In(b/a),

IA

&

(253)

N

FFurthermore

so that each sum in the exponent of (2.53) can be replaced by a lower bound:

9 _ 2l n—m 4+ 1 n—n — 1

. 5 (2.54)
(D) s GED
Asn — o
DY < (n+ 3% X constant, (2.55)
and so
o =p) >0 as n— =, (2.56)

When v # 0,|G,| < Ar* for r > ry and the preceding development gives
only the very weak result

)
D.)? Zconstant as n — o,

which does not exclude the possibility that either p,”, p.’, or both approach
finite limits as n — « (n even). Not only the norms of the rows but the overlap
between rows must now be considered to improve the estimate. Conceivably a
more powerful theorem would show that either or both the order parameters
tend to zero as m — =, although no such theorem has been found. Instead,
when we consider the spins at the ends of a long chain with free ends, we find
for ¥ > 0 that piy # 0 although pfy = O(1/N) (and the reverse for y < 0),
as we now show.

D. Exp-ro-Exp OrpER IN THE (GROUND STATE

It is easy to caleulate the order between the first and last spins of a chain of
N sping, even if evaluation of the intermediate-range order is difficult. This is
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because what is involved is an (N — 1) X (N — 1) minor of the N X N de-
terminant det G, where G is unitary. Thus

G12 cee GlN
oo 17 :
PiN = 4 :

I : I = (=1D)""14(G)n det G.  (257)
Gy_1z v GN—!,N|

Because G is unitary
(G Hw = G- (2.58)
Therefore, using (2.36), we have
piv = (=) 14Gy, det G = —1{Gy; det(A — B)/|det(A — B)|. (2.59a)
We have assumed only that A; # 0 for all k. In a similar way
pin = —LiGw det(A — B)/|det(A — B)|. (2.59b)
As before
piv = Y (GuGyy — GixGa). (2.59¢)

An alternative way to derive (2.59a,b) which bypasses the general problem
of calculating p; , i3 as follows:

p;N = /14/ <‘Ilol (Clt + C})(CNT — CN) eXp (urfﬂ) ‘\I/0>. (2.60)

Because [exp (#rd), H,] = 0, the nondegeneracy of ¥, (assured by A, # 0)
implies that ¥, is an eigenstate of exp(n¢91) belonging to one of the eigenvalues
41. Thus piy = F 14Gy; . To determine which sign is in fact correct, we use
the fact that the sign is independent of the continuous variable v, and evaluate
it for y = 0. We find finally

piv = —Y4Gy det A/ |det A}, (2.61)

which agrees with (2.59a) providing A, # 0 forall k (and thusdet (A — B) = 0
and det A > 0). For the cyclic chain the simplicity of the end-to-end order is of
no interest because the sites 1 and N are nearest neighbors, and we obtain only
the short-range order. Ior the chain with free ends, however, this is indeed a
measure of the long-range order as N — . Certainly, if there is a finite end-to-
end order, then there is finite long-range order as defined in the previous section,
although the two calculations may give slightly different numerical results
because of end effects. We investigate these end effects at the end of this section.

Consider then a chain of N spins with free ends. To ensure that ¥, be non-
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degenerate, or equivalently that A, # 0 for all £, we assume N to be even.” We
are then calculating the order between two spins that have a tendency, however
small, to be antiparallel.

The relevant matrices are

[0 1—¥ \

A—B=1; = (A+B)", (262)
I+ 0 11—y
0
14+~ O
(A —B)(A+ B)
(1—9y)?* 0 L—
0 204+) 0 1-—4 0

1—7 0 201+4+) 0 1—«
=4 ' : : : - . (263)

0 L—7" 0 20144+ 0

2

{ 1—9 0  (-+9)

Because the problem is no longer cyclic, the first, second, (N — 1)st and Nth
rows of (A — B) (A + B) are different from all the rest.

The vectors ¢, and . are readily found and are of two kinds.

Modes of the first kind:

5 It is readily seen that for N odd, det ( A— B) = 0, so there exists a zero eigenvalue of
(A — B)(A + B). The existence of this eu)tatlon corresponds to the fact that because

both R, = exp [? Z S=;] and R, =exp [ mz S%] commute with # and because there are

an odd number of 51tes, every eigenstate is degenerate. Suppose ¥ is an eigenstate of H and
R, so that R¥ = +i{¥ (the eigenvalues of R, are 41 for an odd number of spins). Then

= R,V is distinct from ¥ because R ¥’ = F:¥’ and vet it is an energy eigenstate degen-
erate with ¥.
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0 sin Nk
sin 2k 0
0 sin(N — 2)k
O = Ay | sin4k | and ' = —A.8 0 ,  (2.64a)
6 sin. 2k
sin Nk 0
where
8 = sign of cos(N + 1)k, (2.64b)
A = [L— (1 — %) sin® k], (2.64¢)
and A is the normalization constant,
N/2 —3 . 1
. s sin 2(N + Dk ™
= g =2 1] —=—=" _ “7°1 . 2.
A l:n;l sin 2%;‘{1‘ I:N + SOk ] {2.64d)
The k’s are the roots of the equation
sin(N + 2)k/sin Nk = (1 — v)/(1 + v) = —), (2.64e)
which we discuss below. It can then be shown that
Ay = cos k/ | cos(N + Dk | . (2.64f)

The parameter A, previously introduced in (2.43b), is a convenient alternate
characterization of the anisotropy, the isotropic case corresponding tox = land
the Ising limits being A = 0, .

Modes of the second kind:

¢:Icl = A;

sin Nk
0
sin(N — 2)k
0

sin. 2k
0

and Q;ICI = —Akég

0 )

sin 2k
0

sin 4k |, (2.65a)
0

sin Nk J

where §; , A; , and A; are as before, and the k’s are the roots of the equation

sin(¥N + 2)k/sin Nk = — 1/,

(2.65b)

Assuming y > 0, we represent the functions sin(N + 2)k/sin Nk, A, and 1/x
diagrammatically in Fig. 3. The roots of (2.64e) are of the form

fed =

(x/NY(m — »,5) + O(1/N*), m =

Ve
1) T 1/2N?

(2.66)
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—_
N+2

N
.0

A
Fra. 3. 8in (N 4 2)k/sin Nk (continuous curve), —\ (dashed line) and —1/A (dotted line)
versus k for N = 12 and a typical value of A. The intersections of these curves define the
kUs and k™’s in the XY model with free ends.

where »,,!, defined by

cot vle = [N + cos(2mx/N))/sin{2m=/N), (2.67)
is found to be

vl = (m/N) 4+ (1/7) tan™' [y tan(mx/N)]. (2.677)
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Similarly, the real roots of (2.65b) are of the form

kmi = (n/N)(m — ») + O(1/N?), m=1,--- ,N—1, (2.68)
where
v = (m/N) — (1/) tan™' [y tan(mx/N)). (2.69)
There is also one complex root of (2.65b) which is very important:
ke = (x/2) + 4, (2.70)
where » is the solution of
cosh 20 + coth Nv sinh 20 = 1/A. (2.71)

In the zeroth approximation, we may set coth NV = 1, so that
e = 1/A = (1+7)/(1 — ). (2.72)

In the next approximation

ezv _ 1/)\ _ (1 . )\2>)\N—1 _ <1 + ’Y) 4‘)’ <1 - ‘Y)Nﬁl. (2.72/)

L=/ O+ \1+~
The ¢ and « vectors for this special mode are
sinh Nv 1

0

by, = Ay, (~1)%N_.2 ginh 4v

‘ 0
(—1)*""" sinh 20
0
-0 (2.73a)
(—=1)"™" sinh 2v
0
) — 1) sinh 4¢
and ¢, = (—1) wn | (1) 0 S AY ,
0
sinh Ne
where
: sinh 2(N + 1)w o :I_‘
Ay = 4[*W N-1

(2.73b)

41— S = N AN
~4(1 — M)\ 16(7/<1+7))<1+7>~
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This exhausts the normal modes because, for any mode with £’ in (s, 7), there
is a mode with k = 7 — &’ that differs from the first only by a sign.

It is obvious from (2.64c) that Ay > O for all real A’s. It is also readily scen
that for the special mode ko

A (14N = 2/(1+ 11— v)/(1+ 9P (273¢)

Thus, although the ground state is, strictly speaking, nondegenerate for any
finite N, it becomes degenerate with the state carrying the kg excitation in the
limit N — «. It is observed in the next section that these two states have the
same end-to-end order to O(1/N). In terms of the customary definition of
long-range order, the preponderance of spins up on one sublattice to spins up
on the other, neither of these states shows any long-range order, if by *‘spins
up”’ we mean spins in the x-direction. However, a linear combination of these
two states in equal proportions will show a long-range order according to the
customary definition.

