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1 The main energy-entropy balance argument

LetA be a C∗ algebra such as the algebra of quasi-local observables of a quantum spin system
on Zd, and suppose {αt}t∈R is a strongly continuous one-parameter group of automorphisms
of A, which we will refer to as the dynamics of the system. The examples we have in mind
are the dynamics of a quantum spin system generated by a not-too-long-range interaction
Φ, e.g., one that satsifies, for some λ > 0,

‖Φ‖λ ≡ sup
x∈Zd

∑
x3X

eλ|X|‖Φ(X)‖ < ∞ .

A symmetry of the system is an automorphism, τ , of A, which commutes with αt, i.e.,

αt(τ(A)) = τ(αt(A)), for all A ∈ A, t ∈ R

It is easy to see that if τ is a symmetry, than so is τ−1. In fact, the set of all automorphisms
commuting with the dynamics is a group for composition of automorphisms.

It is easy to see that if τ is a symmetry and ω is a β−KMS state for αt, then ω ◦ τ
is also β−KMS. The Mermin-Wagner-Hohenberg Theorem gives sufficient conditions that
imply that all β−KMS states, ω, of the system are τ -invariant, i.e., ω(τ(A)) = ω(A), for
all A ∈ A. The original theorem, a special case of what we will prove here, says that no
spontaneaous breaking of any continuous symmetry occurs at finite temperatures (β < ∞)
in dimensions d ≤ 2.

The general theorem involves the following two assumptions, which we will verify for a
variety of systems, including two-dimensional models with a continuous symmetry.

MWH1: The symmetry τ is approximately inner in the sense that there exist a sequence
of unitaries Un ∈ A such that

lim
n→∞

‖τ(A)− U∗
nAUn‖ = 0, for all A ∈ A .

We also assume that these unitaries can be taken form the domain of δ, the generator of the
dynamics αt = eitδ. Equivalently, we assume that the follwing limits exist

lim
t→0

αt(Un)− Un

t
= iδ(Un) .

Note that it follows from these assumptions that τ−1 is also approximately inner, approxi-
mated by the unitaries U∗

n, and that U∗ ∈ Dom(δ).
The second assumption comes in two versions.
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MWH2: We assume that one of the following holds:
(i) there exists a constant M such that ‖δ(Un)‖ ≤ M , for all n, or
(ii) all β−KMS states are τ 2-invariant and there exists a constant M such that

‖U∗
nδ(Un) + Unδ(U

∗
n)‖ ≤ M, for all n .

Theorem 1.1 Suppose τ is a symmetry of the system (A, αt) such that conditions MWH1
and MWH2 ((i) or (ii)) are satisfied. Then, all β−KMS states are τ− invariant for all
β ∈ [0,∞).

Using the assumptions and the EEB inequalities, we will prove that if ω is β−KMS, then
there exists a constant C such that

ω ◦ τ(A∗A) ≤ Cω(A∗A) (1.1)

The constant C will depend only on β and M . This a uniform version of absolute continuity
of ω◦τ with respect to ω. It is not hard to prove that for extremal β−KMS states one has the
dichotomy: either they are equal or they are disjoint. That is, if they are quasi-equivalent
states, a fortiori, if one is absolutely continuous with respect to the other, then they are
necessarily equal. This follows from the general result that (1.1) implies that there exists
0 ≤ T ∈ πω(A)′ ∩ πω(A)′′ such that ω ◦ τ(A∗A) = 〈Ωω, πω(A∗A)TΩω〉. Since extremal KMS
states are factor states, such T must be a multiple of 1l and, therefore, ω ◦ τ = ω.

So, from (1.1), it will follow that all extremal β−KMS states are τ−invariant and, there-
fore, by taking convex combinations, all β−KMS states are τ−invariant.

