
ANNALS OF PHYSICS: 16, 407-466 (1961) 

Two Soluble Models of an Antiferromagnetic Chain 

ELLIOTT LIER, THEODORE SCHULTZ, .m~ D.INIEL MATTE 

Thomas J. Watson Research Center, Iyorktown, AY’ew I7ark 

Two genuinely quantum mechanical models for an antiferromagnetic linear 
chain with nearest neighbor interactions are constructed and solved exactly, 
in the sense that the ground stat,e, all the elementary excitations and the free 
energy are found. A general formalism for calculating the instantaneous corre- 
lation between any two spins is developed and applied to the investigation of 
short- and long-range order. Both models show nonvanishing long-range 
order in the ground state for a range of values of a certain parameter X which 
is analogous t,o an anisotropy parameter in the Heisenberg model. A detailed 
comparison with the Heisenberg model suggests t,hat the latter has no long- 
range order in the isotropic case but finite long-range order for any finite 
amount of anisotropy. The unreliability of variational methods for determin- 
ing long-range order is emphasized. It is also shown that for spin r4 systems 
having rat,her general isotropic Heisenberg interactions favoring an antiferro- 
magnetic ordering, t,he ground state is nondegenerate and there is no energy 
gap above the ground st,at)e in the energy spectrum of t,he total system. 

I. INTRODUCTIOiX 

For an infinite chain of spins interact,ing with nearest neighbors via a Heisen- 
berg interaction, the exact energy eigenstates were found, in principle, many 
years ago by Bethe (1) and the ground-state energy was fouled somewhat later 
by Hulthen (2). The problem has nevertheless occasioned a persistent theoretical 
interest. This is because the exact method of Bethe does not seem capable of 
generalization t’o the more interesting cases of two and three dimensions. The aim 
has generally been t,o con&ruct, approximate methods that give accurate results 
in one dimension, as determined by a comparison with the known exact results, 
but which can be generalized to two or three dimensions with some degree of 
confidence and simplicit’y. I’nfort8unately, the crucial test for any approximate 
method is how well it describes the long-range order; but it is precisely this test 
which has been impossible, because the long-range order has never been calcu- 
lated exactly by t,he method of Bethe. 

There is, in fact, still considerable doubt about t,he nature of the long-range 
order in one or more dimensions. On t#he one hand, spin wave met)hods used by 
ilnderson (3) and Kubo (4) have predicted long-range order in two or three 
dimensions, although Anderson (but not Kubo) predicts no long-range order in 
one dimension. Variational methods of Kasteleijn (6) generalized to two and 
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three dimensions by Taketa and Kakamura (h’), and of Marshall (7’), all related 
to a variational method of Hulth6n (2)) indicate no long-range order in one, two, 
and three dimensions for the completely isotropic interaction. On the other 
hand, they all predict the onset of long-range order for a certain critical amount 
of anisotropy-the same amount at which a kink is predict’ed for the short,-range 
order. Exact calculations by Orbach (8) on the anisotropic case, generalizing the 
method of Bethe, show the kink to be spurious for the one-dimensional case, 
hut throw no further light on the long-range order. Walker (9) has observed that 
the ground-state energy calculated by Orbach has a power series expansion 
around the limit,ing case of the completely anisotropic interaction (Ising limit) 
which seems to give a good representation of the ground-state energy even for 
the isotropic case, although he observes that a similar expansion for the long- 
range order suggest’s the long-range order might vanish when the anisotropy 
falls below a certain critical value. Ruijgrok and Rodriguez (10) have developed 
a variational method for the one-dimensional case which gives a good value for 
t,he ground-state energy, significantly better than previous variational methods, 
and which also predicts finite long-range order. Davis (11) has performed a 
perturbation theoretic calculation which indicates, to the order to which it has 
been carried, a long-range order in any number of dimensions even for the iso- 
tropic case. 

There are two questions raised by all these investigations. First, can a purely 
isotropic Heisenberg interact#ion between nearest neighbors produce long-range 
order in any number of dimensions? Second, if such an ordering tendency exists 
in, say, two or Ohree dimensions, will it also exist, in only one dimension, or would 
the absence of order in one dimension prove nothing at all about order in two or 
three dimensions? 

The purpose of the present paper is to gain further insight into t,he effectIs of 
anisotropy in one dimension. Two models will be constructed which can be 
solved exact,ly in considerable detail and which bear a reasonably close re- 
semblance to the Heisenberg model. The investigation of t’he first of t#hese 
models strongly suggests that the isotropic Heisenberg model has no long-range 
order but that such order exists for any finite amount, of anisotropy. Both models 
emphasize the subtle nature of long-range order and the insufficiency of vari- 
ational methods as a reliable approach to this question. The question of the 
relation of t#hese results t,o two- and three-dimensional (aascs is left complet’ely 
open. 

h Section II we consider the first’ of these models, the “XY model.” It is 
shown that t’he Hamiltonian can be expressed as a quadratic form in creation and 
anrlihilation operators for fermions, and this quadratic form ran be diagonalized, 
thereby giving the complete set of stat,es, excit,ation energies, and partition sum. 
In terms of these operators, general expressions for the order het’ween any two 
spins are derived involving a kind of Green function, Gil , which can be explicitly 
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evaluated. The general relation between the order and C:ij is equally valid for 
the Heisenherg model, but Gif itself is t.hrn not explicitly calculable. The short-, 
intermediate-, and long-range order are calculated for various situations, and it 
is shown that only for the isotropic case does the long-range order vanish. The 
model is compared with the Heisenberg model for one special case from which 
reasonable surmises may be made about the latter. 

In Section III me consider the “Hcisenherg-1sing model” in a similar way. 
Although the excited states and statistical mechanics are considerably more 
complicat,ed, the conclusions about, long-range order are much the same. An 
application of the method of Ruijgrok and Rodriguez to this model emphasizes 
the care with which one must interpret the resldts of variational calculations 
wit#h regard to the ground-stat,t energy. 

II. THE Sk’ MODEL 

A. FORMUL.~TION 

The first model consists of N spin 3$‘s (N even) arranged in a row and having 
only nearest neighbor interactions. It is 

H, = C[(l + -y)S", S";+* + (1 - r)AY, P,+11, (2.1) 
z 

where y is a parameter characterizing the degree of anisotropy in the sy-plane. 
rsZi , S”, and S’i may be represented by the usual Pauli spin matrices ( fi = 1) : 

Because the Hamilt,onian only involves the ;I‘- and y- components of t’hc spin 
operators, we ca,ll this model the XI’ model. 

The ends of the chain may be t#reated in at least, two different but physically 
reasonable ways : 

(i) as free ends, in which case the range of the summation index is 
1 5 i 5 N- 1, a situation t,hat is convenient for discussing the long-range order; 

(ii) as a cyclic chain, in which case 1 S i 5 N and NrK+l = S”1 , SyN+l = 8’1 . 
This problem, or a slight ‘variation of it, (see below), is most caonvenient for 
for calculating interesting physical quantities other than t)he long-range order. 

The XY model is exactly soluble for all values hf y, although we shall consider 
only the range - 1 5 y 5 I. lkthermorc, it is st,rikingly similar to the gener- 
alized Heiscnberg model described by the Hamiltonian 

H, = ?[(I + y)Sri Szi+l + (1 - -y)(XYi Syi+l + Szi ,S"i+l)]. (2.1') 

As y + 1 both models tend to the Ising model in which the s-component*s of 
spin are completely order and the y- and x-components are complet8ely dis- 
ordered. For Iy! # 1 both models are genuinely quant)um mechanical because 
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different components of Si appearing in H do not commute. The effect, of the 
“transverse terms” (t.h ose multiplied by 1 - y in either Hamiltonian) in both 
models is to oppose the ordering of t)he x-components but t,o favor the ordering 
of the y-component,s (and, in the Heisenberg model, of the z-components, too). 
Hitherto, it has not been clear for the Heisenberg model just how strong these 
t’wo effects are: for any particular posit’ive value of y, do the transverse terms 
either establish any long-range order among the u- and z-components or destroy 
the long-range order of the z-components (which would imply absence of long- 
range order for the 2~- and z-components as well)? For the XY model, as we shall 
see, the transverse t’erms do neither unt,il t’he limiting case y = 0, when they 
succeed in destroying the order of the x-components. This result is highly sug- 
gestive for the Heisenberg model, a subject we discuss in det’ail in Se&ion II F. 

To solve the XY model, we first introduce the raising and lowering operators 

ai+ = S”i + if?“; and ai = Sx; - iS"i (2.2a) 

in terms of which the Pauli spin operators are 

S”i = (ait + az)/2; Szli = (ai+ - ai)/2i; X”i = ai+ai - $4 (2.2b) 

and the Hamiltonian is 

H, = $$x[(aitai+l + yaitai+lt) + h.c.1. (2.3) 

These operators partly resemble Fermi operators in that, 

(a;, a,t} = 1; ai2 = (a>)’ = 0; (2.4a) 

and they partly resemble Bose operators in that 

[a>, aj] = [a:, a;] = [a; , Uj] = 0, i # j. (2.4b) 

It is therefore not possible to diagonalize the yuadrat,ic form appearing in (2.3) 
directly with a canonical transformation; principal axis transformations of the 
a’s and at’s do not preserve this mixed set of canonical rules. However, it is 
possible to transform t,o a new set of variables that are strictly Fermi operators 
and in terms of which the Hamilt,onian is just as simple.’ Let 

1 This transformation from a set of Pauli spin operators t,o a set, of fermion creation and 
annihilation operators dates back at least as far as the classical paper on second quantiza- 
tion of fermion fields by Jordan and Wigner (12). It is described in that context, for example, 
by Kramers (12). It was used as the basis for approximate calculations of the ground-state 
energy of the isotropic Heisenberg model independently by Meyer (12), and by Rodriguez 
(12). The more sophisticated variational calculation of an approximate ground-state energy 
and long-range order by Ruijgrok and Rodriguez (f0) is also based on this transformation. A 
somewhat different procedure, based on the same idea of converting nearest neighbor pairs 
of “paulions” to nearest neighbor pairs of fermions, was applied to precisely H,=o by Nambu 
(fd). The spirit. of our paper is, however, entirely different from t,he work of the previous 
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and 

1-l 

Ci’ 3 aI+ t??rp --ai = 1 UJ+Uj . I 
Then 

cLtci = af+ai , 

(2.5a) 

(2.5b) 

(2.6) 

so that the inverse transformation is simply 
L-1 

ai+ = e~p -7ri c 
1 

(2.7a) 

ULt = Cit CSP [iTi 8 CjtCl]. 

The c’s and c+‘s arc Fermi operators: 

(2.7b) 

{C;,Cj’} = 6fj, 

{Ci ,  Cj} = (Cit, Cj+) = 0. 

Because Cj”Cj is an occupation number having values 0 or 1, 

esp(nicJtc,) = eXp( -TiC,+Cj). 

Furthermore, for i = 1, 2, . . , N - 1, 

t  a, aL+I = ci+ci+l 

and 

(2.8a) 

(2.Sb) 

(29) 

(2.10a) 

u,ta,.,.!+ = cz+c,+jt, 

so that, for the case of free ends, the Hamiltonian is 

N-l 

(2.10b) 

H, = j,$ C [(C,tCi+l + yC,tCf+l) $ h.c.1. 
1 

(2.11) 

For the cyclic chain, we need also 

and 

(2.12a) 

aNtalt = - cNtcl+ cxp (irx) # cNtclt, (2.12b) 

authors, and the results are rather more extensive. Because the cases of particular interest 
(y # 0, free ends) contain complications not previously encountered, we present here a de- 
tailed exposition of the mathematical tricks needed for the ultimate solution. 
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32 c $ Cj+Cj = $J (S'j + $4). 
1 

The Hamiltonian is 

H, = $5 2 [(c:c~+~ + yci’c~+,) + h.c. 
1 

- M[(cN+cl + YCN+Cl+) + h.c.] (exp (i&) + lj. 

(2.13) 

(2.11’) 

That is, in terms of the Fermi operat#ors c, and ci+, H, no longer has a simple 
cyclic structure. For large systems we may neglect the correction term propor- 
tional to exp (iaX) + 1 in which case we call it the “c-cyclic” problem (the 
original problem being the “a-cyclic” problem). Actually it, is not diflicult to 
solve the a-cyclic problem exactly, but we shall first consider t’he simpler c-cyclic 
one. 

In all cases, the Hamiltonian is a simple quadraCe form in Fermi operat’ors 
and can be exactly diagonalized. The particular simplicity of H, depends on the 
fact that the spins can be arranged in a definite order, that interact,ions occur 
only between neighboring spins in t,his ordering, and that the x-components of 
spin do not enter. If the interactions were t)o extend t,o nth nearest neighbors, 
H, would involve a polynomial of order 21~ in t#he c’s In two-dimensional models, 
it can be readily seen t’hat any ordering and nontrivial scheme of interactions 
must lead to a Hamiltonian involving a polynomial roughly of order 2N for a 
system of N2 spins. Thus we are making maximum use of the nearest neighbor 
charact,er of t,he interactions and the one-dimensionalit,y of t,he system. 