We can now compute the various relevant @ functions, recalling that G;; =

— Zklpk@kj :

Gy = 2, A2 8 sin® N, (2.74a)
Kl

Gy = 2, Al 8 sin® Nk + Af, (—1)" sinh® No. (2.74b)
K1 real

Except for the factor §; , the summands in (2.74) are slowly varying functions
of k, as shown in Appendix D, and each term is O(1/N ). The factor 8, alternates
in sign, the first 3, being —1, ete. Thus a pair of consecutive terms in the sum-
mand is approximately

(d/dm) (A%, sin® Nkn)

and the sums go over to Riemann integrals:
N
12f (d/dm) (A% sin® Nkn) dm = O(1/N). (2.75)
0

Finally we have
(v = O(1/N), (2.76a)

Gy = AL, (—1)¥ sinh® No 4+ O(1/N)
= (=D (1 —¥') + O(1/N).

To calculate the end-to-end order in the ground state using (2.59), we note
that

(2.76b)

det(A — B) = (=¥ (1 — ¥ (2.77)
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so that

piv = —L{(=1)¥ Gy (2.78a)
and

ply = =14 (—1)¥ Gy . (2.78b)

Because Gixy = O(1/N), only pix of the order parameters is finite fory > 0 as
N — «,

piv = —14(1 = N) + O(1/N) = =y/(1 + v) + O(1/N). (2.79)

The ground state of the one-dimensional XY model thus shows no end-to-end
order in the isotropic case, but a finite end-to-end order for any finite amount
of anisotropy.

As anticipated, we see explicitly that the various contributions to the order
parameter are nonanalytic functions of v at v = 0. The limiting contribution
plw, for example, is finite for ¥ > 0 but zero for v < 0.

As we have already remarked, the order piy may differ from lim,... p." obtained
for the cyclic chain because of end effects. To see how important these effects
are, it is useful to compute the order between two spins situated near but not at
the two ends of the chain. Somewhat simpler is the “end-to-almost-end” order
calculated between the gth spin and the Nth spin, where ¢ is small. Just as piy
can be expressed with a 1 X 1 determinant, pgy can be expressed with a ¢ X ¢
determinant. as we now show.

P;N =13 ¥ i (07/L1Jr + a’q)(aNT + ax) l\Il0>a

/ g1 N—1
' exp (iw 2 c,-Tc]->(ch + ¢)(ent + cx) exp (iwz cj*cf)
1

=1 .
Ly \‘I’o 4

\
%), (280)

=1 ¥ |A41B1A: By --- A1 B, 1 A, By e | ¥o).
But according to (2.61),
exp(ind) | Wo) = (det A/ [det A|) | &) = (=1 | ¥). (2.81)

The evaluation of p;x now gives, using Wick’s theorem,

Gu  Gu - Gy |
wl O G e,
. -1 q -1 N .21 .22 '2q
Py = w( ) El ) : : : (2.82)
Gq—l.l Gq—-l,Z Gq—l,q
GNl GN2 GNq

pux is obtained by letting G;; — G, . It should be borne in mind that the G.;’s
are now calculated for the chain with free ends; they are not the G,/s discussed
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in the last section. We introduce the notation G%; and G, for the free chain
and cyeclic chain, respectively. Then there are simple relations, proved in Ap-
pendix E, between the two kinds of G’s provided |7 — j| = o(N).

Gh= G5y — Gy, for 7 odd, j even; (2.83a)
Gl = Gi_i — Giiyy for 7 even, j odd; (2.83h)
Gii=0 for i — j even. (2.83¢)

The determinant in (2.82) can be simplified in two ways. First recall that

iy = — (=) Gy (2.78a)
and observe that if j is odd and 7 = o(N),
Ghy = (=1 (2.84)
so that (2.82) simplifies to
Gi G,
s (=) | P 2.85
PoN ( ) Pl G£—1,1 G£—1,q ( )
10 —N o

Second, because of (2.83), the determinant can be simplified in analogy with
(2.45a, b) giving

phay = (=1 8.T, ply, (2.86a)
prety = (=) 8, T, pix, (2.86h)
where
Ge G Gl |
T,=| Ge G - Gi (2.87a)
Ghots Ghias - Ghoasg
and
| G Gl - Glag |
Gh  Gh o Gl
S, = : : (2.87b)
Glyea s Ghyanga

1 (N o GV
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Numerical evaluation of pgx/piv for vy = 0.10102 and ¢ = 2, 3, ---, 7 shows a
rapid convergence to a value differing by only a few percent from unity; but
surprisingly, the order does not increase in absolute value monotonically as ¢
increases.

E. OrDER IN EXCITED STATES AND AT FINITE TEMPERATURES

The order parameters in excited states are given by simple modifications of

(2.33). For example, the state with the elementary excitations k1 , - - -, k, excited
can be regarded as the vacuum state of a new set of 7, operators, where 7 and
n," are Interchanged for &y, - - -, k. For these k’s, this is equivalent to letting
Yii — —i and Ay — —A, . Instead of (2.32¢) we have

Gij (ky -+ ks) = - 2 ety +kZ Vritr; - (2.88)

Because s of the Ai’s now are negative,
det G(ky -+ k) = (—1)° det G. (2.89)

For the cyclic chain, the change of sign of a few of the terms contributing to
G, ,as given in (2.88) has a negligible effect on G;; , because each term is O(1/N ).
Thus in very low-lying excited states, the order between spins a fixed distance
apart, (as N — =) is the same as in the ground state, although this in itself
does not imply long-range order at finite temperatures. For the end-to-end order
in the chain with free ends, the sign of the order is changed with each additional
excitation (except for k) because det G changes sign, so that at finite temper-
atures the end-to-end order vanishes. It is interesting to note, however, that for
the one extremely low-lying excitation ko, both det G and Gy; change sign so
that this very low-lying excited state has the same end-to-end order as the ground
state, to order O(1/N).

The systematic generalization to finite temperatures of the treatment of
order using Wick’s theorem is simply achieved by introducing temperature-
dependent contractions (16):

(Bid ;) = tr[Bid; exp(—BH,)]/tr exp(—BH,) = Gi;(B). (2.90)

The explicit evaluation of G,; at finite temperatures is given in Appendix C. In
matrix notation

G(8) = —t' tanh (}48A)¢. (2.91)

G(B) is no longer a unitary matrix. In fact, the norm of the entire ith row is

d:n(B8) = [; (Gij(5)>2jr < tanh (14BAma) < L (2.92)
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Thus, even though G._; (8) ~ A(8)/(i — 7)* for all’ v, the long-range order is
zero at any finite temperature by Hadamard’s theorem. In fact

14 taph™ 158 — 0 (2.93)

n-»oc

r

Pn

A

because
Amax = 1,
and similarly for p,”.

I'. RELATIONSHIP BETWEEN HEISENBERG AND XY MoDbELs

It is unfortunately not obvious that the Heisenberg model shows either a
stronger or weaker tendency to order than the XY model. On the one hand, one
might argue that the Heisenberg model, in which all three components of the
spin want to align antiparallel, should show more order than the XY model, in
which only two components have this tendency. Equivalently, because the
ordering effect of the transverse terms alone in the Heisenberg model is less than
that of the transverse terms alone in the XY model, one might conclude that the
disordering effect is also correspondingly less in the Heisenberg model. On the
other hand, one might argue with perhaps equal justification that the disordering
tendency of the transverse terms in the Heisenberg model is greater, there being
twice as many such terms. We have so far been unable to show rigorously that
either model has a stronger tendency to long-range order than the other.

Lacking a general theorem, it is most interesting for heuristic reasons to
consider a simple soluble but nontrivial special case: a chain of six spin 14’s in
both the isotropic Heisenberg and isotropic XY models.”

For the Heisenberg model a direct diagonalization of the Hamiltonian matrix
among the sixty-four possible states is greatly simplified by the knowledge that
the ground state is a singlet. It can be further simplified because under re-
versal of the ordering of the six sites, one of the five singlets of such a chain is
even and four (including the ground state) are odd. Diagonalizing the resulting
4 X 4 matrix, one finds for the ground state

Wy = 0.635 By — 0.436(Puss + Pags) — 0.336 By (2.94)
= 0.186(Puzs + Pras) + 0.11H(Przs + Posa) + 0.086 Pioy — 0.014 Dy,
where
by = 27 (afetad — al_aljab)® (2.95)
¢ The asymptotic behavior is given by (2.41) with f(k) — f(k; ) = f(k) X tanh }48A;.