The second version of MWH2 includes the assumption that we already know that the
β−KMS states are τ 2−invariant. This is no restriction for compact continuous summetry
groups. For discrete groups such as finite groups or lattice translations one needs version (i).
In general, (i) implies (ii), but note that for involutions (τ 2 = 1l), (i) and (ii) are equivalent.
Now, we prove Theorem refthm:main.
Proof: Let ω be a β−KMS state. To prove (1.1) we will use the EEB inequalities and the
GNS reprensentation of ω. As any KMS state is time invariant, αt is unitarily implemented
by unitaries Ut in the GNS representation. As αt is strongly continuous, Ut is a strongly con-
tinuous one-parameter group generated by a s.a. operator H, with dense domain Dom(H),
and such that HΩ = 0, where Ω is the cyclic vector representing ω. We will need the spectral
resolution of H:

H =

∫
λ dEλ

to define a resolution of the identity by mutually orthogonal projections Pn, n ∈ Z,
∑

n Pn =
1l, as follows

Pn =

∫
(nε,n+1]

dEΛ

It is clear that, to prove (1.1), it is sufficient to prove that there exists a constant C, inde-
pendent of n, such that for all A ∈ A

ω ◦ τ(A∗PnA) ≤ Cω(A∗PnA)
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or more accurately, we will prove that, for all m, n, and for A ∈ A0, a norm-dense ∗−subalgebra
of A, we have

〈Ω | U∗
mπ(A∗)Pnπ(A)UmΩ〉 ≤ C〈Ω | π(A∗)Pnπ(A)Ω〉 (1.2)

By summing over n and taking the limit m →∞ one obtains (1.1).
To prove (1.2) we need the following estimates for quantities that appear in the EEB

inequalities. For convenience, we introduce the notation An = Pnπ(A). For the first estimate,
note that vectors of the form AnΩ are in the domain of H. We will also use ω( · ) as shorthand
for 〈Ω | ·Ω〉. Then we have, by using HΩ = 0,

ω(A∗
nδ(An)) = 〈Ω | A∗

nPnHPnAnΩ〉
≤ (n + 1) 〈Ω | A∗

nPnHPnAnΩ〉
≤ (n + 1) ω(A∗

nAn)

For the entropy term, we first observe that, using the KMS condition, we can relate
ω(A∗

nAn) and ω(AnA
∗
n) as follows:

ω(AnA
∗
n) = ω(A∗

nαiβ(An))

= 〈Ω | A∗
nPnE

−βHPnAnΩ〉
≤ e−βnω(A∗

nAn)

From this estimate we get

ω(A∗
nAn) log

ω(A∗
nAn)

ω(AnA∗
n)

≥ ω(A∗
nAn) log

ω(A∗
nAn)

e−βnεω(A∗
nAn)

≥ βnε ω(A∗
nAn)

The EEB inequality for the observable X = UmAn:

βω(A∗
nU

∗
mδ(UmAn)) ≥ ω(A∗

nAn) log
ω(A∗

nAn)

ω(UmAnA∗
nU

∗
m)

By using the derivation property on the left and adding and substracting a term on the right,
and reorganizing this can be written as (watch the stars!)

ω(A∗
nAn) log

ω(AnA
∗
n)

ω(UmAnA∗
nU

∗
m)

≤ βω(A∗
nU

∗
mδ(Um)An) + βω(A∗

nδ(An))− ω(A∗
nAn) log

ω(A∗
nAn)

ω(AnA∗
n)

The last two terms can be bounded by the estimates we prepared. The result gives

ω(A∗
nAn) log

ω(AnA
∗
n)

ω(UmAnA∗
nU

∗
m)

≤ βω(A∗
nU

∗
mδ(Um)An) + βω(A∗

nAn) (1.3)

Now it is time to use MWH2. The two versions are treated slightly differently. With
version (i), we immediately get

ω(A∗
nAn) log

ω(AnA
∗
n)

ω(UmAnA∗
nU

∗
m)