B. GROUND-STATE EKERGY, ELEMENTARY EXCITATIONS, ,~ND FREE ENEUY 

The diagonalizat8ion of quadrat,ic forms such as occur in (2.11) or (2.11’) 
is discussed in Appendix A. The Hamilt80nian is reduced to the diagonal form 

H, = c hkqk+qk + co&ant (2.14) 
k 

by t#he linear transformation 

qk+ = c ‘hi + hi C,+ + +ki - $‘ki ci, 

2 
L 

% 2 

(2.15a) 

(2.15b) 

where & and 4, , considered as N-component vectors? are real solutions to 
certain mat,rix equations. For the c-cyclic problem, the relevant matrices 
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1 0 1 
0 . . . A=; / 

-1 o.::. i J 
I 1 0 1 

11 1 OJ 

(2.IGa) 

I- 
B=;y 

(A- B)(A+B) = 

/w + r”> 0 1 - y? 

0 2(1+rZ) 0 

1 - y2 0 2( 1 + y4) 

1 

j:.: 

0 I 4 

-1 0 
1 

0 . . . I 
. . . i I ’ 

(2.16b) 

0 . 
. . 

-1 0 1 
1 -1 OJ 

1 - y2 0 

- 72 1 - q 

0 1-q 0 

I. O l-yy2 0 Xl + y?) 0 1 - y2 

( l-yy” l-y” 0 2(1+ $) 0 

i O 1 - y2 l-Ty? 0 2(1 + y’) 1 

. (2.1Gc) 

The vectors are the real solutions of the eigenvalue equation 

+,(A - B)(A + B) = iI&k. 

A complete set of solutions is 

(2/N)$ sin Xj 
4kj = (2,N)s 

cos lyj 

(2.17) 

(2.183) 

belonging to the set of eigenvalues 

A~c2 = 1 - ( 1 - 7’) Sill2 Ii, (2.18b) 
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where 

k = 2m/‘N, ?u = - ,J,iN, . . . , 0, 1, ... , J:jN - 1. (2.18~) 

In (2.18a) we take t’he upper solut’ion for C#Q~ if 1; > 0, the lower solution if 

k S 0. For hk # 0, (A - 7~) gives 

while if A, = 0 

*kj = A,’ (COS 12 c&j + y sin X; &j), (2.18d) 

!hi = f 4kj . (2.18d’) 

Ali = 0 is an eigenvalue only if y = 0 and N/J is an int’eger. To simplify the 
discussion, let us assume that, N/-l is not an integer and therefore t.hat & # 0. 

The sign of As being arbitrary, we shall take it’ always to be positive. This 
corresponds t,o a particle-hole picture for the q-particles, where the ground state 
has no elementary fermions and t,he elementary fermion excitations bot,h above 
and below t,he Fermi surface have posit,ive energies.’ A, is shown in Fig. 1 for 
the isotropic and extreme anisotropic (Ising) cases and for one intermediate 
case. Remark that only for the isotropic case is there no energy gap. 

The ground state qo is t’he st’ate wit,h no elementary excit’ations: 

~9~ = 0, all X-. 

The ground-state energy, according to (A-12) is 

En = - J$ c A, . 
k 

(2.19) 

(2.20) 

In the limit’ N + x, t’he sum can be replaced by an integral giving 

j&‘-V = -(XT) /‘d/c [1 - (1 -- yp) sin’ /c]’ 
-r (2.21) 

= -(l/a)&(l - y”), 

where ~(16~) is one of t,he complete ellipt,ic integrals (13). Eo/N goes smoothly 
between the limiting cases 

and 

&IN = - l/r, isotropic case, y = 0, (2.2%) 

Eo/N = - 95, Ising case, 7 = 1. j2.22b) 

* The “Fermi surface” consists of the points k = &x/2. The alternate picture in which 
all excitations are “particles” (in the isotropic case, a “particle” is an up spin) would be ob- 
tained by letting A* have the sign of cos k. The Fermi sea would then be defined by ) k I> 
7r/2. The particle-hole picture is preferred because it somewhat simplifies the algebra. 
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FIG. 1. Energy of elementary excitations in Sl’model as funct.ion of wave vector for three 
different degrees of anisot,ropy. 

At this point let us remark on the simplification resulting from the considera- 
tion of the c-cyclic rather t,han the a-cyclic problem. According to (2.11’)) the 
Hamiltonian for the u-cyclic problem is complicated by the presence of the 
term 

- lA[(cN+cI + ycNtcIt) + h.c.] (exp (i?r’X) + 1). 

Although X is not invariant’ under the transformation (2.15), its evenness or 
oddness is invariant, so that exp (in%) is invariant. Now in the ground state 
of the c-cyclic problem, and in all stat,es with an even number of excitations, 
the number of c-particles is odd (assuming N/4 is not an integer, the k’s are 
occupied symmetrically around k = 0, except that Ic = r but not k = --7r is 
occupied). Therefore, the additional term gives zero acting on such states and 
they remain eigenstates of t’he a-cyclic problem. States with an odd number of 
excitations, on the other hand, have x even, giving t’he additional term 

- $$(c,+cl + Y~N+~I + h.c.) 

in t,he Hamiltonian. This has the effect. of making changes of order l/N in the 
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ii’s, +k’s, and +‘s, all of which can be exact,ly calculated and are negligible in 
the calculation of real physical quantit#ies. Strict’ly speaking bhough, the ele- 
mentary excit)ations are not independent for the a-cyclic problem because of 
t’his dependence 011 the evenness or oddness of the total number of excitations 
present, and this is why we have preferred t,o consider the c-cyclic problem. 

The free energy is the grand potential of such a system of nonint,eracting 
fermions with zero chemical potential (p = l/kT): 

F,/N= --i,;l’[b2+g~“diIneorll ($I&)]. (2.23) 

In the isotropic limit we obtain 

Fisotroy ./N = -LT[lnZ+~~~“dLlncosh(>$/3cos~)]; (2:2ia) 

while in the Ising limit, we obtain the classical result, 

FI,i,g/N = - liT(l11 2 + In cash &/3). (2.24b) 

Neither case exhibit,s any singular behavior as a function of temperat’ure, a 
result to be expected in view of the one-dimensional nature of t,he model. 

C. SHORT- AND LONG-&A-GE ORDER IN THE GROUND STATE 

The long-range order for the Heisrnberg model is often defined in terms of 
two sublat#tices (in the case of t’he linear chain, the sublattices of all even sites 
and of all odd sites). It is t,aken to be t#he preponderance of spins up t,o spins 
down on one of the sublattices, or of spins up on one sublatt,ice to spins up on 
the other. Because of the invariance of the Hamiltonian under translations 
by any number of sites and also under 180” rot’ations about t,he P-, y-, and Z- 
axes in spin space, it, is clear that for a nondegenerate stationary state such a 
definition of long-range order must give zero, even if by any reasonable defin&ion 
the stat,e were ordered. That) the ground state is nondegenerate is shown in 
Appendix B. The completely ferromagnetic states can have long-range order 
by this definition only because they arc so highly degenerate. The definit,ion 
has nevertheless been useful because the approximate states considered have 
not always had t’he full symmetry of t,he Hamiltonian. A much better measure 
of the long-range order is the quantity 

Plm = (% I sz. sm 1 a). (2.25) 

This is the cont8raction at t = 0, of t,he time-dependent spin correlation t’ensor 

@h(t) = (%I / Sz(O)S?n(t) I %) (2.26) 

which enters in the calculation of any process, such as neutron scattering, con- 
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ceived to measure the order directly. Because of the nature of the model, we 
wish to calculate separately t,he various contributions to this order parameter: 

d 
PZm = (PO / SzzSrm 1 ‘ku) = !~;(% I (uli + aA(um+ + a,,) 1 \ko), (227a) 
!I 

Pzm = (s 1 PzPn, 1 Jr,) = fx;(so j h+ - u~)(,u,,+ - CL) / s>, (2.27b) 

p;, zz OPO / szlszw, / ‘k(l) = @PO j (Ul+UL - f,i) (u,+u,” - $5) / 90). (2.27c) 

We shall derive general expressions which reduce the calculation of these con- 
tribut,ions to quadratures. 

Consider pTr, in terms of t,he c’s and et’s: 

p;, = ,l.i / 
\ 

~,,~(C,++cijexp(ni~cifci)ic~++c~)~~~ (3,,s) 

= !,( \k (cl+ - cl) exp ai C c-+c, (c + + c ) \k0 0: ( II1 2 ‘) ??L m ( >. -L 

Kow observe that 

exp (&+cJ = (tit + ci)(c;I - CL); (3.29ii) 

a result that is readily verified in the represent’at’ion diagonalizing citci . Defining 

di = tit + ci and Bi = ci+ - ci) (2.30) 

we have 

PL = ?4(% 1 Bz-4 Lfl~Zfl . . . -1 vt-1~.,-1;1 “L 1 %). 

In a similar way, using 

(2.31a) 

exp (TiC~+C~) = - (C; - Cj)(C; + Cl), (2.29b) 

we have 

p:m = ! - l)“-“>;(% 1 dzRl+lA If1 . . . BP744 ,-1& ] 4%). (Sib) 

Finally, because 

c&+ai - $5 = - +$(a,+ + uJ(a,+ - a;) = - ,$i(Ci+ + Ci)(C,+ - Ci), (2.29(l) 

we have 

PL = ‘/$(a3 1 r-l1BU4,B, / %). (2.31c) 

To evaluate expect,ation values such as appear in (2.31a, b, c), we make use 
of t’he well-known Wick Theorem3 in quantum field t,heory, which allows us t,o 
express the vacuum expect.ation value of a product of operat,ors, all of which 

3 See Wick (14) or subsequent books on quantum field theory. 
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obey anticommut)ation rules, in t,erms of so-called contractions of pairs, i.e., 
vacuum expectation values of products of just two operators. Explicitly, if 
01) .‘. ,02,, are a set, of such operators, then 

@Jo I (31 . . . ozn I \ko) = a,, pzings( - 1)“’ .,gai, (contraction of the pair), 

where the contraction (0i0j) is defined to be (\kc / OiOi 1 \EO), and where p’ is 
the signature of the permut’ation, for a given pairing, necessary to bring operators 
of the same pair next to one another from t#he original order. 

A particular simplification occurs in evaluating (2.3la, b, c) because certain 
kinds of contractions vanish. In fact, the basic contractions that arise are readily 
calculated : 

(A j.4 j) = F 4ki@kj = 6ij y (2.32a) 

(BiBJ> = - c ‘iki’hkj = --6ij, (2.3210) 

(B,Ai) = -(AjBi) = - J$ $‘k&kj E Gij a (2.32~) 

Because (AJi) and (BiB,) never occur, only pairings in which all contractions 
are of the type (B,;Aj) contribut’e in (2.31a, b, c). 

The most straightforward pairing contributing to ,o;, is 

All other pairings can be obtained from this one by permuting the A’s among 
themselves with t’he B’s fixed. Because the number of crossings of B’s by A’,s 
is then always even, t’he sign associated with a given permutation is ( - 1)’ . 
where p’ is the signature of the permutation of the ,4’s. Thus 

P& = 3; F ( - 1) p’Gz.~(z+l~ - . . G~--~,Iw 

G z,z+l Gz.z+.' . . . Gzm 
Cf& i 

Gm-l,z+l . . . G,:L, ’ 

Similarly, because A lBl+l = - Bi+lA 1 , et’c. 

(2.33a) 

G 2+1,1 GZ+I.Z+I . . . G 1+1,m-1 

py, = f’4 ; (2.3313) 
Gmz ... Gw-I * 

Thus, both p$,, and pym are particular subdeterminants of det G. pi, is immediately 
calculable from (2.31~) and Wick’s theorem. For 1 < HZ, 

PL = $L( (AzBz)(&Bm) - (Az&)(AnBz)) 

= !,j(GzzG,, - GmzGzm). 
(2.33c j 
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Let us now consider the det,ailed properties of the Grj’s. First observe t,hat 
Gij , considered as an element of an N X N mat’rix is just 

Gij = -(4JT+)ij 7 (2.34) 

where + and (I! are the matrices &i and $q.i . It is immediately obviolls that, 
G is unitary because $ and 4 are unitary: 

GG = t!&+‘tj = 4’4 = 1. ( 2.35) 

The dekrminant of G is thus fl. The actual sign, which will be needed in t’he 
following section, is readily calculated: 

det, G = det, (-4”+) = ( -1)X dct 4’4. 

But from (A-?a) 

where 

Thus, using det + = f 1, we obtain 

det G = (-1)” dct A-’ det> (A - B). 

Sow det A-’ > 0, because hk > 0 for all k. Thus 

det G = (-l)‘\‘det (A - B)/ / det (A - B) / . (2.36) 

,1 second important’ property of (;lij is that, for the cyclic problem, 

Gzj = Gi-, E G, , (2.X) 

a result which can be proved either from the invariance propert’ies of t’hc cyclic 
Hamiltonian or from direct evaluat,ion of the sums in (2.3%). 

To calculate G’, explicitSly me cousider the limit, N + 3~ with r fixed. It is 
shown in Appendix C that 

G, = -[%il + Y&+I + GC.1 - r)L,-11, r odd, 

and 

G, = 0, r even, (2.38a) 

where 

L,(r) = (2/a) br’L dk cos la- [I - (1 - y2) sin’k]-’ = L-,(y). (3.38b) 

It is thus evident t’hat y + -y is equivalent) to r + -r. In the isotropic limit 
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(7 = oj, (x38), reduces to 

G, = ( _ 1 ji(r+1)2/Tr, 

and 

G, = 0, r even. 