It is observed that f(Q; 8) = f'(#/2;8) = Oeven fory = 0, when g8 = 0 (see footnote 4).
7 The four-spin problem, though nontrivial, shows too large end effects to be interesting.
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and &, is the state with all spins down.

For the XY model one can specialize the general formalism developed in
Section IT D to the case N = 6. One finds

bt = k' = mx/7, (2.96)
which gives the following ¢ matrix:
0 —0875 0 0.388 0 —0.300
—0875 0 —0485 0 0.087 0
0 —0485 0 —0774 0 0.388

G=losss o0 —0774 0 —o04s5 o | 297

| 0 0.087 0 —0485 0 —0.875

|—0300 0 0.388 0 —0875 0 |

The various order parameters may be computed for the Heisenberg model
directly from the ground state. p?; is the simplest to compute; p;; and p%; have
the same value because ¥, is a singlet. For the XY model the various order
parameters may be computed from the appropriate subdeterminants of G. In
Table II we exhibit the order parameter pi; between the first spin and each of
the other five. It is immediately clear that the XY model has a stronger tendency
to order except for neighboring spins.

The parameter pi; for the six-spin problem differs from its value whenspin # 1
is in the middle of an infinite chain because of end effects from both ends. To
see the effects of each end for the XY model, we have also tabulated p3; for a
semi-infinite chain (i.e., spin %1 is at one end but the chain is infinitely long)
and for an infinite chain (i.e., both the first and jth spins are far from either
end). The results for the semi-infinite chain show that the end at the sixth site
has a very small effect on the order pi; ; while the results for the infinite chain
show that the fact that spin %1 is at an end position has a noticeable but not
dominating effect for the six-spin and semi-infinite cases. The results strongly
suggest that as j — o, pi; for the semi-infinite and infinite Heisenberg models is
dominated by the corresponding parameter for the XY models, which we know

TABLE 11
pf,— FORJ = 2,..., 6 1IN Variouvs ONE-DIMENsIONAL MODELS
7 2 3 4 5 6
Heis.: 6 spins —0.222 0.064 —0.077 0.032 —0.047
X7Y: 6 spins —0.219 0.106 -0.105 0.065 —~0.075
XY: Semi-infinite —0.212 0.108 —-0.102 0.075 —0.077
XY: Infinite —0.159 0.101 —0.086 0.073 —0.066
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TABLE III
p;.;41 FOR SEVERAL j IN Varous ONE-DIMENsIoNAL MopELs
j 1 2 3 ® Yilole -+ 2035 + p34)

Heis.:

6 spins —0.222 -0.092 —0.202 —-0.152

Semi-infinite ' —-0.148
XY:

6 spins —-0.219 —-0.121 -0.193 -0.163

Semi-infinite —-0.212  ~0.127 -0.182 —0.159 —0.162

tends to zero; i.e., the tsotropic Heisenberg model appears to have vanishing long-
range order.

The end effects on the nearest neighbor order pj, ;4; can also be examined on
the basis of values given in Table I11. We have exhibited only the casesj = 1, 2,
3 because j and 6 — j are equivalent for this parameter. We see that for both
models the nearest neighbor order oscillates strongly because 7 is near a free end.
However, the effects of the farther end are seen to be small. Furthermore, if the
simplest imaginable extrapolation from the six-spin problem is made, a good
estimate of the true short-range order in an infinite chain is obtained for both
models. Caleulations of p; ;.2 and g}, ;43 , as well as analogous calculations for
the total order parameter, p;; , all agree with these conclusions, so they are not
exhibited.

III. THE HEISENBERG-ISING MODEL
A. ForMuraTION OF GROUND-STATE PROBLEM

The second model consists of 2N spin 1¢’s also arranged in a row and having
only nearest neighbor interactions. The interactions are alternately Ising and
isotropic Heisenberg interactions, so that the Hamiltonian for a chain with free
ends is

N~1

N
Z SQ:’—]'SZi + 2)\ Z Sz2iszgi+1
1 1

It

H,y
(3.1)

2H0+H1.

The parameter X is to be considered variable but positive and characterizes the
relative strength of the two types of interaction.”

The particular simplicity of this Hamiltonian is noticed if the representation
diagonalizing H, is introduced. For the 7th pair of spins we introduce the four
eigenfunctions of Sy, ;- S,; :

8 The symbol A is chosen because this parameter appears in many expressions in exactly
the same way as does A for the X'} model. In both models, A ranges from 0 to «.
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& =11, % = [,

c_1 1 o 62
@y = \/Q(lT + Tl), and & = \/ﬁ(lT - Tl)’

where the first and second arrows refer to the (2¢ — 1)st and 2¢th spins, re-
spectively, and represent states of a single spin in the positive and negative
z-direction. The first subscript of ®° refers to the quantum number J; and the
second to M, for the ith pair. Application of either S%; _» S%._; or 8%; 8%, to any
of these four states leaves the values of M; unchanged. Thus the assighment of
one of the three possible values (41, 0) to each of the N M ’s defines a subspace
of the 22" dimensional space of all states. The Hamiltonian, having no matrix
components between states in different subspaces, can be diagonalized separately
in each. It will be shown in Section III E that the ground state is in the subspace
for which M; = 0 for all 7, a subspace we now consider.

We are faced with a situation that is formally similar to that encountered in
the XY model: a set of dynamical systems (in this case a pair of spins) each
having two possible states (in this case ®10 and ®$g) and interacting only with
the nearest neighbor systems. If we call the states ®}) the “up” states and dgo
the “down” states, we can formally introduce raising and lowering operators for
the zth pair having the usual properties:

a1l = dlo, ai'®}, = 0, (3.3a)
and
adby = 0, adiy = P, (3.3b)
so that
fa;a;'} = 1 and al =al’ = 0. (3.4)

It is to be emphasized that a; and a;" do not lower and raise a particular spin as
they did for the XY model. It is only a formal analogy between the states &j) and
&% on the one hand, and the up and down orientations of a single spin 14 that
we are exploiting.

Because of the fundamental relations

St ®io = —®,  Shiablo = —&io (3.5a)

and
Sh:®io = B0, 8% = i, (3.5b)
we may represent S%;_; and S%; in the 3 ; = 0 subspace by means of a; and a,:

81 — ”}'é(azT + ai); Sy — l/z(dxf + a,). (3.6)
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Because the diagonal energies of the states ®1, and ®g are, respectively, 14 and
— 384 the ith term in H, can also be expressed in terms of ¢; and a,':

SQ{._I‘ Szi - (l,'T(Ii —:}{L (37)

In the subspace defined by M; = 0, the total Hamiltonian is then
N N—1
Hy= —%N + > ata; — 192 (af + i) (ala + aia),  (3.8)
1 1

where, in addition to (3. 4), we have
e a;] = [afa] = lanaf] = 0. (3.9)

The eigenstates and associated energies of H, can be found exactly as for the
XY model by introducing a complete set of Fermi operators, through (2.5), in
terms of which H, is given by

N N—1
Hy= —3{N+ X efei — A2 (eff — ) (b +eipn). (3.10)
1 1

B. Grouxp StaTE oF THE Cycric CHAIN

It is convenient in this section to consider the “c-cyclic” case obtained by
letting Y1 ' — 2 1" in H; and defining

Cyyl = O and ij+1 = (. (311)

The matrices relevant to the diagonalization of Hy are then

e
-2 1 0
A——B=$ . = (A + B)" (3.12)
IL 0 -1
and
{H—ﬁ - -\

- 14X =2 0 l
(A—B)(A+B) = | I } (3.13)
—X —A 14N
Tor N > 1 the normal modes are characterized by the functions
((2/N)* sin kj

bnj = . ) (3.14a)
(2/N)* cos kj
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and
Vi, = A [(1 = Ncos k)ge; — Nsin k ¢_gj], (3.14b)
belong to the eigenvalues
A = [(1 + N)? — 4\ cos® Lokl (3.14c)
where
k= 2xm/N (3.14d)
and
m= —WN, .- 0,---,1g N -1 forN even, (3.14¢)

m= —14(N —1),---,0, --- 14(N — 1) for N odd.

We take the upper solution for ¢;; if £ > 0, the lower solution if £ £ 0. For
A = land m = 0, we have A, = 0. For this particular %,

¢ii = N7 = £N™. (3.14%)

The sign, which is arbitrary, will be taken positive.
It is convenient to introduce the parameter v, ranging from 41 to —1, by

vy=(1—=7)/(14+X); (3.15)
then
A= (L+ )L — (1L —+") cos’ 14 kI, (3.16)

which resembles the spectrum of the XY model.