≤ β(M + 1)ω(A∗
nAn).
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After simplifying, exponentiating, and reversing the roles of An and A∗
n, as well as τ and

τ−1, one gets (1.1) with C = eβ(M+1).
In order to use MWH2 (ii), we use (1.3) and the similar bound for Um and U∗

m inter-
changed. By adding the two bounds we get:

ω(A∗
nAn) log

ω(AnA
∗
n)2

ω(UmAnA∗
nU

∗
m)ω(U∗

mAnA∗
nUm)

≤ βω(A∗
n[U∗

mδ(Um) + Umδ(U∗
m)]An) + 2β ω(A∗

nAn)

In the same way as before, but by using (ii) instead of (i), we obtain

ω(AnA
∗
n)2 ≤ eβ(M+2)ω(τ(AnA

∗
n)ω(τ−1(AnA

∗
n))

As ω ◦ τ is a β−KMS state, too, we can write

ω(τ(AnA
∗
n))2 ≤ eβ(M+2)ω(τ 2(AnA

∗
n)ω(AnA

∗
n)

Now, we have to used that β−KMS states are τ 2−invariant. By taking square roots we get
(1.1) with C = eβ(M+2)/2.

2 Applications. The Mermin-Wagner-Hohenberg The-

orem

Recall that the assumption MWH2 of Theorem 1.1 came in two versions. We assumed that
one of the following holds: (i) there exists a constant M such that ‖δ(Un)‖ ≤ M , for all n;
(ii) all β−KMS states are τ 2-invariant and there exists a constant M such that

‖U∗
nδ(Un) + Unδ(U

∗
n)‖ ≤ M, for all n .

We still need to show how the theorem is used to prove absence of continuous symmetry
breaking in two dimensions at finite temperature. As we will show a bit further, MWH2 (ii),
but not (i), can be verified in this case. The following lemma allows us to apply the main
theorem to continuous symmetries.

Lemma 2.1 Let {tauφ | φ ∈ S1} be a compact connected continuous one-parameter group
of automorphisms of A. Let K be a set of states ω such that ω ◦ τ 2

φ = ω implies ω ◦ τφ = ω,
for any φ ∈ S1. Then all ω ∈ K are τφ−invariant for all φ ∈ S1.

Proof: As τ 2
π = id, the assumptions imply that ω ◦ τπ = ω. By repeating the argument n

more times we get that ω ◦ τπ/2n . It follows immediately that ω is invariant for all τφ with φ

of the form φ =
∑N

n=0 an2−nπ, where an ∈ Z. Clealry, such φ form a dense set in S1. Now,
for every A ∈ A, the function φ → ω(τφ(A)− A) is continous and vanishes on dense subset
of S1. Hence, it vanishes everywhere.

For symmetries representing an arbitrary compact Lie group, we can apply this lemma
for a generating set of one-dimensional compact subgroups.
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Now, we will verify MWH1 and MWH2 (ii) for two-dimensional quantum spin systems
with a connected compact continuous symmetry group. For simplicity we will consider pair
interactions only. This means that the dynamics is generated by local Hamiltonians of the
form

HΛ =
∑

x,y∈Λ

J(x, y)Φx,y (2.1)

for finite subsets Λ in Z2. where Φx,y ∈ A{x,y} are assumed to be uniformly bounded: say
‖Φx,y‖ ≤ 1, for all x, y ∈ Z2. Boundary terms are irrelevant in our considerations here.
Suppose that there there are unitary representations

Ux(φ) = eiφXx , φ ∈ S1,

with generators Xx = X∗
x ∈ A{x}, x ∈ Z2. E.g., for spin rotations the generators are SU(2)

spin matrices.
Consider the boxes Λm = [−m, m]2 ⊂ Z2. It is easy to satisfy MWH1 with a sequence of

unitaries of the form
Um(φ) =

⊗
x∈Λ2m

Ux(φm(x))

where φm(x) = φ, for all x ∈ Λm and, for the moment, arbitrary for x ∈ Λ2m \ Λm.
Translation invariance is not required; in fact the argument works for inhomogeneous

systems with spins of different magnitudes at different sites. We will assume that there is a
uniform bound on the norm of the generators, say, there is a constant G such that ‖Xx‖ ≤ G,
for all x ∈ Z2.