In t,he extreme anisotropic limit (y = 1) 

r odd, 

(2.39a) 

G-1 = -1, 
and 

G, = 0, r# -1. (2.39b) 

In the general anisotropic case, G, is not so simply evaluat,ed. The special cases 
of G1 and Gdl (all t’hat are needed for the nearest neighbor order in t,he cyclic 
chain) can be expressed in terms of the complete elliptic integrals (13) SC(~*) 
and d>(k”) 

G&l = -(2/7r)[x(l - 7”) - (1 ztt)~(l - r’)]. (2.40) 

The asymptotic behavior of G, for r + CC, crucial for t,he long-range order, can 
be obtained by repeat,ed integrat’ions by parts. Assuming y # 0 and r even, 
one finds for L, 

L,(y) = f [f’““(O) - (-1)9’““(~l:!)] 

-- k6 
[ 
f”“‘(0) - (-l)“‘f”“‘(7r/2) + d”’ dcf’““(k) coskrl , 

f(kj = (2/7r)[l - (1 - ye) sin’k]-‘. 

Thus for sufhcienbly large odd r 

Gr - -; [f”“‘(O) + 27( -1) "r-1)f(111)(7r/2)] + O(l/r6) 

or 

j Gr j < S/r* for 1 r 1 > r. , 

A 

(2&N)* 

(2.42) 

where 

where A and ro are constants depending on y but not on r. For general values 
of r, the following series for L, (r even) is convenient: 

4 This behavior is found because f'(0) = f’(r/2) = 0, which is true only if y # 0. 
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where 

and 

x = (1 - r)l(l +r> 

gz = p1 21 
0 1 Iz”, (7ip. 

(2.43b) 

( 2.-m) 

This series is readily obt,ained using the relations 

[l - (1 - y’) sin’ 1~1’ = [Z/(1 + r)] z: (-X)“P, (cos %), 

P, (cos 2k) = $” gig,-1 cos [(m - 26)2kl, 

and 

gz - (al)-“. 

Actual numerical evaluation for X2 = 25 or y = 0.10102 gives Table I. It 
should be remarked that L, , G, , the various contributions t)o the order param- 
eter, and tbe ground-stat,e energy arc all nonanalytic functions of y at, t,he 
point, y = 0, alt’hough t’hey are analytic at y = f 1. This is, of course, t)hr reason 
for t’he different asymptotic behavior of G, for y = 0 and y # 0. This suggests 
that a perturbation t’reat,mcnt should converge if t)he totally anisotropic case is 
considered as the zerot’h order Hamiltonian, a result observed by Walker (9) 
for t’he full anisotropic Hcisenberg model of thr antiferromagnet8ic chain. 

We now investigate the short-, intermediate-, and long-range order for the 

TABLE I 

QI~ANTITIEs USEFCL IN C.~LCULATING ORDER BETWEEN DIFFEREAT Srrss FOR 

THE sl- &~ODEL WITH -y = 0.10102 

1 1.291; 
3 -0.5980 
5 0.3841 
7 - 0.2680 
!I 0.1946 

11 -0.1440 
13 0.1092 
15 -0.0833 
17 0.0641 
19 -0.0497 

-0.4500 -0.8029 
0.104i 0.2850 

-0.0455 -0.lti52 
0.0242 0.1091 

-0.0143 -0.0705 
0.0089 0.0555 

-0.0058 -0.0412 
0.0039 0.0310 

-0.0027 -0.0236 
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cyclic case. The various cont,ributions t.o the short-range order are readily cal- 
culated: 

I s 
&,‘+I = Pl = $iG-1 

= -(ar)-‘[X(1 - y2) - (1 - y)xql - $)I, (2.44a) 

?/ Y 
Pi,i+1 = Pl _’ = I&G1 

= -(a+‘[x(1 - y?) - (1 + r)CD(l - $)I, (2.44-b) 

* 
pi,i+1 = Pl _ = -$iGlG-1 

= -f”[(~(l - y2) - ~(1 - $))’ - $(x1(1 - y2))‘]. (2.44~) 

We plot these parameters and t,he tot.al order pI = ~1’ + ~1’ + ~1’ as functions 
of y in Fig. 2. 

For the intermediate-range order one must’ fall back on a numerical walua- 

5c 

-P 
.2! 

FIG. 2. Various contributions to the short-range order as functions of the degree of 
anisotropy in the SY model. 
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tion of t,he relevant determinants. Because G, = 0 for even r, these determinants 
simplify somewhat’. Thus 

and 

where 

R, = 

and 

(2.4%) 

G--a . . . G-m-,, 

G-1 G-a 
. . 

. . 

. . 

G1 G-1 G--a 

G G-I 

(2.46a) 

Ro= 1. (2.46b ) 

Similar expressions can be derived for p,&+-1 and pin . One has only t,o let 
G, --f G-, . Kumeriral evaluatjion of this determinant for several values of n 
leads to a very slowly converging sequence for pn , even for y = 0, the case 
expected t#o be most rapidly converging. Results for y = 0 and y = 0.10102 
are summarized as shown in the tabulat#ion. 

n 1 2 3 4 5 6 

Pn(Y = 0) -0.1592 0.1013 -0.0860 0.0730 -0.0661 0.0597 
P,&(Y = 0.10102) -0.2ooi 0.1611 -0.1555 0.1500 -0.1483 0.1467 

Kow let us invcstigat’e the long-range order. The cases y = 0 and y # 0 ex- 
hibit entirely different’ long-range order characteristics because of t,he differ- 
ence in asymptotic behavior of G, for these t’wo cases. We first, consider the 
isotropic case, which is simpler and, as we now show, has no long-range order. 

We seek the limits of p,,l, prlu, and p,,’ as n --+ a for y = 0. The fact that we 
have first t’aken t’he limit, N + 3~ in passing from sums to int,egrsls ensures t,hat 
we never come round the circle when n + =Q. 
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k1 G-y . . . G-,, ) 

2. 1 
Pn = Pn us- 

4 

GO G-1 G-e 

= ;Dn, (2.47a) 

. G-2 : 

G,-2 Go G-1 1 
z 

PI1 = J,@,,o - $4GnG-. - - (7rn)-’ --+ 0. (2.47b) 
n+= 

An upper bound to 1 D, 1 may he obtained with Hadamard’s Theorem (IS), 
which Aates t,hat 

(2.48) 

if d,,, is the norm of the ith row of C. The equality holds only when the rows 
are all mukrally orthogonal. We divide the rows of D,, into three groups, t.hose 
near the top (the first no rows, where IL” is independent, of ‘n and <<n), those 
near the bot,tom (the last no rows) and those in the middle. Because &,n 5 1 for 
all i from the unitarit)y of G, wc may replace d,,,, by 1 for the first, and tbird 
groups in (2.48) : 

(2.49) 

In the middle group 

& r -& G;-l-i = 
M(i,n)-1 

l-2 2 Gf- c 
,X1 M(i.7cf m(i.72) 

G: 5 exp -&‘Gr2- &: 1 
(2.50) 

, 
.M m 

where 

and 

M(i,n) = max (i - 1, ‘n + 2 - i) 

m(i,n) = min (i - 1, n + 2 - ,i). 

But 

$ G,2 >= (2/7$; Jia-, k-* d/c = (2/a)‘; (& 

(2.5Ia) 

(2.51b) 

1 
-- 3 b > 

(2.52) 
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so that, 

so that each sum in the exponent of (2.53) can be replaced by a lower bound: 

and so 

Dn2 5 (n + 3)--(2’n)2 X constant, (2.55) 

2 
Pn = Pn “--to as n-x. (2.56) 

When y # 0, / G, 1 < ArP4 for r > r. and t,he preceding development gives 
only the very weak result) 

D,” 5 constant as 1~ - =, 

which does not exclude the possibility that, either pnz, p,,‘, or both approach 
finite limit’s as n --) m (n even). Sot only t)he norms of the rows but the overlap 
between rows must now be considered to improve t.he estimate. Conceivably a 
more powerful theorem would show t,hat, either or both the order parameters 
tend t)o zero as 7~ -+ ‘J;, alt,hough no such theorem has been found. Inst#ead, 
when we consider the spins at the ends of a long chain with free ends, we find 
for y > 0 that p& # 0 although pYN = 0(1/N) (and the reverse for y < 0), 
as we now show. 

D. J~NI+TO-END ORDER IS THE GROUXD STATE 

It is easy to calculate the order between the first and last spins of a chain of 
N spins, even if evaluatjion of the intermediate-range order is dificult. This is 
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because what is involved is an (N - 1) X (N - 1) minor of the N X N de- 
terminant det. G, where G is unit,ary. Thus 

Glz . . . Gm 
pfN=?4 ; 

Gs-1,~ ... ‘~-I,NI 
= ( -l)“-‘l,i(G-‘)lN det G 

Because G is unitary 

(G-‘1~ = GM. 

Therefore, using (2.36)) we have 

p;N = ( -l)N-l /1iGNI det G = ->dG,, det(A - B)/jdet(A - B)j 

We have assumed only that Ah # 0 for all k. In a similar way 

As before 

- B)/. P&? = -$;GIN det.(A - B)/ldet(A 

PIN = 3;; (GnGm - G.&v1 1. 

(2.57) 

(2.58) 

(2..59a) 

(2.59b) 

(2.59c) 

An alternative way to derive (2.59a,b) which bypasses the general problem 
of calculating plm , is as follows: 

p;4&r = ;; (sfo 1 (cl+ + Cl) (CN+ - c,) csp (in&X) 1 \ko). (2.60) 

Because [exp (i?rX), H,] = 0, the nondegeneracy of QO (assured by Ak # 0) 
implies that *o is an eigenstate of exp(ai%) belonging to one of the eigenvalues 
zt 1. Thus p;N = =F IiGNl . To det,ermine which sign is in fact’ correct, we use 
the fact that t’he sign is independent of t,he continuous variable y, and evaluate 
it for y = 0. We find finally 

PfN = ->$GN1 det, A/ / det A 1 , (2.61) 

which agrees with (2.59a) providing & # 0 for all X: (and thus det (A - B) # 0 
and det A # 0). For t,he cyclic chain the simplicity of the end-to-end order is of 
no interest because the sites 1 and N are nearest neighbors, and we obt,ain only 
the short-range order. For the chain with free ends, however, t’his is indeed a 
measure of the long-range order as N + CL:. Certainly, if t)herc is a finite end-to- 
end order, then t,here is finite long-range order as defined in the previous sect.ion, 
alt,hough the two calculations may give slightly different numerical results 
because of end effects. We investigat’c these end effects at the end of t,his section. 

Consider t,hen a chain of N spins with free ends. TO ensure that, \ko be non- 
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degenerate, or equivalently that dk # 0 for all k, we assume N to be even5 We 
are t,hen calculating the order between two spins that have a tendency, however 
small, to be antiparallel. 

The relevant matrices are 

A-B=;; 

(A - B)(A + B) 

0 1-Y 

0 

(l-y)2 0 1-q 

0 2(1+$) 0 I 

0 

- 
0 

Y 

1Sr 0 l---Y 

1+-l 0 

- Y2 

0 1-q 

1 - y2 

= (A + WT, 

0 

0 w+Y2) 0 

1-q 0 (1+ Y) 

(2.(i2) 

. (2.63) 

Because the problem is no longer cyclic, t,he first, second, (N - 1)st and Nth 
rows of (A - B) (A + B) are different from all the rest. 

The vectors +k and 41 are readily found and are of two kinds. 
Modes of t)he first kind: 

5 It is readily seen that for N odd, det ( A- B) = 0, so there exists a zero eigenvalue of 
(A - B)(A + B). The existence of this exci:ation corresponds to the fact that because 

t1ot.h IZ, 5 exp [,i$ SXi] and X, = exp [-iF Pi] commute with H and because there are 

an odd number of sites, every eigenstate is degenerate. Suppose* is an eigenstate of H and 
12; so t,hat Zt?s = f& (the eigenvalues of ZZ, are fi for an odd number of spins). Then 
q’= &\k is distinct from* because f?#’ = Fi’P’ and yet it is an energy eigenstate degen- 

erat.e wit,h I. 
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Qk’ = 121, 

where 

0 
sin 2h- 

0 
sin 4X: 

0 
sin NX: 

and $’ = -Ali& 

sin Nk: 
0 

Gn(N - 2)x 
0 

sin ,li ‘3 
0 

& = sign of cos(N + l)k, 

hr, = [l - (1 - y2) sin’ li]", 

and A, is t,he normalization constant,, 

The k’s are the roots of the equation 

sin(N + 2)lc/sin Nk = (1 - -y)/(l + y) = -X, 

which we discuss below. It, can then be shown that 

hl; = cos Ii/ j COS(N + 1 )X 1 . 

(2.64a) 

(2.64b) 

(2.64~) 

(2.64d) 

(2.64e) 

(2.64f) 

The parameter X, previously introduced in (2.43b3, is a convenient alternate 
characterization of the anisotropy, the isotropic case corresponding to X = 1 and 
the Ising limits being X = 0, ~0. 