We see that except for A = 1 or v = 0 the spectrum of elementary excitations
has an energy gap. It should be emphasized, however, that the ground state
together with states of all possible combinations of these elementary excitations
are but a small subset of the complete set of stationary states, all the rest having
one or more M; = 1. Thus, the behavior of the system for finite temperatures
is not immediately apparent from the knowledge of the excitation spectrum
(3.14¢).

The ground-state energy, according to (A-12) is

E, = —3%N + 14 (ZT) 1 — ; Ak). (3.17)
AsN — =,
E/N = = 15 —(2/m)[1/(1 + )] &(1 —v"). (3.18)

We notice that Ey/N is not analytic at A = 1 (y = 0) although it has power
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series expansions in A and 1/X. This nonanalytic behavior at A = 1 is associated
with the appearance of long-range order for A > 1 as we now show.
C. Suort- AND LoNG-RaNGE ORDER 1N THE (GROUND STATE
Define the order parameter in the ground state between pair sites [ and m
to he
Pim = <\I,0 ] Sf.’l' S?m l\I/0>, (319)

i.e., it is the order between the second spin of each pair. The order between
other pairs of spins can be calculated from p;, because

(Wo | Ser-Som1 | ¥g) = — (Fy| Sorv S | Ty),  ete. (3.20)
Furthermore, the only nonzero contribution to py. is
p;m = <\I/0 ‘ ASz:’.l'sz'.’.m I \IIO> = ,]4<\I’U} (:alT + al,)(a/mTL + am) 1 \I,0>, (321)

because S%; and S8%; both change M; and S”,, and S%,, both change M,,. The
structure of pi,, is identical with the structure of pi, for the XY model, so that
pin is given by the determinant (2.33a) with G,; defined by (2.32¢).

For the cyclic chain, G;; = (7,_; and in the limit N — < with» = ¢ — j fixed,
G, is found to be given by

Go= (=D 1501+ ) Lo () + 2501 — v) Lo (v)],  (3.22)

where L,(v) is defined in (2.83b). For the special ease of vanishing energy gap,
A=1lory =0,

G = (2/7) (=17 2r + 1)) (3.23a)

Tor the limiting case of noninteracting Heisenberg pairs,
G, = —6n. (3.23b)
In the limit A —» % ory = —1, which we shall later show to be the Ising limit,
G, =8, 1. (3.23¢)

In general, for A # 1,
|G| < Ar? for |r] > n, (3.24)

just as in the XY model.

Hadamard’s theorem is sufficient to show that there is no long-range order
for A = 1, because of the 7' behavior of G, . For A # 1, Hadamard’s theorem
is again too weak, because of the 7 * dependence. In the limiting cases A = 0 and
A — o however, there is no order and perfect order, respectively. This suggests
that for A £ 1 there is no long-range order and for A > 1 there is finite long-range
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order, a conjecture that is confirmed for the end-to-end order of a free chain,

which we now investigate.

D. Exp-to-Exp OrRDER IN THE GROUND STATE

For a chain of N pairs, the order between the first and last pairs, asin (2.59a) is

piv = —L4 Gwidet (A — B)/|det (A — B) |
providing A # 1 (to ensure Ay # 0). If the chain has free ends,

(1
=\ 1 0
A-B= ' . (A + B)7,
0 -1

so that
det (A — B) =1 and piy = —14 Gu.
The functions ¢; and y;; needed to compute G are found to be
¢r; = Apsin k(N + 1 — 5) and ; = Aydy sin ky,
where
8, = sign of sin k/sin kN,
The corresponding eigenvalue is
Ay = [(1 4+ N)?* — 4\ cos® 15k],
and the normalization constant is
A, = 2{2N + 1 — [sin (2N + 1)k]/sin k} 7%
The k’s are the roots of
sin k(N + 1)/sin kn = A,
For these k’s A;, reduces to

Ay = |sin k/sin Nk |.

(3.25)

(3.26)

(3.27)

(3.28a)

(3.28b)

(3.28¢)

(3.28d)

(3.28¢)

(3.28f)

For A £ 1, there are N real roots, exhausting the normal modes. For » > 1,

there are N — 1 real roots and one imaginary root,

]{/'0 = ’L.U,

(3.29)
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with v defined by

sinh (N 4+ 1)v/sinh Nv = A, (3.30)
For NV > 1[ie, N — 1 = O(1/N)},
e = — [(A* — 1)/AJ(1/A)™. (3.31)
IFor this particular mode
Grgi = Ay sinh (N 4+ 1 — j)v and ¢y, = Ay, sinh jo, (3.32a)
Ay =267 (1 — ) (3.32b)
and
Ay = (N — D)/ (3.32¢)
In evaluating Gyr = — 2 w1, we use the fact (proved in analogy with

the XY model, Appendix D) that, except for the mode k, and the factor &,
the factors in the summand are slowly varying functions of k, and 6, alternates
in sign. Thus

Gyt = —¥rw di + O(1/N) = —(1 —\7) + O(1/N),  (3.33)
and
pv = 14(1 = X7) + O(1/N), Az 1, (3.34)
= O0(1/N), 1<l

The order in the extremely low-lying excited state with the ko excitation present
is the same as in the ground state to O(1/N).

E. EXciTED STATES

In addition to the excited states produced with the creation operators 41,
there are also all the states lying in subspaces characterized by one or more
M, # 0. Although it is possible to find states in these subspaces for which each
of these A1, is definitely +1 or —1, it is much more convenient to work with
certain linear combinations of these states. To see why this is, consider the
subspace defined by

My=1 and M; =0, 1 # 1. (3.35)
The Hamiltonian in this subspace corresponding to (3.10) is
N
Hy = —33(N — 1) + X ele;
2
. (3.36)
— I 20 (et — e (ehyr + eir) — an (e + ).



444 LIEB, SCHULTZ, AND MATTIS

Because this Hamiltonian is no longer purely quadratic in the ¢’s and ¢'’s, it
fails to conserve the number of fermions and cannot be diagonalized by a simple
principal axis transformation. The difficulty is even greater if the 37 = 1 site
is not at the left end, but at ¢ = p; for then H, is

Ho= =50 -0 4 Dt —gn T (et=e)(chi + o)
i#£p

. 2 ip e

W | Qo

1 L=
-3 A [(CL—l — Cp1) €XP (W ; CjTCj) (3.36")

+ (CL.H 4 €pi1) €Xp <i7r 21: cﬁq)],

which is obviously not directly diagonalizable.

The way around these difliculties is to consider the states with M, = 1
simultaneously, introducing raising and lowering operators a,’ and a, which
take ®7_; into 1 and vice versa. The Hamiltonian is then a quadratic form in
the a’s and a'’s (including a, and a,') which remains quadratie, and so is readily
diagonalizable, when expressed in the ¢’s and ¢"s. The ground state (and all
excited states) in this subspace must he doubly degenerate, corresponding to
the twolinearly independent combinations of ®7_; and ®{ , and this must manifest
itself in the fact that Ax = 0 for some k. Stationary states with M/, = 1 can
then be projected from any state if one is so inclined.

Let us consider this procedure more explicitly as generalized to the case of an
arbitrary number of sites with M = £1. In fact, let

| M| =1 for ¢ =mpi,p, ", D
and (3.37)
M;=0 for iZpi,ps, ", Pa

The pairs at pair sites p;, -+ , Ps can be considered as “impurity pairs” em-
bedded in a perfect chain of M = 0 pairs. Each set of p’s identifies a different
subspace and now, because each impurity ean also be in two states, all subspaces
are still of dimension 2",

For an impurity pair at p, we introduce the “up” and *‘down’” states

p_ 1 p p 1 .
by —7§(<I>u+¢>1_1) = \7§<T T+ 11, (3.38a)

p_ L iap p oy _ 1 ‘ :
b_ —\—/—‘2(‘1’11—¢1—1>——§(TT - 11 (3.38b)
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and the raising and lowering operators ¢," and a,, :

a, @ " = &7, a,P,” = 0; (3.39a)

a® " =0, a,d," =", (3.39b)
Because

Sopi®, = 89,07 = 147 (3.402)
and

Shapy® " = S @ " = 150, °, (3.40b)

we may represent 8%, ; and S%, in this subspace by
Shapr = S = L3(a)" + ap). (3.41)

The pth term in H, will be simply 1. The interaction of the impurity at p with
the (p — 1)st pair is

¥M(al + o) (0! + a,), (3.422)

whether the (p — 1)st pair is an impurity or not. The interaction of the im-
purity at p with the (p + 1)st pair is

(o, + ap) () + apia) (3.42b)
provided p + 1 is an impurity, and it is
—15Na," + ap)(ahis + apin) (3.42¢)

if p + 1 is not an impurity.