Proposition 2.2 For a quantum spin system on Z2 with local Hamiltonians of the form
(2.1), with coupling constants J(x, y), satisfying

sup
x

∑
y∈Z2

|x− y|2|J(x, y)| < +∞

we can find φm(x) such that there exists a consant M such that

‖Umδ(U∗
m) + U∗

mδ(Um)‖ ≤ M, for all m

and Theorem 1.1 can be applied.

Proof: The idea behind the choice of the unitaries Un that approximate the symmetry
transformation is that, in the case of continuous symmetries such as a rotation by an angle
φ, it is possible to interpolate “smoothly” between rotations by a fixed angle in any given
finite volume, and zero rotation at infinity, in such a way that there is a uniform bound on
the energy involved in such a perturbation.

Claim: it suffices to take φm defined as follows:

φm(x) =

{
φ if x ∈ Λm

(2− min{|x1|,|x2|}
m

)φ if x ∈ Λ2m \ Λm

0 if x ∈ x 6∈ Λ2m
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The quantity we need to bound is the following:

‖Umδ(U∗
m) + U∗

mδ(Um)‖ ≤
∑
x,y

|J(x, y)|‖∆x,y‖

where

∆x,y = Ux(φm(x))Uy(φm(y))Φx,yUx(φm(x))∗Uy(φm(y))∗

+Ux(φm(x))∗Uy(φm(y))∗Φx,yUx(φm(x))Uy(φm(y))− 2Φx,y

By expanding the unitaries we can rewrite this as follows:

∆x,y = 0 + i[φm(x)Xx + φm(y)Xy, Φx,y]− i[φm(x)Xx + φm(y)Xy, Φx,y]

+2
∑
n≥1

(−1)n

(2n)!
ad2n

φm(x)Xx+φm(y)Xy
(Φx,y)

The trick is to realize that ∆x,y only depends on the differences φm(x)−φm(y). This can be
seen as follows:

φm(x)Xx + φm(y)Xy =
1

2
(φm(x) + φm(y))(Xx + Xy) +

1

2
(φm(x)− φm(y))(Xx −Xy)

Let us call the first term Ax,y and the second term Bx,y. Then, it is easily checked that Ax,y

and Bx,y commute. Hence,

adφm(x)Xx+φm(y)Xy = adAx,y + adBx,y

with adAx,y and adBx,y commuting as well. By assumption we have adAx,y(Φx,y) = 0. Using
these properties we can derive the following estimate for ‖∆x,y‖:

‖∆x,y‖ ≤ 2
∑
n≥1

1

(2n)!

(
φm(x)− φm(y)

2

)2n

‖ad2n
Bx,y

(Φx,y)‖ (2.2)

Since d = 2, we have |Λm| = (2m + 1)2. Also not that |φm(x)− φm(y)| ≤ |φ|/m. Therefore,
the sum over x can be estimated by

‖∆x,y‖ ≤ 2
∑

|x|≤2m,y∈Z2

|J(x, y)|
(
|x− y|

2m

)2 ∑
n≥1

1

(2n)!
(2‖Bx,y‖)2n‖Φx,y‖

≤ 4
∑

|x|≤2m,y∈Z2

|x− y|2|J(x, y)|‖Bx,y‖2

(2m)2
e4|φ|‖Bx,y‖2

≤ constant× sup
x

∑
y∈Z2

|x− y|2|J(x, y)|

One can obtain a similar condition on J(x, y) that excludes continuous symmetry break-
ing in one dimension. For this, and some other applications, see Homework # 4.
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