Modes of the second kind: 

r 

sin Nk 

1 sin(N’- 2)k 
+:I = At ( 0 and 4:’ = -Ak& 

0 
sin 21~ 

0 
sin 4k 

0 
sin Nk: 

, (2.65a) 
I : 

sin 21c 
0 

where & , hk , and Ak are as before, and the k’s are the root)s of t,he equation 

sin(N + 2)k/sin Nh: = - l/X. (2.6rjb) 

Assuming y > 0, we represent the functions sin(N + 2)h-/sin Nlc, X, and l/X 
diagrammatically in Fig. 3. The roots of (2.64e) are of the form 

k m I = (a,‘N)(m - v,I) + 0(1/N’), w, = 1, *. . , fsN, (2.66) 
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N+2 

-ii- 

1.0 

-A 

-1.0 

-I 

,---- 

. . . . 

E--l 
N 

.--- - 

. . . . . . . . . . . 

r I 

---- 

. . . . . . . . . . . . 
FIG. 3. Sin (X + S)k/sin Nk (continuous curve), --X (dashed line) and -l/X (dotted line) 

versus k for X = 12 and a typical value of X. The intersections of these curves define the 
kl’s and k”‘s in the SF model with free ends. 

where v,I, defined by 

cot v,%r = [X + cos(~nr*/N!]!sin(2,ilajNf, (3.67) 

is found to be 

VWi I = (m/N) + (l/r) tan-’ [y tan(mr/N)]. (2.67’) 
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Similarly, the real roots of (2.6513) are of the form 

A”: = (a/N)(m - v:, + O(l/N2), VI = 1, . *. , fiN - 1, (2.68) 

where 
II 

VWZ = (),1./N) - (1/7r) tan-’ [+y tan(nza/N)]. (2.69) 

There is also one complex root of (2.6513) which is very import,ant’ : 

k. = (7r/2) + iv, (2.70) 

where v is t.he solution of 

cash 2v + coth NV sinh 2v = IjX. (2.71) 

In t’he zerot,h approximation, we may set, coth NV = 1, SO that 
2r e = l/x = (1 + rj/(l - ,j. (2.72) 

In t)he next, approximation 

‘y-’ 2r 
e = l/X - (1 - p)x”-’ = 

* 
(2.72') 

The + and $ vectors for this special mode are 

sinh Na ‘I 
0 

& = A,, ( -l)‘,, sinh 421 
0 

( - 1)4N-1 sinh 2v 
0 I 

and $kO = ( - 1 )lN+’ 

0 
( - 1) tNv-l sinh 22, 

0 
( - 1)‘N-2 sinh 42: 

0 

0 
sinh NP 

A&, = 4 
sinh 2(N + 1)~ _ N _ 

sinh 
I 

22: 1 

~4(1 - X2)X” = lG(y/(l + 7)‘) 

where 

(2.73a) 

(2.7313) 
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This exhausts the normal modes because, for any mode with Y in (f&r, r), t#here 
is a mode wit,h 12 = K - 12’ t,hat differs from the first only by a sign. 

It, is obvious from (2.64~) that & > 0 for all real Ps. It is also readily seen 
that, for the special mode J?O 

Ako ‘u ( 1 + X)X”‘? = P/Cl + 711 [(I - r)lCl + YP. (2.73c) 

Thus, alt)hough the ground state is, st’rictly speaking, nondegenerate for any 
finite N, it becomes degenerate wit#h the state carrying the /co excit,ation in the 
limit N + 0~. It is observed in the next section that) thrsc two stat,es have the 
same end-to-end order to 0( l/N). In terms of the customary defi&ion of 
long-range order, the preponderance of spins up on one sublattice t#o spins up 
on the other, neither of these stat,es shows any long-range order, if by “spins 
up” we mean spins in t#he x-direction. However, a linear combinat,ion of these 
t,wo states in equal proportions will show a long-range order according to the 
customary dcfinit#ion. 

We can now compute the various relevant G functions, recalling t’hat Gi, = 
- Ck*k&Pk j  : 

GIN = c illi2 & sin” NX-, (2.74a) 
l6 

GNI = c A,’ & sin” N/C + Ai, ( - 1)‘” sinh” Na. (2.74b) 
!%I1 real 

Except for the fact’or & , the summands in (2.74) are slowly varying funct#ions 
of k, as shown in Appendix D, and each term is O( l/N). The factor Bk alternates 
in sign, the first & being - 1, etc. Thus a pair of consecutive t#erms in t)he sum- 
mand is approximately 

(d/d~d (A$, sin’ Nli,) 

and the sums go over to Ricmann integrals: 

?i [‘” (d/dm)(A&, sin’ Nk,) dm = 0(1/N). (2.75) 
Jo 

Finally we have 

G,, = O(l,‘N), (2.7Aa) 

c rN1 = Ai, (-1)‘” sinh’ Nv + 0(1/N) 

= (-1)‘” (1 - X?) + 0(1/N). 
(2.7Gh) 

To calculat,e the end-t,o-end order in the ground state using (2.59)) we note 
that 

,-jet(A _ B) = (-1)“’ (1 - y’)t-v (2.77) 
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so that 

and 

PL? = -Ji( - 1)“” GN1 (2.78a) 

PYN = -Pi( -l)“‘v GIN . (2.78b) 

Because GIN = 0( l/N), only ph of t,he order parameters is finite for y > 0 as 
N--t 00. 

P:N = -fi(l - X2) + 0(1/N) = -[“//(I + y)‘] + 0(1/N). (2.79) 

The ground state of the one-dimensional XY model thus shows no end-to-end 
order in the isotropic case, but’ a finite end-to-end order for any finite amount 
of anisotropy. 

As anticipated, we see explicitly that the various contributions to the order 
parameter are nonanalytic functions of y at y = 0. The limiting cont,ribution 
pq,, for example, is finite for y > 0 but zero for y < 0. 

As we have already remarked, the order p& may differ from lim,,, pnX obtained 
for the cyclic chain because of end effects. To see how important these effects 
are, it is useful t#o compute the order between t,wo spins situated near but, not at 
the two ends of the chain. Somewhat simpler is the “end-t,o-almost-end” order 
calculated between the pth spin and the Nt’h spin, where y is small. Just, as p& 
can be expressed with a 1 X 1 determinant, p& can be expressed wibh a Q X y 
determinant, as we now show. 

(c,+ + c,)(c,+ + c,) exp iax c.+c. q0 ( :-’ , 1) 1 /‘, (2.80) 

= f;(% ( AlB,&Bz ... A,-~B,-,A,B.dx j %>. 

But according to (2.61), 

exp(i?r%) / *o) = (det’ A/ / det’ A 1 ) 19”) = C-1);” / qO). (2.81) 

The evaluat’ion of p& now gives, using Wick’s theorem, 

/ G, Gz . . . G, 1 

P;N = 

(-l>“(-l)i~ G;I $2 a.. (fzq ’ 

4 
&,I G~:I,P Gy:-1.y * 

(2.82) 

G GNZ Nl G Nq 

p:N is obt’ained by let’ting Gij + Gji . It should be borne in mind that, the Gij’s 
are now calculated for the chain with free ends; they are not the Gij’s discussed 
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in the last section. We introduce the notat’ion G$j and G:j for t,he free chain 
and cyclic chain, respectively. Then there are simple relations, proved in hp- 
pendix E, between the two kinds of G’s provided / i - j / = o(N). 

G:,i = GC-j - Gz+, for i odd, j even ; (2.83a) 

G{j = GP-,i - GL(i+j) for i even, j odd; (2.83b) 

G{j = 0 for i - j even. (2.83c) 

The determinant, in (2.82) ran be simplified in two ways. First recall that 

(2.78a) PLV = - !,i ( - 1) Lv ($,, 

and observe that if j is odd and j = o(N) , 

(TI/N~ = (_ l)i(j-1) xj-l 

so that (2.82) simplifies t’o 

Gil . . . G:, 

p;N = (-I)“-‘p& : 
G;-l,l . . . G;-l,g 

1 0 - x2 0 x4 . . . 

(2.84) 

. (2.85) 

where 

Tq = 

, the determinant can be simplified in analogy with Second, because of (2.83 
(2.45a, b) giving 

PLV = (-l)*+’ S,T, & , 

&--l,h. = ( - 1 )*+l S,T,-1 PL , 

(2.86a) 

(2.861~1 

G;;-,,, Gi;-, ,4 . . . G;yil.~p 

and 

G:l Gi, . . . G&,-l 

& G:, . . . G&-I 
As,= : 

G;,-2 .1 . . . G:,--zvz,-1 

1 (ix)” . . . (&y--8 

(2.87a) 

(2.8713) 
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Numerical evaluation of p&/& for y = 0.10102 and Q = 2, 3, . . ., 7 shows a 
rapid convergence to a value differing by only a few percent from unity; but 
surprisingly, the order does not increase in absohke value monotonically as p 
increases. 

E. ORDER IN EXCITED STATES AND AT FINITE TEMPERATURES 

The order parameters in excited states are given by simple modifications of 
(2.33). For example, the state with the elementary excitations k, , . . . , k, excited 
can be regarded as the vacuun1 state of a new set of ok operators, where qk and 
qkt are interchanged for kl , . . . , k, . For these k’s, t,his is equivalent t’o letting 
J/ki + -& and Ak + ---AA . Instead of (2.32~) we have 

Gij (k, . . . x-8) = wk “gx,. $‘ki$‘kj + k~c,~ki$‘ki * 

Because s of the AL’S now are negative, 

(2.88) 

det G(kl . . . k,) = (-1)” det G. (2.89) 

For t,he cyclic chain, the change of sign of a few of the terms contributing to 
Gij , as given in (2.88) has a negligible effect’ on Gij , because each term is 0( l/N). 
Thus in very low-lying excited states, the order between spins a fixed distance 
apart, (as N -+ 30 ) is the same as in the ground state, although this in itself 
does not imply long-range order at finite temperatures. For the end-to-end order 
in the chain with free ends, the sign of the order is changed with each additional 
excitation (except for k,) because det’ G changes sign, SO that, at finit’e temper- 
atures the end-to-end order vanishes. It is interesting to note, however, that for 
t,he one extremely low-lying excitation ko , both det G and GN1 change sign so 
that this very low-lying excited state has t’he same end-to-end order as the ground 
state, to order 0( l/N). 

The systematic generalizat,ion t,o finite temperatures of t’he treat#ment of 
order using Wick’s theorem is simply achieved by introducing temperature- 
dependent contractions (16) : 

(BiAj) = tr[BJj exp( -@H,)]/tr exp( --pH,) = Gi,(p). (2.90) 

The explicit evaluat,ion of G;j at finite temperat,ures is given in Appendix C. In 
matrix not’ation 

G(a) = -4” tanh (f@A)+. (2.91) 

G(P) is no longer a unit,ary matrix. In fact, the norm of the entire it’h row is 

di,N(P) = [g (G&3))2]i S tanh (S@L,x) < 1. (2.92) 



AKTIPERROM.‘!LGNETIC CHhIX 435 

Thus, even though C;;-j (p) - A(p)/(i - j)” f or all6 y, the long-range order is 
zero at any finit,e temperature by Hadamard’s theorem. In fact, 

because 

and similarly for prLzI. 

E'. RELATIONSHIP BETWEEN HEISENBERG AND XI' NIODELS 

It is unfortunately not obvious that the Heisenberg model shows eit,her a 
st,ronger or weaker tendency t,o order than the XY model. On t#he one hand, one 
might argue t’hat the Heisenberg model, in which all three components of the 
spin want to align antiparallel, should show more order than the XY model, in 
which only two components have this tendency. Equivalently, because t,he 
ordering effect’ of t’he transverse terms alone in the Heisenberg model is less than 
that of the transverse terms alone in the XY model, one might conclude that the 
disordering effect is also correspondingly less in the Heisenberg model. On t,he 
other hand, one might argue with perhaps equal justification that the disordering 
tendency of t,he t,ransverse terms in t,he Heisenberg model is greater, there being 
t,wice as many such terms. We have so far been unable to show rigorously that 
either model has a sbronger tendency t,o long-range order than the other. 

Lacking a general theorem, it is most interesting for heuristic reasons to 
consider a simple soluble but nontrivial special case: a chain of six spin +5’s in 
both t,he isotropic Heisenberg and isotropic XY models.7 

Icor the Heisenberg model a direct diagonalization of the Hamiltonian matrix 
among the sixty-four possible states is greatly simplified by the knowledge that, 
the ground stat,e is a singlet. It can be further simplified because under re- 
versal of t,he ordering of the six sites, one of the five singlets of such a chain is 
even and four (including the ground st,atej are odd. Diagonalizing the resulting 
4 X 4 matrix, one finds for the ground state 

+.ijl; = 29 (Uj+Uj+a~+ - &;UB-jab-~)@o (2.95) 

‘The asymptotic behavior is given by (2.11) with f(k) -f(k; p) =f(k) X tanh x/&. 
It is observed that f’(0; 0) = f’(7r/2; p) = 0 even for y = 0, when p # 0 (see footnote 4). 

7 The four-spin problem, though nontrivial, shows too large end effeck to he interesting. 
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and @JO is the state with all spins down. 
For the XY model one can specialize the general formalism developed in 

Section II D to the case N = 6. One finds 

km1 = hImI1 = na7j7, 

which gives the following G matrix: 

(2.96) 

i 

0 -0.875 0 0.388 0 - 0.300’ 
-0.875 0 -0.485 0 0.087 0 

I 0 
G = I 0.388 

-0.485 0 -0.774 0 0.388 
0 -0.774 0 -0.485 0 . 