To make all interactions look alike and the same as between two M = 0
pairs, it is convenient to introduce new canonical variables in the following
way. We make the canonical transformation

a,— —a; and af— —a (3.43)

forpp £ 4 < pa,ps <7 < pu,ps £ 1 < ps, ete., but leave the other a’s and

a’s unchanged. The Hamiltonian in this subspace is then

Hy(pr-p)=—=3N+s+ 2 ala

APl Ps
N—1 (3.44)
— 15X\ 21: (ai' + a:) (@l + ain)

or simply

H)\(pl te Ps) = H\ + Z_; (1 - aLiaPi>’ (3441)
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where H, is the Hamiltonian (3.8) for the case all M; = 0. Although the a’s
and ¢"’s on impurity pair sites have a different meaning from the other a’s
and aP’s, they all have the same formal properties and so (3.44") is a meaningful
statement. It is now clear that the ground state lies in the subspace with no
impurities, because if ¥y, with energy Ey/, is the lowest energy state correspond-
ing to a given set of s impurities, then

<\I’0, ; (1 - aLi p;) ‘I’OI> = §/2. <3‘45)9
Thus
E) = <‘I’0/ I H, I ‘1'0,> + 153 = Eo+ 128’ (246)

showing that the ground state has all A, = 0, as previously asserted.

We might mention at this point that, contrary to appearances, we have
really included as much anisotropy as is possible, through the variability of A.
An apparent generalization that is still soluble would be to replace Hy by

N

He' = 2 [an(S%208% + 8%18%) + a2S%2i187%]. (3.47)

1

The corresponding generalization of Hy(p; - -+ ps) Is

H)\,(pl Cee ) =

s (3.48)
oa1Hyjey — Vi Nz — 1) + Yoon s + o Z (g — G’Li ap)-

f=

We see that o has no effect on the stationary states, its only effect being on
the energy needed to create impurities. For any a. = 0, the ground state has
no impurities. Only the ratio A/e; has any effect on the wave functions. Thus,
without loss of generality, we have chosen a; = a» = 1. Now, provided A > 0,
this choice of o, is exactly equivalent (for the ground-state wave function) to
9 To prove this, note that the unitary transformation
Ulay,U = aty; and Ulat, U = a, forall ¢

leaves Hy(p1 - -+ ps) unchanged, i.e., [Hy(p: +++ ps), U] = 0. It is thus possible to choose
¥,’ to be an eigenstate of U as well as of Hy(p, -+ ps). Then

¥’ | a,;’,-am- 1Wy) = (D0 | apaty; | U%0) = (B | (1 — aty0p) [ ¥
or

(W' | ahay %oy = 15 for i=1,---,s
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the choice aw = 2\. But with the second choice, Hy/2\ becomes the Ising Hamil-
tonian in the limit A — oo, Thus the limit A — = is also the Ising limit for the
choice ap = oy = 1.

The introduction of impurities at pair sites p;, --- , ps reduces the matrix
(A — B)(A + B) into a set of square blocks along the main diagonal of order
P, P — p1, -, N — p,, corresponding to the dynamical independence of
the different 3/ = 0 segments of the chain. Any distribution of impurities can
be solved, in principle, because of this independence. The particularly simple
distributions of impurities are those in which the first impurity is at the extreme
left and the last is at the extreme right, because for such distributions all the
nontrivial square blocks have the same structure. It is then convenient to assume
the chain has N + 1 pair sites and s + 1 impurities, the first being at po = 0.
Then

f.Q_E,w, )
Lo 0
(A —B)(A+B) = 'L | , (3.49)
0 L
tLQS
where
L4+XN =2 0)
—A 14+ N -2 l
L, = T (3.50)
—A 14N A
\0 —X  N) g rows and columns

and ¢; = p; — Pi1, the “length” of the 7th subchain (including the impurity
at the right end, but not the one at the left when the ordering is from left to
right).

Let us consider first the case with impurities only at the ends {(p, = 0 and
g1 = p1 = N). One normal mode is

1) 0
0

do= | and 4 = (351a)

L6 1
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belonging to
A= 0. (3.51b)

The other normal modes are

{ 0 ) (sin.qllc

sin k [
A= AD I and 4¢P = — A 8 (3.52a)

sin k

sin N k
with A, given by (3.14¢c) and

o = sign of sink/sin (¢ + 1)k. (3.52b)

The k’s are the roots of
sin (¢n + D)k/sin i = 1/A, (3.52¢)

and so they, and the corresponding A;’s, depend on ¢ . The excitation of the
A = 0 mode corresponds to a reversal of the spins of both impurity pairs and
hence of all intervening M = 0 pairs, which is why it costs no energy. The
two degenerate ‘‘ground states” for the chain terminated by two impurity pairs
are ¥o_ and ¥,,. defined by

nk\IIO— = O, all k, (352(1)
and
77&‘1/0+ = O, k # 0 and 7]0*‘1’04_ = 0. (3526)

For A < 1, there is an imaginary root ke of (3.52¢) which for ¢, — o, has a
vanishingly small excitation energy, Ay = (> — DAY™: but for A > 1, there
is an energy gap. The creation of the kg excitation reverses the relative orienta-
tion of the two impurity pairs, as shown in Appendix F. Thus, for A < 1 and
g1 — <, states with parallel and antiparallel impurity pair alignments have the
same energy, a reflection of the absence of long-range order in the intervening
M = 0 chain. For A > 1, on the other hand, the state with antiparallel align-
ment lies lower in energy by a finite amount, a reflection of the presence of
long-range order.

Consider now the same chain but extended to an impurity pair at p;. In
addition to the A = 0 mode, the normal modes are now of two kinds:
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U U
sin k :
sin 24
0
: . a s | SIDQLK 0
o= AP and ol =l (UET D (353)
sin ¢y b :
0
| sin 2k
. sin k
0 0
with 8/' and f defined by (3.52b) and 3.52¢); and
0 sin s ]c)
L
0 | sin 2k
OF = A¢ | sink and 4 = A28 | sink |, (354)
sin 2k 0
sings & {0

with 8;* and & defined by the analogs of (3.52b) and (3.52¢). Arguments similar
to those in Appendix I can be used to show that in the lowest state, successive
impurity pairs are aligned antiparallel. Any odd number of excitations of the
left segment results in a parallel alignment of impurity pairs at ps and p; ;
and similarly odd numbers of excitations of the right segment result in parallel
alignment of pair sites p; and p. . If A < 1, and p; is far from one end, the &y
excitation of this long segment gives the corresponding parallel alignment at a
negligible cost of energy. But if A > 1, these parallel alighments cost finite
amounts of energy, a consequence of the long-range order.

The above discussion is obviously generalizable immediately to any number
of impurities. I'or a chain of length ¥ + 1, the lowest energy in a subspace
characterized by the impurity pairs at py = 0, p1, -+, ps, p. = N, or by
the chain segments ¢;, -+ - , ¢, > g- = N is

. 1 . 1
Eu(({l,"',q.c): —E(JV—])“;—;Z,:]——Z Ak]. (355)

N
=2 r=] k(ap)
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The quantity 's[1 — D . A = V(g) can be simply interpreted as the sum
of the self-energy of an impurity embedded in an M/ = 0 chain and the inter-
action energy of this impurity with another one, ¢ pair sites away. It can be
more simply regarded, however, just as the energy of a chain segment (with an
impurity at the right end) of length ¢; the entire chain is then a collection of
noninteracting segments, arbitrary in number, obeying only the constraint

Zf qr = N.

F. Stamisrticar MEcHANICS

To evaluate the partition sum of the Heisenberg-Ising model, we first evaluate
it for all the internal degrees of freedom in each segment, which leads to a
temperature dependent V(q):

exp [—8U(g; 8)] = kI(I) (1 + exp(—BAL)). (3.56)

We then sum over all configurations of s — 1 internal impurities and then sum
over §:

Zy(B) = 2 Z exp l:— B ; V(g ;B)} (3.57)

8 41
_q,_N

It is appealing to handle the constraint ) ¢, = N in analogy with the grand
canonical ensemble, but because the exact free energy increases linearly with
N for large N, such a method fails. Rather the constraint can be introduced
explicitly using the integral representation for the Kronecker delta:

= (1/27) f_ expliB(D g — N)|ds. (3.58)
Then
W8 =T o fd{?exp(—wN)[ (8, 8)] 1[ doexP( (ZB""Z; (3.59)
where
2058) = 3 expl—0(45 8) + i) (3.60)

This reduces the problem to quadratures, which we shall not carry out.