(2.97) 

i 0 0.087 0 -0.485 0 -0.875 

i- 0.300 0 0.388 0 -0.875 0 I 

The various order parameters may be computed for the Heisenberg model 
directly from the ground state. Pfj is the simplest to compute; p:j and pyj have 
the same value because PO is a singlet. For the XY model the various order 
parameters may be computed from the appropriate subdeterminants of G. In 
Table II we exhibit’ the order parameter pqj between the first spin and each of 
the other five. It is immediately clear that the XI’ model has a stronger tendency 
to order except for neighboring spins. 

The parameter p?i for the six-spin problem differs from its value when spin # 1 
is in the middle of an infinite chain because of end effects from both ends. To 
see the effects of each end for the XY model, we have also tabulated p;j for a 
semi-infinit’e chain (i.e., spin B 1 is at, one end but t)he chain is infinitely long) 
and for an infinite chain (i.e., both the first, and jt*h spins are far from either 
end). The results for the semi-infinite chain show that the end at the sixt’h site 
has a very small effect on the order plj ; while the results for t,he infinite chain 
show that the fact that spin # 1 is at an end position has a noticeable but not 
dominat,ing effect for the six-spin and semi-infinite cases. The results strongly 
suggest that as j -+ m, p;zi for the semi-infinit’e and infinit,e Heisenberg models is 
dominated by the corresponding parameter for the XY models, which we know 

TABLE II 

pri FOR j = 2, . . . , 6 IN VARIOUS ORE-DIMENSI~SAL MODELS 

i 2 3 4 5 6 

Heis.: 6 spins -0.222 0.061 -0.077 0.032 -0.047 
SE’: G spins -0.219 0.106 -0.105 0.065 -0.075 
XY: Semi-infinite -0.212 0.108 -0.102 0.075 -0.077 
XI*: Infinite -0.159 0.101 -0.086 0.073 -0.066 
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TABLE III 

P:,~+~ FOR SEVERAL j IS VARIOUS ONE-DIMENSIONAL MODELS 

i 1 2 3 cc fib;2 + 2P& + .&) 

Heis. : 
6 spins 
Semi-infinite 

SE’: 
6 spins 
Semi-infinite 

-0.222 -0.092 -0.202 -0.152 
-0.118 

-0.219 -0.121 -0.193 -0.163 
-0.212 -0.127 -0.182 -0.159 -0.162 

tends to zero; i.e., the isotropic Heisenberg model appears to have vanishing long- 
range order. 

The end effects on the nearest neighbor order ~7, j+l can also be examined on 
the basis of values given in Table III. We have exhibited only the cases j = 1, 2, 
3 because j and 6 - j are equivalent for this parameter. We see that for both 
models the nearest neighbor order oscillates strongly because j is near a free end. 
However, the effects of the farther end are seen to be small. Furthermore, if the 
simplest imaginable exkapolation from t’he six-spin problem is made, a good 
est,imate of the true short-range order in an infinite chain is obt,ained for both 
models, Calculat’ions of ps, 3+2 and ~7, j+a , as well as analogous calculat,ions for 
the total order parameter, p;j , all agree with these conclusions, so t#hry are not 
exhibited. 

III. THE HEISENBERG-ISIXG MODEL 

;2. FORMULATION OF C;Roum-ST24m PROBLEM 

The second model consists of 3N spin 45’s also arranged in a row and having 
only nearest neighbor interact)ions. The interact’ions are alternately Ising and 
isotropic Heisenberg int’eractions, so that t,he Hamiltonian for a chain with free 
ends is 

= Ho + HI. 

The paramet)er X is to be considered variable but positive and charact’erizes the 
relative strength of the t,wo types of int8eraction.’ 

The particular simplicity of this Hamiltonian is noticed if the representation 
diagonalizing Hu is int’roduced. For t’he it,h pair of spins we introduce the four 
eigenfunctions of S2i-l. SZ~ : 

8 The symbol X is chosen because this paramet,er appears in many expressions in exactly 
the same way as does X for t,he SI* model. In both models, X ranges from 0 to = . 
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and & = 
(3.2) 

where the first and second arrows refer to the (2i - 1)st and 2ith spins, re- 
spectively, and represent states of a single spin in the positive and negative 
z-direction. The first subscript of ai refers to the quantum number J, and the 
second to Mi for the ith pair. Application of either SZ2i--2 SLZi--l or SZQi 8ZZi+l to any 
of these four states leaves the values of Mi unchanged. Thus the assignment of 
one of the three possible values ( fl, 0) t,o each of the N M,‘s defines a subspace 
of the 2’” dimensional space of all states. The Hamiltonian, having no matrix 
component’s between states in different subspaces, can be diagonalized separately 
in each. It will be shown in Section III E that the ground state is in the subspace 
for which Mi = 0 for all i, a subspace we now consider. 

We are faced with a situation that is formally similar to t’hat encountered in 
the XY model: a set of dynamical systems (in t#his case a pair of spins) each 
having two possible st’at,es (in this case C&O and %) and interacting only with 
the nearest neighbor systems. If we call t#he st,ates @f, the “up” stat’es and @& 
the ‘Ldown” states, we can formally introduce raising and lowering operat#ors for 
t,he ith pair having the usual properties: 

and 

so that 

1 % 
ai++oo = a10 , ai+& = 0, (8.3a) 

aia$, = 0, a;*fo = go ) (3.3bj 

(ai&} = 1 and aL2 = ai” = 0. (3.4) 

It is t,o be emphasized that ai and ui+ do not lower and raise a particular spin as 
they did for t,he X Y model. It is only a formal analogy between t’he states @,fo and 
@io on the one hand, and the up and down orientations of a single spin f$ t,hat 
we are exploiting. 

Because of t,he fundamental relations 

AY,,-@f, = -a&l ) 1 s(i2i--1a;o = -aJpl0 (3.5a) 

and 

sz2igo = & ) xz2i~;o = a;, , (3.5b) 

we may represent Sz2i--1 and x”,i in t’he Mi = 0 subspace by means of ai and ai+: 

s22 i-1 + -f,h(a,+ + ai); sz,i --, ,I$(&+ + ai). (3.6) 
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Because the diagonal energies of the states & and CC& are, respectively, x and 
--y& the ith term in No can also be expressed in terms of a; and ait: 

S2j-l*SSi -+ aitai -,3d. (3.7) 

In the subspace defined by d1; = 0, the t,otal Hamiltonian is then 

HA = -3&v + $ aitai - ;$ANy (ai+ + Ui)(Uli.l + Ui+1) ) (3.8) 

where, in addition to (3. 4)) we have 

[Ui,Uj] = [U;t,Uj+] = [Ui,Uj+] = 0. (3.9) 

The eigenstates and associated energies of HA can be found exact’ly as for the 
XY model by introducing a complete set of Fermi operators, t’hrough (2.5), in 
terms of which Hi is given by 

Hx = -jl,llN + $ ci+ci - @(ci’ - cJ(ci+~ + c;,]). (3.10) 

B. GROCND ST.4TE OF THE CYCLIC CHAIN 

It is convenient in this section to consider the “c-cyclic” case obtained by 
lett,ing xf-’ + x1” in HI and defining 

cN+l = cl and c!+l = cl . (3.11) 

The matrices relevant t,o the diagonalization of Hi are then 

A-B= 

and 

1 -A 
--A 1 0 

. . 

0 --x 1 

= (A + B)T 

I  

1+x? --x --x 

(A-B)(A+B) = 

For X # 1 the normal modes are characterized by the functions 

(3.12) 

7 

. (3.13) 

?I 

(3.14a) 
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+kj = &-I [( 1 - X cos k)f&j - X sin k &-kj], 

belong to the eigenvalues 

(3.14b) 

where 

and 

hk = [(I + X)” - 4x COG >&q*, (3.14c) 

12 = 21m/N (3.14d) 

m = ->sN , ... ,O, ...,$sN - 1 forNeven, 

m = -yi(N - l), . .e, 0, .. . f$(N - 1) for N odd. 
(3.14e) 

We take the upper solution for &j if hi > 0, the lower solut,ion if k 5 0. For 
X = 1 and 1~ = 0, we have Al, = 0. For this particular k, 

&+ = N-‘, +hj = +N-‘. (3.14’) 

The sign, which is arbitrary, will be taken positive. 
It is convenient t,o introduce the parameter y, ranging from + 1 to - 1, by 

1; (3.15) y = (1 - X)/(1 + x 

Ah = (1 + X) [I - (1 - 7”) co2 !$ kf, (3.16) 

which resembles the spectrum of the XY model. 
We see that except for X = 1 or y = 0 the spectrum of elementary excitations 

has an energy gap. It should be emphasized, however, that the ground state 
together with states of all possible combinations of these elementary excitations 
are but, a small subset of the complete set of stationary st’ates, all t,he rest having 
one or more Mi = fl. Thus, the behavior of the system for finite t’emperatures 
is not immediately apparent from the knowledge of the excit,ation spect,rum 
(3.14c). 

The ground-&ate energy, according t#o (A-12) is 

Eo= -WV+% $l+b). (3.17) 

AsN+ 00, 

E,,,‘N = - ;i - (2,‘a)[l/( 1 + r)] E( 1 - 7’). (3.18) 

We notice that &/N is not analytic at X = 1 (y = 0) although it, has power 



series expansions in X and l/X. This nonanalyt’ic behavior at X = 1 is associat’ed 
wit#h t’he appearance of long-range order for X > 1 as we now show. 

C. SHORT- A?;D LONG-RASGE ORDER IS THE GROUSD STATE 

Define t’he order parameter in the ground state het#ween pair sites 1 and ~1 
to he 

Plm = (\k" 1 S?Z. S2?,1 1 NJ; (3.18) 

i.e., it is the order between the second spin of each pair. The order het,ween 
other pairs of spins can he calculated from plm because 

(% 1 s2z. sL-1 / %) = - (\Il” j s2z. Sh / %>, et,c. (3.20) 

Furthermore, the only nonzero contribution to plnl is 

ptm = (% 1 si2zsz?n, / S”) = !4{\k” ] (,az+ + az)(am+ + am) j \ko), (3.21) 

because Azz~ and Pz~ both change MI and Sxz,,, and Sy2, both change M, . The 
structure of pi, is identical with the st’ructure of p& for the SY model, so t,hat, 
pSm is given by t,he determinant (2.33a) wi-ith Gij defined by (2.3%). 

For the cyclic chain, G;j = Gi-j and in the limit N -+ r: with 7’ = i - j fixed, 
0, is found t’o be given by 

G, = (-w+l [fi(l + Y) IA. (7) + Ml - 7) LZrt:! (?>I, (3.22) 

where L,(r) is defined in (2.8313). For the special case of vanishing energy gap, 
X=lory=O, 

G, = (2/7r) [(-1)‘+‘;!(2r + I)]. (32.‘(a) 

For the limiting case of noninteracting Heisenberg pairs, 

G, = -&I I (3.3313) 

In the limit X + x or y = - 1, which we shall later show to be the Ising limit, 

G, = 6,.* -1 . (3.23c) 

In general, for X # 1, 

/G,/ < ilrP4 for 11.1 > rO, (3.24) 

just as in the XY model. 
Hadamard’s theorem is sufficient to show t’hat there is no long-range order 

for X = 1, because of the r-l behavior of G, . For X # 1, Hadamard’s theorem 
is again too weak, because of the r-’ dependence. In t’he limiting cases X = 0 and 
X --+ 00, however, there is no order and perfect order, respectively. This suggests 
that, for X 5 1 t’here is no long-range order and for h > 1 there is finite long-range 
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order, a conjecture that is confirmed for the end-to-end order of a free chain, 
which we now investigate. 

D. END-TO-END ORDER IN THE GROUND STATE 

For a chain of N pairs, t’he order between t’he first and last pairs, as in (2.59a) is 

PIN = -yi GN1 det (A - B)/ ) det (A - B) 1 

providing x # 1 (to ensure Ak # 0). If the chain has free ends, 

-A--B= 

so that 

. . 
! = (A + B)T, . . 

0 --A‘ 1 I 

det (A - B) = 1 and piN = --pi Glyl. 

The functions $pj and &j needed to compute GN1 are found to be 

&i = At sin k(N + 1 - j) and &j = A& sin kj, 

where 

Sk = sign of sin k/sin kN. 

The corresponding eigenvalue is 

A, = [(l + X)” - 4X cos2 Iik]” I 7 

and the normalization con&ant is 

As = 2(2N + 1 - [sin (2N + l)k]/sin k)-;. 

The k’s are the roots of 

sin k(N + l)/sin h-n = X. 

For these k’s & reduces to 

& = 1 sin k/sin Nk I. 

(3.25) 

(3.26) 

(3.27) 

(3.28a) 

(3.2813) 

(3.2%) 

(3.28d) 

(3.28e) 

(3.28f) 

For h 5 1, there are N real roots, exhausting the normal modes. For h > 1, 
there are N - 1 real roots and one imaginary root’, 

ko = iv, (3.29) 
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with v defined by 

sinh (N + 1) u/sinh NV = A. 

For NV >> 1 [i.e., X - 1 # O(ljN)], 

eP = x - [(A’ - l)!‘h](l/X)“? 