G. THE APPROXIMATION OF RUIJGROK AND RODRIGUEZ

Tt is interesting to consider the most successful of the approximate procedures
for the Heisenberg model, that of Ruijgrok and Rodriguez (10), (henceforth,
RR), to see how accurately it gives the various properties of the Heisenberg—
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Ising (HI) model that are known exactly. The procedure of RR is to introduce
operators £ and &' similar to 5, and 9,7 of the XY model, operators that an-
nihilate or create particles (i.e., spins up) in Bloch wave single particle states
with two sites per unit cell rather than in plane wave single particle states as
we did for the cyelie isotropic XY model. The best form for the Bloch waves is
determined variationally. Thus their method gives the isotropic XY model
exactly (the Bloch waves reduce to plane waves), but it is not really suited to
the anisotropic XY model because the latter fails to conserve the number of
particles, whereas the RR method is particle conserving. The Heisenberg—
Ising model, on the other hand, is also particle conserving, if by particles we
mean single up-spins, not to be confused with up and down pair states. Further-
more, the HI Hamiltonian is invariant under translations by an even number of
spin sites, providing it is made suitably cyclie. Tt is thus appropriate for a test
of the RR procedure.

The cyelic HI-Hamiltonian in terns of the ¢’s and ¢"s introduced in (2.5a,
b) is

2N—1
Nyt ’ '
Hy, = ) ?Z, [(C}Cj — L) (cimcin —13) + Lalejlem — C’jfj‘ﬂ)]
j=13---
- (3.61)
—+ 2X (ejle; — ,]'2’)(03{+101+1 — L3
e

Following RR, operators & and &' are introduced to diagonalize H approxi-
mately:

Bo= 2 ¢ ulile; = (81 (3.62)
J
with
u(j) = (2N) 7 [eos a(k) + (= 1) sin a(k)]. (3.63)

TABLE 1V

CoMPARISON OF THE RUIJGROK-RODRIGUEZ APPROXIMATE LONG-RANGE ORDER IN THE
GroUND STATE oF THE HI MobEL wiTH THE CORRESPONDING Exact
VALUES FOR VARIOUS VALUES OF A

A 0 Yo 1 2.5 5
Exg/N —0.485 —0.615 —0.829 —1.541 —2.771
E/N —0.750 —0.782 —0.887 —1.550 -2.775
px® RR 0.057 0.162 0.202 234 245

P exact 0.000 0.000 0.000 .210 240
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The function «(4) is chosen to minimize the expectation value of H) in the
Fermi sea of g-particles, The energy per spin is found to be

Ewn/N = [1/4(1 + 201 — [(1 + 2N)/7'|%(4), (3.64)
where u is the solution of the transcendental equation
uD () = 7/2(1 + 2)). (3.65)

X and D are again complete elliptical integrals. In Table IV we compare the
energy per spin and long-range order calculated for the RR approximate ground
state with the exact energy per spin and end-to-end order, for several values of \.
We see that although the RR procedure gives the asymptotically correct energy
as M — =, and a good approximation to the energy for A > 1, it may give the
order quite incorrectly. This emphasizes the danger of relying on a variational
approach for the long-range order, a result which is not surprising in view of
the fact that states with no long-range order can be constructed with energy /spin
above the ground state by only O(N ).
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APPENDIX A. TO DIAGONALIZE A GENERAL QUADRATIC FORM IN
FERMI OPERATORS

We wish to diagonalize the quadratic form

H = Y [e'dije; + LoleiBiest + hoel)l, (A-1)
iy

where the ¢’s and ¢;’s are Fermi annihilation and creation operators and H is
Hermitian. The Hermiticity of H requires that A be a Hermitian matrix, while
the anticommutation rules among the ¢/’s require that B be an antisymmetric
matrix. In the situations of interest here, one can always arrange that A and B
are real.

We try to find a linear transformation of the form

M = Z (gric: + hrict), (A-2a)
mh=2 (geic + hrici), (A-2b)

with the gy and Ay, real, which is canonical (i.e., the n’s and #,'’s should also
be Termi operators) and which gives for A the form

H = Z At e -+ constant. (A-3)
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If this is possible, then
(e, H) — Agme = 0. (A-4)

Substituting (A-2) in (A-1) and setting the cocfficients of each operator equal
to zero, we obtain a set of equations for the ¢y, and Ay, :

AA—gki = Z (gij il hlerj[); (;\-:).‘.l)
J
A;\.hkf = Z (gA-,-B]-,- — h[;jfl J,) (A—.’—)b)
J
These are simplified by introducing the linear combinations
Sre = i + hus (A-6a)
and
Yei = Gre — P {A-6h)

in terms of which the coupled equations arc

(A — B) = Al (A-Ta)
and
(A + B) = Ay {A-7Th)

in an obvious matrix notation. Either ¢, or ¢, can be eliminated from (A-7)
giving either

O(A — B)(A + B) = A s (A-82)
or
(A + B)(A — B) = A%, . (A-8h)

For Ax 5 0, either (A-8a) or (A-8b) is solved for ¢; or ¢ and the other vector
is then obtained from (A-7a) or (A-7b).

For A, = 0, both ¢; and «;, are determined by (A-8), or more simply by (A-7),
their relative sign being arbitrary. Changing the sign of v, but not of &,
interchanges g;; and A, , hence 7, and 7', and thus interchanges the definitions
of occupied and unoccupied for this zero-energy mode. That the choice of
definition is arbitrary is not surprising, because it has no effect on the energy.

Because A is symmetric and B is antisymmetric, (A 4+ B)" = A — B, w0
that both (A — B)(A + B) and (A 4+ B)(A — B) are symmetric and at
least positive semi-definite. Thus all the A;’s are real and it is possible to choose
all the ¢,’s and {¢’s to be real as well as orthogonal. If the é,’s are normalized
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vectors (Zmi; = 1), then the ¥;’s are also automatically normalized when
Ay # 0 or can be so chosen when A, = (. This ensures that

Z (geigrri + huihirs) = S (A-9a)
and

Z (gechiri — guoihes) = 0, (A-9b)

the necessary and sufficient conditions that the n’s and #,'’s be canonical
Fermi operators.

The constant in H can be determined by substituting (A-3) in (A-1) or, less
tediously, from the invariance of tr H under the canonical transformation
(A-2). From (A-1)

tr H =2"" 324, (A-10)
while from (A-3)
tr H = 2‘V~IZ A, 4+ 27 X constant. (A-11)
k
The constant is thus 34( > 4, — Y. A) and
; %
1

H = ; AP+ 5 ( Z A, — ; Ap). (A-12)

APPENDIX B. NONDEGENERACY OF THE GROUND STATE AND
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL

We prove two exaet theorems about the ground state and excitation spectrum
for a Heisenberg model with nearest neighbor interactions in one dimension.
The generalization to longer range interactions and higher-dimensional lattices
is indicated. A further generalization to particles of spin # Y and a discussion
of the ordering of excited state energy levels has been submitted for publication
in the Journal of Mathematical Physics by Lieb and Mattis.

TaeoREM 1. For a linear chain of spin 13’s with nearest neighbor antiferro-
magnetic Heigenberg interactions, the ground state is nondegenerate (hence
8 =0).

Proof. We first remark that this is a stronger theorem than that due to Mar-
shall (7), who proved that there is a singlet ground state, but who did not
exclude the possibility of there being several degenerate ground states, some
of which may not be singlets. We consider the Hamiltonian

H = > 88+ 1> 878, + 887, (B-1)
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where 7 and j are on the 4 and B sublattices respectively and the sums run over
all interacting pairs. It is convenient to make the canonical transformation
rotating all spins on the B sublattice (87, — —S%;, &, - —=8%;, §7;, — 5%,
so that instead of (B-1) we consider

H = > 8§58, — 150 8.8, + 857.8%;. (B-2)

Beceguse [S., H] = 0, let us consider only states having S, = 0 and show that
only one such state has the ground-state energy. A complete set of states in
the S, = 0 subspace is the set of configurations in which N/2 spins are up and

N/2 spins are down. We denote these states hy &, where 1 £ ¢ £ (117/\7\[) . Any
3]
eigenfunction ¥ of H' can be expanded as
v =2 Cd,, (B-3)

and Schriodinger’s equation in this representation reduces to a set of coupled
linear equations

(B~ e)Cu=15 ) Cu, (B-4)
w(w)
where
b, = (Z Szissj)q)n y

and the ®,.) are the set of configurations which connect to &, via the interac-
tion. Because the Hamiltonian is real, we may assume without loss of generality
that all ("s are real. Essential to the proof is the following lemma:

Lemma 1. For any ground state with S, = 0, all C,, = 0.