For this particular mode 

(3.30) 

(3.31) 

&i = AkO sinh (N + 1 - j)v and lc/kO, = =1,,, sinhjv, (3.32a) 

A,, = 2e-““(1 _ p)f, (3.32b) 

and 

Ako = (A’ - l),‘xv+‘. (332c) 

In evaluating GN1 = - xJ/kN&l , we use the fact’ (proved in analogy with 
the SY model, Appendix D) that, except for the mode ko and the factor & , 
the factors in the summand are slowly varying functions of k, and & alternates 
in sign. Thus 

C’ -TN1 = --v&v &,I + O( l/N) = - (1 - A-‘) + 0(1/N), (3.33) 

an d 

PIN = Ji(l - A-‘) + 0(1,/N), x 2 1, (3.34) 

= 0(1/W, x < 1. 
The order in the extremely low-lying excited state with the ko excit,ation present 
is the same as in the ground state to 0(1/N). 

E. EXCITED STATES 

In addition to the excited states produced wit,h the creation operators qk+, 
there are also all t,he st#ates lying in subspaces characterized by one or more 
A/; # 0. Although it is possible to find states in these subspaces for which each 
of t’hese Jli is definitely +l or - 1, it is much more convenient t,o work with 
certain linear combinat,ions of these stat,rs. To see why this is, consider the 
subspace defined by 

dl, = 1 and Mi = 0, i # 1. 

The Hamihonian in this subspace corresponding to (3.10) is 

(3.35) 

Hx = -?3(N - 1) + kci+ci 
? 

N-l (3.36) 

- l;’ C (Ci’ - ei)(Ct+l + Ci+l) - !,ix(clt + cl). 9 
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Because this HamiltIonian is no longer purely quadratic in t,he c’s and CT’S, it 
fails to conserve the number of fermions and cannot he diagonalized by a simple 
principal axis t.ransformat.ion. The difficult,y is even greater if the JI = 1 site 
is not’ at, the left end, hut at i = p; for then HA is 

HA = - f (AV - I) + & CitCi - i X i,gl p (Ci+--Ci)(Ct+l + C~+I) 

+ (4+1 + CT?+,) exp (ir $ cjtcj)], 

which is obviously not directly diagonalizable. 
The way around these difficulties is to consider the states wit,h dl, = fl 

simultaneously, introducing raising and lowering operat.ors apt and a, which 
take (a;-, into +& and vice versa. The Hamiltonian is then a quadratic form in 
the a’s and at’s (including up and up+) which remains quadratic, and so is readily 
diagonalizable, when expressed in t’he c’s and c+‘s. The ground state (and all 
excited st,ates) in this subspsce must, he doubly degenerate, corresponding t,o 
the t.wo linearly independent combinat.ions of @f-I and @I , and this must. manifest 
itself in t,he fact that Ak = 0 for some Ic. Stat’ionary states wit,h M, = fl can 
then be projected from any state if one is so inclined. 

Let us consider this procedure more explicit’ly as generalized to the case of an 
arbitrary number of sit.es with M = j, 1. In fact, let 

and 

/ M, 1 = 1 for i = pl , p., , . . . , p, 

Mi = 0 for i # pl , p,, , . . . , p,. 

(3.3i) 

The pairs at pair sites pl , . . . , p, can be considered as “impurity pairs” em- 
bedded in a perfect chain of M = 0 pairs. Each set of p’s ident’ifies a different 
subspace and now, because each impurity can also be in tJwo states, all subspaces 
are still of dimension 2”. 

For an impurity pair at’ p, we introduce the “up” and “down” states 
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and the raising and lowering operators apt and aP : 

a,+*-' = a+', apt@+” = 0; 

up&” = 0, c@+’ = a-“. 

Because 

(3.3%) 

(3.3%) 

and 

(3.40a) 

I’ s-~,-p- P = S,p@- P P = ,‘@+ ) 

we may represent S’2,-I and LYE, in this subspace by 

(3.40h) 

IT*?p-l = 5’ sL?p = %(a,+ + apI. (3.41) 

The pth term in Ho will be simply f;. The interac%ion of the impurity at p with 
the (p - 1)st pair is 

MA(& + a,-4 (api + a,), (3.42a) 

whether the (p - 1)st pair is an impurit,y or not’. The interact’ion of the im- 
purity at p with the (p + l)st pair is 

,!:ik(a,+ + a,)(at,+l + ap+l) (3.42b) 

provided p + 1 is an impurit,y, and it, is 

-?&(ad + ap)(atp+l + a,+11 (3.4%) 

if p + 1 is not an impurity. 
To make all int,eractions look alike and the same as between two ill = 0 

pairs, it is convenient to introduce new canonical variables in the following 
way. We make the canonical transformation 

a, + -ai and ait ---) -ait (3.43) 

for pl 2 ,i < p,, p3 5 i < ~4, p5 5 i < p6, etc., but leave the other a's and 
at's unchanged. The Hamiltonian in this subspace is t,hen 

&(pl ... pa! = -BiN+ 2 + i,pX,,p ai+ai 
1. .s 

N-l (3.44) 
- *5X C (ai+ + ai)(aZ+l + ai+l) 

1 

or simply 

Hx(p, ... pd = Hx + 2 (1 - &a,,), (3.44’) 
r=l 
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where HA is t,ht Hamiltonian (3.8) for the case all 2l!Ii = 0. Although the a’s 
and at’s on impurity pair sites have a different meaning from the ot,her a’s 
and at’s, they all have the same formal properties and so (3.31’) is a meaningful 
statement. It is now clear t’hat the ground state lies in t,he subspace with no 
impurities, because if \kO’, with energy Eo’, is t’he lowest energy state correspond- 
ing to a given set of s impurities, then 

/ s 
\ / 

*a’ z (1 - & UPi) *a I 1) = s/z. (3.45)y 

Thus 

Eo = (*a 1 Hh 1 \ko’) + !,Ss 2 Eo + f is, (3.46) 

showing that the ground state has all M, = 0, as previously asserted. 
We might mention at this point that,, contrary to appearances, we have 

really included as much anisotropy as is possible, through the variability of X. 
An apparent generalization that is still soluble would be to replace Ho by 

Ho’ = 5 [(Y~(~SI~~~-~,S~~~ + f?‘sj-$“,;) + (~.LSsl;~-~S~pi]. (3.47) 
1 

The corresponding generalization of Hh(p, . . . ps) is 

H&I ... ps) = 

We see t#hat (~2 has no effect on the st,ationary states, its only effect being on 
the energy needed to create impurities. For any a2 2 0, the ground stat,e has 
no impurities. Only t’he ratio X/ (Ye has any effect on the wave functions. Thus, 
without loss of generality, we have chosen aI = CQ = 1. Now, provided X > 0, 
this choice of (Ye is exactly equivalent (for the ground-state wave function) to 

g To prove this, note that the unitary transformation 

UPa,;lJ = a+,, and U-k+,,U = uPi for all i 

leaves Hi(p~ . . . pS) unchanged, i.e., [Hh(pI ... pe), U] = 0. It is thus possible to choose 
qO’ to be an eigenstate of U as well as of Hx(pl . .. p.). Then 

(qa’ / c&api /*o’) = (UP,’ / a,,a+,, 1 UP,‘) = {qo’ j (1 - a+,,api) [ \ko’) 
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the choice (Ye = 2X. But with the second choice, H&2X becomes the Ising Hamil- 
tonian in the limit X + a. Thus the limit’ X 4 m is also the Ising limit, for the 
choice o(* = cyI = 1. 

The introduct,ion of impurities at pair sites pl , . . . , p, reduces t,he matrix 
(A - B) (A + B) into a set of square blocks along the main diagonal of order 
p1 , pp - Pl , . . . , N - p, , corresponding to the dynamical independence of 
the different M = 0 segments of the chain. Any distribution of impurities can 
be solved, in principle, because of t)his independence. The particularly simple 
distributions of impurities are those in which the first impurity is at the extreme 
left and the last is at, the extreme right, because for such distribut#ions all the 
nonbrivial square blocks have the same st,ructure. It is t,hen convenient t)o assume 
t#he chain has N + 1 pair sites and s + 1 impurities, t,he first bring at’ PO = 0. 
Then 

(A - B)(A + B) = 

where 

/~__. 
j L J 

9 (3.50) 

-A & rows and columns 

, (3.49) 

and yi = pi - pi-l , the “length” of t)he ith subchain (including the impurity 
at the right end, but not the one at the left’ when the ordering is from left) to 
right ) . 

Let us consider first the case with impurit)ies only at t’he ends (po = 0 and 
pl = pl = N). One normal mode is 

I 
l‘i 

I 
01 

0 -I 

+o= : and 40= : 

i? 

(3.51a) 
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belonging to 

A,] = 0. (3.;ilb) 

The other normal modes are 0 \ i sin q1 lc 
\ 

sink 1 

. @ = &’ and I!$’ = - A;’ $1 : (3.52a) 

sin k: 
, sin q1 k \ 0 , 

with hk given by (3.14~) and 

6;’ = sign of sink/sin (ql + 1 )L. 

The Vs are the root,s of 

(3.52b) 

sin (yl + l)k/sin q$ = 1,/h, (3.52c) 

and so they, and the corresponding hk’s, depend on ql . The excitation of the 
A = 0 mode corresponds to a reversal of the spins of both impurity pairs and 
hence of all intervening M = 0 pairs, which is why it costs no energy. The 
two degenerate “ground stat,& for the chain t,erminated by t.wo impurity pairs 
are \ko- and \ka+ defined by 

and 

vk\kO- = 0, all k, (3.52d) 

?x*o+ = 0, k # 0 and ~o+!Po+ = 0. (3.52e) 

For X < 1, there is an imaginary root ko of (3.52~) which for q1 --) m, has a 
vanishingly small excit,ation energy, Ako = (h-” - 1)X*‘+‘; but for X > 1, there 
is an energy gap. The creation of the ko excitation reverses the relative orienta- 
tion of the two impurity pairs, as shown in Appendix F. Thus, for X < 1 and 
Q~ ---f CC, states with parallel and antiparallel impurity pair alignments have the 
same energy, a reflection of the absence of long-range order in t’he intervening 
M = 0 chain. For X > 1, on the other hand, the st’ate wit,h antiparallel align- 
ment lies lower in energy by a finit,e amount, a reflection of the presence of 
long-range order. 

Consider now the same chain but extended to an impurity pair at pa . In 
addition t,o the A = 0 mode, the normal modes are now of two kinds: 
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0 
sin 1, 
sin 21; 

wit,h 6:’ and k defined by (352b ) and :kZc); and 

and 

0 

0 
sin QI Ii 

sin 2X. 
sin Ii 

0 

<in q2 li 

sin ‘2/i 
sin k 

0 

0 

? (3.53) 

, ( 3.54 ) 

with 6:’ and Ii defined by t#he analogs of (3Sb) and (3.~2~). Argument8s similar 
to those in Appendix F can be used to show that ill the lowest state, successive 
impurit,y pairs arc aligned ant,iparallel. Any odd number of ewitatjionn of the 
left segment results in a parallel alignment8 of impurit,y pairs at p,! and p, ; 
and similarly odd nunlhers of excitations of the right, segment result in parallel 
alignment, of pair sites pl and p, . If X < 1, and pl is far from one end, the k,, 
excit’ation of this long segment gives the corresponding parallel alignment, at a 
negligible cost, of energy. Rut’ if X > 1, these parallel alignments cost finite 
amounts of energy, a consequence of the long-range order. 

The above discussion is obviously generalizable immediately to any number 
of impurities. For a chain of length N + 1, the lowest, energy in a subspace 
characterized by the impurity pairs at pU = 0, pl , . . , pS+] , P,~ = N, or by 
the chain segments q1 , . . . , q,< , c; qF = N is 
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The quantity J 2[1 - xfiCq) A~.] = u(q) can be simply interpr&ed as the sum 
of the self-energy of an impurity embedded in an M = 0 chain and the inter- 
action energy of this impurity with auot,her one, p pair sites away. It can be 
more simply regarded, however, just, as the energy of a chain segment (with an 
impurity at’ the right, end) of lengt#h y ; t,he entire chain is t,hen a, collection of 
nonint,eracting segments, arbitrary in number, obeying only the constraint 
ES p, = N. 

F. sT?ITISTIC.lL nIECHlNLCS 

To evaluate t,he partition sum of the Heisenberg-Ising model, we first evaluate 
it for all the internal degrees of freedom in each segment,, which leads to a 
temperat,ure dependent ‘u (q.1: 

exp [-FU(q; ,B)] = n (1 + exp( -pL)). (3.56) 
k(Ci 

We then sum over all configurations of s - 1 internal impurit,ies aud t,hen sum 
over s: 

Eqr=N 

(3.57) 

It is appealing to handle the constraint c qr = N in analogy with the grand 
canonical ensemble, but because the exact free energy inrreases linearly with 
N for large N, such a met,hod fails. Rat.her the constraint, can be int,roduced 
explicitly using the integral representation for the Kronecker delt,a: 

Then 

exp[ie(& - N)J& (:3.58) 

where 

46 P) = qg exp[--PW(q; P) + iOy1. (3.60) 

This reduces the problem to quadrat,ures, which we shall not carry out. 