Proof. Suppose the contrary, i.e., for some ground state ¥, having the ground-
state energy E, ,

C,=0 for p=p, ", . (B-5a)
Tor these C’s (B-2) reduces to

0=13 2 Cuy, =, ", k. (B-5h)
e’ (w
Now in at least one of these equations, say the u,th, some of the C.’s # 0
(otherwise H would hreak into blocks with no matrix elements connecting
&, , -, P, with the other configurations, which is readily seen to be im-
possible); therefore (B-3b) implies that there are nonzero (’s of both signs.
Consider then the trial funetion ¥,':

v, = Z ‘ Cu I(I)u . <B'6)
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On the one hand, ¥y’ is not an eigenstate because

1€l =0 but >, |Cu

B (ep)

#= 0, (B-7)

so that, from the variational principle, we have for its energy

ES > E,. (B-8)
On the other hand, explicit evaluation gives
Ef = 260" = 1520 2 | Cul | Cu (B-9a)
[
and
Ey = ZE,‘C,,Q - /]ZZ Z C.Cy s (B-9b)
]
from which it follows that
Ly £ F,. (B-10)

The contradiction between (B-8) and (B-10) proves the lemma.

We now prove a lemma which is a stronger version of the lemma due to Peierls
and used by Marshall.

LeEMMa 2. For every ground state with S. = 0, all C’s have the same sign.

Proof. For ¥, to be a ground state, the equality must hold in (B-10). This
oceurs if, and only if, all the terms (",C,' occuring in (B-9b) are positive, (they
are all nonzero by lemma 1), i.e., the coefficients of all configurations connected
through the interaction with each other should have the same sign. But as we
have remarked, each configuration is ultimately connceted with every other
through repeated applications of the interaction, proving the lemma.

It is now obvious that there can be only one ground state with 8, = 0; other-
wise, the several states would all have all positive coefficients and so could not
be orthogonal to one another. Now Marshall has shown that af least one ground
state has S = 0. The existence of another ground state, whatever its multiplicity,
would imply that there is a second ground state with S, = 0, which we have
shown to he impossible. The entire proof is immediately generalizable to any
number of dimensions and any lattice which 15 decomposable into two equivalent
sublattices with antiferromagnetic Heisenberg interactions between spins on
different sublattices and ferromagnetic Heisenberg interactions between spins
on the same sublattice. Also, although Marshall’s proof, used above, requires
periodic boundary conditions to ensure translational invariance, this restriction
may also be dropped if the lattice has reflection symmetry about some plane
(so that there is a transformation mapping the A and B sublattices into each
other but leaving the Hamiltonian unchanged).
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Next we investigate the nature of the excitation spectrum and prove

TrareoreEM 2. There is an excited state for the cyclic linear chain with nearest
neighbor Heisenberg interactions having vanishingly small excitation energy
in the limit that the length of the chain becomes infinite.

Proof. Consider the state

¥, = exp (th D nS’)¥ = 0", . (B-11}

We first show that if k = (2x/N) X odd integer, ¥, is orthogonal to the ground
state. Consider the unitary operator U, that displaces all the spins by one site
cyclically:

U.S:U,7" =Sy,  Swp=S:. (B-12)
Because
[H,U.] =0,
if ¥, is an eigenstate of H, so is {",¥,. By the nondegeneracy of ¥,
U = 9. (B-13)
Thus
T | W) = (To] 0" T)
0 k 0 ) 01 (B_14)
= (T | U007 | W)
But
N
U007 = 0 exp (4hNS) exp (—ik D S%). (B-15)
1
Because ¥, is a singlet
N
exp (—tk ) S)% = 0. (B-16)
1
TFurthermore, in the most convenient representation
: Yy 0
S 1= < 0 _ ]/2/> (B-l?a)
so that
o 7oz -1 0
exp(thNS) = 0 -1 (B-17b)

in this or any other representation, providing

k= 2xm/N, m an odd integer. (B-18)
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Thus
(W [ i) = — (T | F,) = 0. (B-19)

Note that we have not proved the ¥,’s to be orthogonal among themselves.
The energy of ¥, is also readily calculated.

W, | H W) = (%] 0, HO" | ¥y). (B-20)
Using,
o' 85,05 = 8%, cos kn + S¥, sin kn, (B-21a)
080" = — 8%, sin kn + SY, cos kn, (B-21b)
and
ot §0f = 87, (B-21¢)
we find

N
(|6 HO" | W) = <‘I’0 H+ (cosk — 1) 25 (8% S + 8% %)
1
. (B-22)
+ sink 2 (8% 8 — 8% S%ar1) ‘I’o/-
1 !
Use has been made of (B-18) .in the term arising from Sy-S;. Consider the
terms on the right in (B-22), one by one, for k = 2r/N.

(i) (¥ | H | %) = Ey. (B-23a)

(ii) (cosk — 1) <\I/o i (8%, S+ 8 S%n) “I’o\>

2 2 N N
= [—}/é (%) - O(Af")] D | 8%, S e + S 8%t | W) (B-23D)
i 1

211' 217\7 —3
< (I\T) 5 + 0.

Z (an Sﬂn-{-l — Syn Sxfn-l-—l)

1

(i) sin £ Y/ (B-23¢)
= —isink (o] [2 nS% , H]| %) = 0.
Thus for &k = 2x/N,
& | H|¥) £ B+ (20°/N), (B-24)

and there is no energy gap.
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In two dimensions we consider a square lattice of N sites in the z-direction
and of M = O(N’) sites in the y-direction, where 0 < » < 1. The Hamiltonian
is agsumed cyelic in the sense that

SIL, M+l = Su, 1 (B-25a)
and
SN+1, m = Sl, m (B'26)
i.c., the lattice is wrapped on a torus. We take for the operator o,
N M )
0" = exp (zk > ns’,,,m>. (B-27)
n=1 m=1

This operator twists the direction of all spins with the same z-coordinate by the
same amount. ¥, is constructed and its orthogonality to the ground state is
proved precisely as in one dimension. Instead of (B-24), one now has

| H|¥) £ B+ (20/N'7™); (B-28)
so again there is no energy gap. Because the excitation energy of exact low-lying
states should not depend on the shape of the entire lattice, there should be no
energy gap for a lattice of N X N sites either. The particular state ¥ is un-
fortunately not sufficiently like an exact low-lying excited state to give this
result.

A similar extension to three dimensions is obvious.
APPENDIX C. CALCULATING G;(8) FOR THE XY MODEL
By definition
G = (Bid;). (C-1)
In the ground state
G;j = <‘I/0 | B,’Aj l ‘I’o> (C-2a)
while at finite temperature

“Gij = (Bidj)s

where (... ) denotes an average over the canonical ensemble at temperature
T = 1/k. Thus :

. S S ’ '

Gii(B) = ; Wit i ((m" — me) (™ + ) Ds

(C-3)
= ;lﬁm“#kj((ﬂﬂﬂk)ﬂ — (meni ).
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But
(mtm) = [exp(BA:) + 117, ete.,
so that
Gi(B) = — ;ll/k@kj tanh(}46A:) = — (¢"tanh(}48A)¢):;.  (C-4)

For the cyelic chain, the sum in (C-4) can be considerably simplified. First,
combining the summands for k and —k,

Gis(8) = —(2/N) 2 Ai* tanh(148As)
£>0 (0_5 )

-[cos k cos k(i — j) — v sinksink(i — 7))

Second, combining the summands for k£ and = — £,

Gu(8) = — (/M L DT S e ,
2 o<k /2 (C-6)

[cos k cos k(¢ — j) — v sin k sin k(7 — j)].

For N — « withi — j = r fixed,

G, = — |:—1 -I; 7 Loy + L;J Lr_l:', r odd

G, =0, r even, (C-7)

where
w2
L = (2/x) f kAT tanh(148As) cos kr. (C.8)
0

G, for the ground state is obtained by setting tanh(1384;) = 1.

APPENDIX D. DEPENDENCE OF SIN? Nk AND 4;2 ON k FOR A
CHAIN WITH FREE ENDS, XY MODEL

In this appendix we wish to show that for a chain with free ends, 4,” and
sin® Nk are smoothly varying functions of k& in the sense that the change in
either of them when k,, is replaced by k.4 1s O(1/N) (except when k.1 1s ko,
the bound state).

First consider sin® Nk,

A sin® Nkn = 15(c05 2 Nkp — €08 2 Nkny1)

D-1
14(cos 2v,,m — €08 2y, 4y 7). ( )
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But because v, is obviously a slowly varying function of m, from (2.67') or
(2.69), we have

A sin® Nk, = = sin 2v,, 7 Av,, = O(1/N). (D-2)
Second, consider A, . Letting

Xxm = sin 2(N 4+ 1)k,/sin 2k, ,

we have
A, = AL . — AL = 4N 4+ 1 — x) 7 Axm (D-3)
providing .
Axw/(N + 1 — xn) < L. (D-4)
Now,as N — =,
Xm = Sm[(j:z;;;)r /;)Vm]r = COS vm T — COb 2;'}” sin v, T (D-5)
and
Axm = —[8ih vpw + cot(Zmr/N) cos vurlrdva,
— S vy Acot(2mx/N). (D-6)
For 14N — m = O(N), these relations give
x» = 0(1) and Ay, = 0(1/N), (D-7)
so that (D-4) is satisfied and (D-3) gives
A}, = O(1/N%). (D-8)
For 13N — m = m’ = o(N) # 0, one must he more careful. Then
AAL, = 48x,/(N + 1 = xas)(N 4+ 1 = x). (D-9)

In this limit
Xm = €08 vuw + (N/2m'm) sin v,mr = (N/2m'r) sin v + o(N). (D-10)
Thus
Axp = (N/2x) [sin vpr/m' (m" — 1}] 4+ o(N), (D-11)
go that

AA; = O(1/N). (D-12)
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APPENDIX E. 6;; FOR THE XY MODEL WITH FREE ENDS
In this appendix we derive simple relations between G%; for the XY model
with free ends and G7_; for the cyelic XY model, valid except when 7 and j are
near opposite ends.
In general

G = — ;‘«/’kid)kj- (E-1)

For free ends, the sum on k is over modes of Type I and Type II. If ¢ is odd
i = 0 so that only Type I modes contribute; but for Type I modes, ¢r; = 0
unless j is even. Thus
Gli= — X yhior; = 2 A2 sin [(N— 7 + 1] sin jk
¥ g (E-2a)
for ¢ odd, j even;

similarly,

A Gi= D Al sindksin (N + 1 — j)k] for feven,jodd; (E-2b)

#II

and finally,

£

G1;, = 0 for ¢and jboth even or both odd. (E-2¢)
Furthermore, f; © ky is equivalent to y — —v, so that
Gli(y) = Gl =), (E-3a)
and for the cyclic chain we have a similar relation
Tie J('Y) G?—z(_')’) (E'Sb)
Therefore we need consider only the case ¢ odd and j even.
Defining
r=1—3 (E-4a)
s =1+ 7, (E-4b)

we obtain
14 > Alcos (N +1 — )k —cos (N + 1 —1)k], (E-5)
A
and we have two sums on the right of identical structure. Suppose first that
s = o(N). Then using (2.66) and neglecting terms of O(1/N) we find
cos (N + 1 — s)kn? = (—1) cos {v,! —[(1 — s)m/N[tw. (BE-6)
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From (2.67’) it follows immediately that

15 ZIA,fak cos (N +1-8)k= -G (E-7)
k
so that
Gl = G_; — G%y; for iodd,jeven,|i —j| = o(N), and i+ j = o(N).
(E-8a)

From (E-3a, b) we have also
Ghi= G5y — Goyp for deven,jodd,|i—j| = o(N) and 747 = o(N).
(E-8b)

If both ¢ and j are far from the ends but not far from each other, we suppose
r = o(N) but s = ¢N where ¢ = O(1). Then, using (2.66) and neglecting
terms of O(1/N), we find

éZIAka cos(N +1 — )k
<k

= %Z [cos(2 — o)mr + cos omm| AL, cos ((1 — )y —

) N) r (19)

!

ti

> [sin(2 — ¢)mr — sin oma| A}, sin ((1 — )y — %) .

The terms in brackets in each sum are rapidly oscillating functions of m while
their coefficients are slowly changing functions of m, as N — . The sums are
therefore O(1/N) and can be neglected. Thus

G =Gi_;,iodd and jeven,|i—j|=o(N),i+ j=O0N) (E-10)
The same result holds for ¢ even and j odd.

APPENDIX F. ALIGNMENT OF SPINS IN SUCCESSIVE IMPURITY
PAIRS, HI MODEL

In this appendix we show that the spins of successive impurity pairs in the
HI model are aligned parallel or antiparallel, depending on whether the number
of elementary excitations (excluding the trivial & = 0 “excitation”) is respec-
tively odd or even. We shall consider only the special case that the impurity
pairs are at opposite ends of a finite chain, but the generalization to any number
of impurity pairs in any positions is obvious.

Although neither of the states Wo, and ¥,_ defined by (3.52d, e), are eigenstates
of 8% or Sy, we wish to show that these two states involve only configurations
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in ‘which the first two spins are antiparallel to the last two. Because the first
two spins (and also the last two) are themselves parallel, it is sufficient to show
that

ASZ(]AS:N\I/():E = — ‘,Ix4‘I/Ui . (F-l)
More generally, we shall show that
SoSTwmty ol Yo = — (=D "m0l W, (F-2)

vhere k; # 0 for all 4.
Taking into account (3.41) and (3.43), we have

SZOSZNﬂ/t] T ﬂ/I,,‘I’oi = —-/1,{1((10* + llo,)(afNJr + GN) 77111 ce e "7/1,,‘1’0& ,

= — Ly exp(i790) (o' + co) (ex' + ex)nb, ... 1 ¥or,

Ly ; t ooy, f 1 (F-3)
= — 14 exp(¢md0) (nome" — mo'mo)mi, . . . 7%, Yo
= £l exp(énd)nl, . . . 0}, Yoy,
N
where 91 = Z c;ie; . Now it is easily seen that
0
exp(ix9) m! exp(—iwd) = —u. (F-4)
Therefore
SoSnk, b Wor = = (—=1)"Link ... ql, exp(in9l) Wy . (F-5)

The result that the spin alignment of successive impurities goes from parallel
to antiparallel or vice versa with each additional excitation is now obvious from
the factor (—1)".

To determine the alignment in the states ¥, we must evaluate exp(¢791)¥,, .
First observe from (F-4) that

e exp(erd)Wo_ = —exp(ird)m¥o_ = 0, for all £, (F-6)
so that
exp(imd)V,_ = exp(ia)¥o_, (I-7)
where « is a phase angle to be determined. But
exp(2ir9) = 1 (F-8)
so that

exp(ia) = +1. (F-9)
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Thus ¥,_ involves states either with only even numbers of “c-particles” or only
odd numbers of ¢c-particles. To find out which is the case, consider the expansion
of ¥, in states with definite sets of ¢-particles:

Vo = [fo + 2 fi @ + 2 fo (@elet + -, (F-10)

where &, is the c-particle vacuum. Then, using the transformation (A-2), the
defining equations for ¥,_ reduce to

{[; g S (D] + [fo + IZ ga(fo (1) — G ]et 4+ -+ 1@ =0,  (F-11)

from which we have a set of coupled equations for fo , fi , f2 , ete.:
IZQA-lfIV([) =0, (F-11a)
o+ ‘ngm_f_f(li) — f (D) = 0, all 4 etc.---,  (F-11b)
where

Gri = dri + i - (F-12)

Similarly, from the defining equations for ¥, , we obtain a set of
coupled equations for the expansion coefficients f,*, i, f™, etc.:

Z mufi T (D) =0, (F-13a)
!
ft + lenm[fﬁuz') ~ £TGD] =0, all 4, ete. -+,  (F-13b)

where
Wi = Gk = i + Y for k=0,
= ¢pi — Yer for Lk =0. (F-14)

A study of det g and det m reveals that, in general, m is singular and g is not.
Thus

fi =fi =f =---=0 (F-15)
and

f0+ = f2+ = f4+ = =0, (F-16)
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from which we conclude that

exp(ird ¥y = £ ¥y, (F-17)
and
S8 wnl, o mhWor = —(=1)"Vimd, - 0l Tor . (F-18)
Recrivep: July 27, 1961
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