G. THE APPROXIK~TIOS OF RUIJGROK AND RODRIGUEZ 

It is interestring to consider t,he most successful of the approximat’e procedures 
for the Heisenberg model, that of Ruijgrok and Rodriguez (IO), (henceforth, 
RR), t.o see how accurately it gives the various properties of the Heisenberg- 
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king (HI) model that, are known exactly. The procedure of RR is t’o introduce 
operators & and .&+ similar to r]& and 71~~ of the XI’ model, operators that’ an- 
nihilate or create particles (i.e., spins up) in Bloch wave single particle states 
wit,h two sites per unit, cell rather than in plane wave single particle st,atcs as 
we did for the cyclic isotjropir SY model. The best form for t)he Bloch waves is 
det,ermined variationally. Thus their method gives t’he isotropic* XI7 model 
exactly (the Bloch waves reduce to plane waves:), but, it, is llot really suited to 
the anisotropic XI’ model because the lst’ter fails to conserve t,he number of 
part,icles, whereas t,he RR method is part,icle conserving. The Hrisenherg- 
Ising model, on the ot,her hand, is also part,iclc conserving, if by part,icles we 
mean single up-spins, not to lx confused wit’h up and down pair states. Further- 
more, the HI Hamiltonian is invariant under translations by an even numhcr of 
spin sites, providing it is made suitably cycalic. It is thus appropriate for a test 
of the RR procedure. 

The cyclic HI-Hamilt80nian in terns of the c’s and r+‘s introduced in (2.;ia, 
tj) is 

ZN--1 

HA = c [(cfcj - :~i)(c;+s,+, -.‘;) + ];(c,+c,+~ - c,ej+d] 
j=I.:$. 

ZN 
(:s.nl) 

+ 2X C (Cj+Cj - !i)(Cj+lCj+l - ,l,d). 
j&,4.. 

Following RR, operat#ors 4/; and &.+ are introduced to diagonalize H approxi- 
mately : 

(k = C eik’jlLl;(j)Cj = (t+)+ (3.63) 

,  

with 

Ul;(j) = (TN)-’ [COS a(k) + (- 1)‘sin Ck!(li)]. (i3.ti3) 

COMPARISOK OF THE RTJIJGROK-ROURIGLTZ Ak~~~~osr~~4~~ LONG-R.IS(;E ORDER IS THP: 

GRot-ND STATE OF THE HI &~ODEI, WITH THE CORRESPOSIIISG EXXT 
VALUES FOR VARIOUS VALUES OF X 

x 0 !dj 1 2.5 5 
-___ 

ERldlV -0.485 -o.(i15 -0.829 -1.511 -2.771 
EOIN -0.750 -0.782 -0.887 -1.550 -2.775 
P2L,RK 0.057 O.lG2 0.202 ,234 ,215 

z Pr rxact 0.000 0.000 0.000 .210 t210 
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The function ~(1;) is chosen to minimize the expectat’ion value of HA in the 
E’ermi sea of &particles. The energy per spin is found to be 

i&,/N = [l/4(1 + 2X)] - [(l + 2h)/a2]~2Cy’), 

where Jo is the solution of the transcendental equation 

(3.64) 

pLD(/Al’) = p!i,(l + ax). (3.65) 

x and D are again complete elliptical integrals. In Table IV we compare the 
energy per spin and long-range order calculated for the RR approximate ground 
state with the exact, energy per spin and end-to-end order, for several values of X. 
We see t,hat although the RR procedure gives the asympt’otically correct energy 
as x --) 2:, and a good upproximat,ion to the energy for X > 1, it may give the 
order quite incorrectly. This emphasizes the danger of relying on a variational 
approach for the long-range order, a result which is not surprising in view of 
the fact that, states with no long-range order can he construct’ed witah energy ‘spin 
above t,he ground state by only O( NP’) . 
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APPENDIX A. TO DIAGONALIZE A GENERAL QUAURATIC FORM IN 
FERMI OPERATORS 

We wish t’o diagonalize the quadratic form 

H = C [c~'A ljcj + ‘i(c,+B;icj+ + h.c.)], 
i.j 

where the c,‘s and ri+‘s are Fermi annihilat,ion and creation operat,ors and H is 
Hermitian. The Hermiticity of N requires that A be a Hermitian matrix, while 
the anticommut,ation rules among the G’S require t’hat B he an antisymmetric 
matrix. In the sit)ustions of interest, hrw, one can always arrange that A and B 
are real. 

We try to find a linear transformation of the form 

(A-2a) 

wit.h the gki and hki real, which is canonical (i.e., the vk’s and qk+‘s should also 
be Fermi operators) and which gives for H the form 

H = c Akql;+qk + constant. (A-3 11 



If this is possible, then 

[q,( ) H] - Aliqt = 0. (:1-J) 

Sllbstitutjing (,4-Z ) in (:N ) nud setting the c~orfFkients of each operator equal 
to ZCI’O, we obtain a s;ct of equations for the yki and hA-; : 

These are simplified hy introducing t#he linear comhinat~ions 

+A-< = 81;; + l1i.i (.i-(?a) 

and 

in terms of which the couplecl equations arc 

&(A - B) = &,I,* (A-ia) 

and 

ti,(A + B) = h& (A-7b) 

in an obvious matrix notat’ion. Either & or $11: can be eliminated from (.I-7) 
giving either 

01 

+p(A - B)(A + B) = &:“& (A-&l) 

+(A + B)(A - B) = AL.‘&. (A-8b) 

I’or bk f 0, either (.I-8a) or (A-8b) is solved for +k or 4, and the other vect#or 
is then obt’ained from (A-7a) or (A-7b). 

For hk = 0, both & and $r are det,ermined by (h-8), or more simply by (A-7 ), 
their rclat’ive sign being arbitrary. Changing the sign of $r , but not of &. , 
interchanges gbj and hr;,i , hence qk and vk+, and t,hus int.crchanges the definitions 
of occupied and mloccupied for this zero-energy mode. That the choice of 
definition is arbitrary is not, surprising, because it’ has no effect on t,he energy. 

Because A is symmetric and B is ant,isymmetric, (A + B)T = A - B, so 
t,hnt, bot,h (A - B)(A + B) and (A + B)(A - B) are symmetric and at, 
least posit,ive semi-definite. Thus all the AL’s are real and it is possible to choose 
all the &‘s and $.‘s to he real as well as orthogonal. If t’ht ok’s arc normalized 
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vectors ( xi $I:, = I), then t.he 41’s arc also automatIically normalized when 
AI, f 0 or call be so chosen when A, = 0. This ensures that 

F (gkigk,L + hthk,i) = 8~:tf (.4-!)a) 

and 

F (g&s,; - gvh:,) = 0, (-44%) 

the necessary and sufficicntI conditions t,hat the vk’s and vg+‘s hc cnnonicaI 
I’ermi operators. 

The constant in H can he determined by suhstitJuting (h-3) in (A-l ) or, less 
t’ediously, from the invariance of tr H under the canonical transformation 
(A-2). From (A-l) 

tr H = 2“-* c d L, (A-10) 
z 

while from (A-3) 

tr H = 2‘v-1x Ak + 2M X constant. (A-11) 
k 

The constant is t’hus 1/6( c A iS - c &) and 
1 k 

APPENDIX B. NONDEGESERACY OF THE C;ROUIW STATE ANI) 
ABSENCE OF AN ENERGY GAP IN THE HEISENBERG MODEL 

We prove two exact t,heorems about the ground state and excitation spectjrum 
for a Heisenberg model wit,h nearest neighbor interactions in one dimension. 
The generalization to longer range interactions and higher-dimensional lattices 
is indicated. A further generalization to particles of spin # ,S$ and a discussion 
of the ordering of excited st.at.e energy levels has been submitted for publication 
in the ,Journal of i!lathmatical Physics by Lieb and Mattis. 

THEOREM. 1. For a Iinear chain of spin !.i’s wit,h nearest, neighbor antiferro- 
magnet,ic. Heisenberg interactions, the ground st.ate is nondegenernt,e (hence 
5’ = 0). 

Proof. We first remark that t.his is a stronger theorem than t,hat due to hlar- 
shall (7), who proved t.hat there is a singlet ground state, but who did not 
exclude t,he possibility of t,here being several degenerate ground states, some 
of which may not be singlet,s. We consider the Hamiltonian 

H = C s’i9”j + J,,‘jC S’;S-j + S-;S+j , (B-1) 
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where i and j are on the A and B sublattices respectively and t,he sums run over 
all int,eracting pairs. It is convenient, to make the canonical bransformation 
rotating all spins 011 the B sublat’tice (s‘rj + - S”j , S”j + - Syj , SZj -+ S’j) , 
so t,hat instead of (B-l) we consider 

H' = C S'iS'j - ? 2C N+;I~-i + ~-ZI~fj . (B-3) 

Because [S, , H] = 0, let us consider only states having S, = 0 and show that 
only one such state has the ground-state energy. A complete set, of st.ates in 
the ST = 0 subspace is the set, of configurations in which N/2 spins are up and 

N/2 spins are down. \Ve denote these stat,ts by a,, whrrr 1 5 p 5 . Any 

eigenfunction \k of H’ can bt expanded as 

(B-3) 

and Schr6dinger’s equation in this representation reduces to a set, of coupled 
linear equations 

where 

and the @,,I(,,) arc t,he set of configurations which connect, to +‘p via the interac- 
tion. Because the Hamiltonian is real, we may assume wit8hout loss of generalit,y 
that all C’s are real. Essential to the proof is the following lemma: 

LEMMA 1. For any ground st,ate with S, = 0, all C;, # 0. 
Proof. Suppose the cont.rary, i.e., for some ground state Q0 having t.he ground- 

state energy E0 , 

c’, = 0 for P = pl , . . , ~~ . 

For these C’s (B-2) reduces to 

(B-5a) 

0 = .1; c c,,, P = Pl, ... ,!A. 
P'(I") 

Now in at least one of t.hese equat,ions, say the pPth, some of the CPJ’s # 0 
(otherwise H would break into blocks with no mat,rix elements connecting 
a PI> ... > +,,Y wi-ith the other configurations, which is readily seen to be im- 
possible); therefore (B-A) implies that there are nonzero C’s of both, signs. 
Consider then t,he trial function \ko’: 
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On the one hand, \k,,’ is not an eigenst,ate because 

(B-7) 

so that, from the variat)ional principle, we have for its energy 

E,’ > E,. W-8) 

On the other hand, explicit evaluaCon gives 

and 

from which it follows that 

(B-9a) 

13”’ 5 ix, . (B-10) 

The contradict,ion between (B-8) and (B-10) proves the lemma. 
\Ve now prove a lemma which is a stronger version of the lemma due to Peierls 

and used by Marshall. 
TAMMA 2. l;or every ground stak wit#h S, = 0, all (lP’s have t,he same sign. 
Pwof. Icor q0 to he a growd st’ate, the equalit’y must hold in (B-10 j. This 

occurs if, and only if, all t,he terms C’J,,, occuring in (B-9h) are positive, (they 
are all nonzero by lemma 11, i.e., the coefficient,s of all configurat,ions conncct~ed 
through the interaction with each other should have the same sigu. But as we 
have remarked, each configurat)ion is ultimately connected wit,h every other 
through repeated applications of the int~eraation, proving the lemma. 

It is now obvious that there can be only one ground st’at,e with S, = 0; other- 
w&r, t,he several states would all have all positive coefficients and so could not. 
be orthogonal to one another. Now Alarshall has shown t)hat at kast otle ground 
state has 8 = 0. The existence of another ground state, whatever it,s mult,iplicit,y, 
would imply that, there is a wcond ground state with S, = 0, whkh WC have 
shown to he impossible. The entire proof is immediately gencralizahle t,o any 
number of dimensions and any latt#ice which is decomposable int,o t#wo cquivaleut 
sublatt,ices wit,h antiferromagnetic Heisenherg int,eractions between spins on 
different sublattices and ferromagnet,ic Heisenberg interactions between spins 
on the same suhlattice. Also, although Marshall’s proof, used above, requires 
periodic boundary conditions tJo ensure translational invariance, this restriction 
may also be dropped if the lattice has reflection symmetry about some plane 
(so that there is a transformat,ion mapping the A and I3 suhlatjticcs into each 
other but leaving the Hamiltonian unchanged). 
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Kext we investigate the nat’ure of the excitation spectrum and prove 
THEOREM 2. There is an excited state for the cyclic linear chain wit’h nearest 

neighbor Heisenherg interactions having vanishingly small excitation energy 
in t,he limit t,hat the lengt’h of the chain becomes infinit,e. 

Proof. Consider the state 

*A. = exp (ilk c ?lH”,, )*‘o = a%, . (B-11) 

We first show that if li = (2?r/N) X odd integer, \kk is orthogonal to the ground 
state. Consider the mmary operat,or U, that displaces all the spins by one site 
cyclically: 

Because 

c-,sil-,-’ = s,+1 ) %+I = s, . 

[H,LT,] = 0, 

if \ko is an eigenstate of H, so is I’,\kO . By the nondegeneracy of q0 

IYz\ko = e’“*(I . 

Thus 

(*” 1 \kk) = (‘k” I 0” / \k”) 

= (90 1 c’,s”I~;’ 1 90). 

But 

IT,SkC,’ = 0” exp (i/iNS”lj exp (--SF S”,). 
1 

Because qU is a singlet 

exp (-ikk Sz,)*O = 0. 
1 

Furthermore, in t,he most convenient representation 

LTl = (‘,2 -:.> 

so that) 

exp(ikiL’S’J = (i’ J1> 

in this or any other represent,ation, providing 

k = &m/N, 111 an odd integer. 

(B-12) 

(B-13) 

(B-14) 

(B-15j 

(B-16) 

(B-17a) 

(B-17b) 

(B-18) 
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Thus 

(*oj\Ek) = -(%l\kJJ = 0. (B-19) 

Note that we have not proved the \kk’s to be orthogonal among themselves. 
The energy of \kk is also readily calculated. 

(\kk j H 1%) = (\Eo / o:-1HL9k 1 WI). (B-20) 

Using, 

and 

we find 

Ok-‘SrnOk = S”, cos kn + AS”, sin ha, (B-21a) 

Ok-‘Syn(3k = -Xx, sin kn + XzllL cos ha, (B-21b) 

Ok-‘XzllOk = x”, ) (B-21~) 

(\ko 1 ok-‘HOk 1 \ko) = (*o 1 H + (COY k - 1) $ (A!?, 6sn+l + sy, XYn+l) 

+ sin k 5 (S”, X’,+I 

(B-22) 

- sy, SLn+l) 
1 

Use has been made of (B-18) in the term arising from SN. S1 . Consider the 
t,erms on the right in (B-22), one by one, for k = 27r/N. 

(i) @o / H 190) = Eo . (B-23s) 

(ii) (COS k - 1) / !I?‘0 1 2 (S”, S+n+l + Syn S’n+l 
\ 1 

=[-+y- o(r4) ] 2 1 (*o 1 s”, s=n+l + Yn SYn+l 1 *o> (B-=b) 

5 .g ‘;+ O(N-3). 
0 d 

(iii) sin k \ko 2 (S”, SVn+l - 
c I 

P, S”n+l) \ko 
1 / > (B-23~) 

Thus for k = 27r/N, 

= -i sin k (*o / [C nSZ, , H] ) *o) = 0. 

(\kr, 1 H 1 a) 5 Eo + (‘2?r2,1W, (B-24) 

and there is no energy gap. 
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In t’wo dimensions we consider a square lattice of N sit,es in the x-direction 
and of M = O(N”) sites in the y-direction, where 0 < Y < 1. The Hamiltonian 
is assumed cyclic in the sense that 

and 

SO , .w+1 = St,, 1 (B-25a) 

S ‘v+1, 111 = S 1, m  7 (B-26) 

i.e., the lattice is wrapped on a torus. We take for the operator $, 

(B-27) 

This operat,or twists the direction of all spins with the same x-coordinate by the 
same amount,. \kk is const,ructed and its orthogonality to the ground state is 
proved precisely as in one dimension. Instead of (B-24), one now has 

(\kk 1 H / \kk) 5 B. + (2n”,‘N’-7; (B-28) 

so again there is no energy gap. Because the excit’ation energy of exact low-lying 
states should not depend on the shape of the entire lattice, there should be no 
energy gap for a lattice of N X N sites either. The particular state +!+ is un- 
fortunat,ely not, sufliciently like an exact low-lying excited st#ate to give this 
result. 

A similar extension to three dimensions is obvious. 

APPENDIX C. CAI,CCLATING Gij@) FOR THE XI7 MODEL 

By definit’ion 

In the ground state 

Gij = (&rl j). 

G’i j  = (\kO / BjA j  1 *O) 

(C-1) 

(C-2a) 

while at finit’e temperak~re 

where ( . . . )B denotes an average over the canonical ensemble at temperature 
T = l//i. Thus 

. 
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But 

(vk+rlk) = [exp(PAk) + 13-l, etc., 
so that 

G,j(p) = - F #ki&kj tanh(>i&) = - (tTtanh(3Q3A)+)ij. (C-4) 

For the cyclic chain, the sum in (C-4) can be considerably simplified. First, 
combining the summands for lc and -k, 

Gij(~) = - (2/N) C A,’ tanh(,$.@Ak) k>O (C-5) 

. [cos k cos k(i - j) - y sin Ic sin k(i - j)]. 

Second, combining the summands for k and z - IL, 

Gij(P) = -is/N) 
1 - (-lji-j 

3 c Ak-’ tanh($QAk) 
O<k< x I2 (C-6) 

.[cos k cos k(i - j) - y sin k sin k(i - j)]. 

For N -+ ~0 with i - j = T fixed, 

G, = - !$ L,+1 + ‘-T’ L-1 1 , r odd 

G, = 0, r even, (C-7) 

where 

L, = (2/r) f” dkA$ tanh(>@Ak) cos kr. 
0 

(C-8) 

G, for t,he ground st,ate is obtained by setting tanh(J &Ak) = 1. 

APPESI>IS 11. DEPENDENCE OF SIN* iVk AND z-h2 ON k FOR A 
CHAIN WITH FREE ESDS, k-1’ MODEL 

In this appendix we wish t,o show that for a chain with free ends, Ak3 and 
sin2 Nk are smoot,hly varying functions of k in t,he sense that the change in 
either of them when I;,, is replaced by I cm+1 is 0(1/N) (except, when k,+l is IQ, , 
the bound stat’e). 

First consider sin’ Nk. 

A sin2 Nk, = ?i(cos 2 Nk,, - cos 2 Nk,,+l) 
= >S(cos 2v,lr - cos 2v,+1 ?r). (D-1) 
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But because vm is obviously a slowly varying function of m, from (2.67’) or 
(2.69), we have 

A sin” Nk,, = r sin 2v,, T Av, = 0(1/N). 

Second, consider 9/; . Letting 

x,,, = sin 2(N + l)k,jsin 2k,, 

we have 

(D-2) 

Ai1;, = ,4:,+, - &, = 4(N + 1 - xm)-’ Axm (D-3) 

providing 

Axml(N + 1 - xm> << 1. (D-4) 

Iiow,asN+ a, 

sin[(2m/N) - v,]x 2mn xnl = 
sin(2mr/N) 

= COS vm * - Cot __ sin vm 7r 
N 

(D-5) 

and 

AX,,, = . 

For l&N 

[sin vmx + cot’(2jrwjN) cos v~?T]?TAv~, 

- sin v,,?T Acot(“mr/N). 
(D-6) 

- ~1 = O(N), these relations give 

xm = O(l) and Ax,, =0(1/N), (D-7) 

so that, (D-4 j is satisfied and (D-3) gives 

A& = O( l/N”). (D-8) 

For ?iN - TV = ~1' = o(N) # 0, one must be more careful. Then 

AAt_ = 4Axm,‘(N + 1 - xn2+dVJ + 1 - xm). 

In this limit 

(D-9) 

XV? = cos vma + (N/2,m'n) sin v~&~F = ( N/2m’a) sin v,,,K + o(N) 

Thus 

Axm = (N/~T) [sin v.~T/~‘(I)z’ - l)] + o(N), 

so that 

(D-10) 

(D-11) 

A& = 0(1/N). (D-12) 
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APPENDIS E. Gij FOR THE XY MODEL WITH FREE END8 

In this appendix w-e derive simple relations between G<j for the XY model 
with free ends and G-j for the cyclic XY model, valid except when i and j are 
near opposite ends. 

In general 

For free ends, t,he sum on k is over modes of Type I and Type II. If i is odd 
I,!$; = 0 so that only Type I modes cont,ribute; but for Type I modes, & = 0 
unless j is even. Thus 

G{j = - C &a#& = C ,4~C26~ sin [(N- i + l)k] sin j/c 
&I k[ (E-2a) 

for i odd, j even; 

similarly, 

/1 G:i = F A,‘& sin ik sin [(N + 1 - jjk] for i even,j odd; (E-2b) 

and finally, 

Gij ‘= 0 for i and j bot’h even or both odd. (E-2c) 

Furt.hermore, k, c) krr is equivalent to y + -7, so that 

dj(r) = G;i( -Y), (E-3a) 

and for the cyclic chain we have a similar relation 

CT-j(r) = G-i( -7). (E-3b) 

Therefore we need consider only the case i odd and j even. 
Defining 

r=i-j, (E-4a) 

s=i+j, (E-4b) 

we obt,ain 

G<j = ?S c Ak%k[COS (N + 1 - s)k - cos (N + 1 - f-)/k], (E-5) 

and we have two sums on t’he right of identical structure. Suppose first that 
s = o(N). Then using (2.66) and neglect’ing terms of 0(1/N) we find 

cos (N + 1 - s)k,’ = (-1) COB (v,I --[(l - s)m/N]~a. (E-6) 
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From (2.67’) it follows immediately that 

Ji c Ak%k cos (N + 1 - s)k = -G,” 
kI 

so that’ 

(E-7) 

G:j = G:-i - G:+j for i odd, j even, ] i - j 1 = o(N), and i + j = o(N). 

(E-8a) 

From (E-3a, h) we have also 

G{j = G:-i - GL(i+j, for i even, j odd, 1 i - j 1 = o(N) and i + j = o(N). 

(E-8b) 

If bot,h i and j are far from the ends but not far from each other, we suppose 
r = o(N) but s = UN where (T = O(1). Then, using (2.66) and neglecting 
terms of 0( l/N), we find 

; z -4,“& cos(N + 1 - s)k 

= ; -& [cod2 - a)mr + cos ama]AZk, cos ((1 - U)Y, - ;) T (E-9) 

+ :t G [sin(2 - a)mn - sin crn7r]Ai_ sin ((I - U)V, - 3 7r 

The terms in brackets in each sum are rapidly oscillating functions of m while 
their coefficients are slowly changing functions of ~1, as N --f = . The sums are 
therefore 0( l/N) an can be neglected. Thus d 

G:j = Gl-j , iodd and jeven, 1 i-j 1 = o(NJ,i + j = O(N) (E-10) 

The same result holds for i even and j odd. 

APPESDIS F. ALIGNMENT OF SPINS I?; SUCCESSIVE IMPURITY 
PAIRS, HI MODEL 

In this appendix we show that t’he spins of successive impurity pairs in the 
HI model are aligned parallel or antiparallel, depending on whether the number 
of elementary excitations (excluding the trivial k = 0 ‘Lexcitation”) is respec- 
Cvely odd or even. We shall consider only the special case that t’he impurity 
pairs are at opposite ends of a finite chain, but, the generalization to any number 
of impurity pairs in any positions is obvious. 

Although neither of the stat’es qO+ and \IrO- defined by (352d, e) , are eigenstates 
of So or XLN , we wish to show that these two states involve only configurations 
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in which the first two spins are antipamllel t,o the last two. Because the first 
two spins (and also the last two) are t,hemselves parallel, it is suthcient to show 
that 

S”oSZN~o* = - l,A!P”* . (F-1) 

More generally, we shall show that 

SZOSZN?JI . . . ??I,, \ko+ = - ( - 1)“.1,*& . . ?& \E”* , 

vhere ki # 0 for all i. 

(F-2) 

Taking into account (3.41) and (3.X3), we have 

&SLN?& . . . ?&PO* = --facao+ + ~o)(~N+ + UN) d, . . . Ill,,*“* 1 

= -!A exp(idX)(co+ + cO)(cN+ + rN)d, . . . r~ii~-@~*, 

= -9 exp(idR)(vorlo+ - I~o+vo)~, . . v~,,\E’~*, 
( F-3 j 

= k;x exp(iaX)T& . . ?&$X4, ) 
N 

where x = c Cj’cj . ,I;ow it is easily seen that 
0 

exp(i7rX)qk+ exp( -i?rX) = -ok+. (F-4) 

Therefore 

A%&& . . . d,L*~+ = f ( - 1) “.%id, . . . ~4, exp( iaX) qok . (F-S) 

The result, that the spin alignment of successive impurities goes from parallel 
to ant,iparallel or vice versa with each additional excitat,ion is now obvious from 
t,he fact,or ( - 1) n. 

To det,ermine the alignment. in the states * O+ we must’ evaluate exp(i7r3Z)\ko* . 
First observe from (F-4) tShat 

qk exp(iaX)Po- = -exp(kX)qk\ko- = 0, for all li, (F-6) 

so that, 

exp(i7r%)*o- = exp(icu)*o-, 

where a: is a phase angle to be determined. But 

exp(2inX) = 1 

so that’ 

exp(&) = fl. 

(F-i) 

(F-8) 

(Ii-.!,) 
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Thus \EO- involves states either with only even numbers of “c-particles” or only 
odd numbers of c-particles. To find out which is t,he case, consider the espansion 
of *U- in st’at,es witah definite sets of c-particles: 

$0.. z [.fC + 2 fl-(i)Ci+ + C f2-(ij)C;+Cj+ + . . .]@.I, , (F-10') 
l ij 

where % is the c-particle vacuum. Then, using t#he transfornxkion (A-2), the 
defining equations for \Eo- reduce to 

from which we have a set of coupled equations for Jo-, J”-, j’-, etc.: 

f”- + F gkz(,f-(li! - .fl?-(il)) = 0, all i, etc. . . . , (I?-llb 

where 

gki = +iz + *k-l . (F-12 

Similarly, from the defining equations for \ko+ , we obtain a set c )f 
coupled equations for the expansion coefficients .fo+, .fi+, .fz’, etc. : 

F wf1+m = 0, (F-13a1 

f0+ + F rnki[.f~+(Zi) - j~+( il)] = 0, all i, etc. . . . , (F-13b) 

where 

I?lkz = gki = & + t+L for 1; $ 0, 

= +A.; - $hj for Ii = 0. (F-14) 

A study of det g and det m reveals that, in general, m is singular and g is not,. 
Thus 

.fl- = f3- = .f5- = . . = 0 (F-IS) 

and 

.fo+ = f2+ = f4+ = . . . = 0, (F-16) 
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from which we conclude that 

aud 
‘ t SLOSNr/k, . . . T&&l* = - ( - 1) “>;T& . . &PO* . 

RECEIVED: July 27, 1961 

(F-18) 
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