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There are many references for representation theory in general, and the rep-
resentations of SU(2) in particular. Three that I used are

e A. Edmonds, Angular Momentum in Quantum Mechanics 1957.
e Wu-Ki Tung, Group Theory in Physics 1985.

e Fulton & Harris, Representation Theory 1991.

1 suy, so3(R) and sly(C)

The group SU(2) is the group of unitary 2 x 2 matrices with determinant 1.
Every such matrix can be uniquely written as

Uz, w) = (% _zw>

for (z,w) € C?, with the condition that |z|?> + |w|?> = 1. In other words,
SU(2) is topologically equivalent to the unit sphere in C?, which is the same
as the real 3-sphere. SU(2) is a real Lie group, meaning it is a group with a
compatible structure of a real manifold.

A Lie algebra g is a vector space with a bilinear form [.,.] : g X g — g,
called a Lie bracket, satisfying

L [Y,X]=-[X,Y],
2. [X, [V, Z]|+ [V, [Z, X]|+ [Z,[X, Y]] = 0.

The Lie algebra su, is defined as the tangent space to SU(2) at the identity.
We obtain the tangent space by taking all limits

A(Z,W)= lim

e—0,ecR €

UL+ €Z, W) —U(1,0) _ ( % —;V )



for those Z and W which satisfy det U(1 +€Z,eW) = 1+ O(€?), i.e. Re(Z) =
0. These are the matrices in M, satisfying A* = —A. This is a three-
dimensional, real vector space with basis ¢S, 152, iS3, where

0o i 1 L9
3 0 s 0 —3

are the spin—% matrices from before. Recall the spin matrices satisfy the
commutation relations [S', S?] =453 [S?, S3] = 1St [S3, S| =452

The group SU(2) is studied in connection with the quantization of angular
momentum. One may wonder if SO3(R), the group of rotations in real, three-
dimensional space, is a better group to study. The rotations about the three
axes are given by the matrices

o

1 0 0
Ri(0) = 0 cosf —sinf
0 sinf cosf

cos# 0 sinf

Ry () = 0 1 0
—sinf 0 cosf
cos) —sinf 0
R3(0) = sinf cosf 0
0 0 1

The group SO(3) is generated by these matrices for 6 € [0, 27). It is easy to
calculate the derivative of each of these matrices at zero:

00 O 0 01
m=00 -1],m=| 0 00
01 0 -10 0

-1
0
0

, T's =

o = O
o OO

These are the basis elements for so3(R). So so03(R) consists of all skew-
orthogonal (AT = —A), real 3 x 3 matrices. Moreover, the basis elements
satisfy the commutation relations [ro,rg] = €ap,7y. It is customary to de-
fine J* = ir,, whereupon we recover the commutation relations [J¢, J°] =
—eapyJ7. So, in fact s03(R) is exactly the same as su,.

Moreover, SO3(R) is not a simply connected group, while SU(2) is. In-
deed, SU(2) is a double-cover of SO3(R) which can be obtained by con-
sidering the representation of SU(2) on R® wherein the three-dimensional



vectors are actually traceless, hermitian matrices X = 2'S? + 2252 4 2353,
and SU(2) acts by conjugation X — X' = UXU* for U € SU(2). Since X'
is still hermitian, and traceless, U actually defines a linear transformation on
this three-dimensional, real space. Note that — det(X) = |z}|? + [22]2 + |23|?,
and det(X') = det(X), so that the linear transformation is actually orthogo-
nal. Finally, it is special because SU(2) is connected (so the determinant of
the image cannot take both values 1 and -1). Thus we have a map of SU(2)
into SO(3). It is two-to-one because A and —A both induce the same map.

There is a one-to-one correspondence between the representations of a
Lie algebra and Lie group, when the Lie group is connected and simply
connected. This means that the representations of su, and so3(R) are both
the same as the representations of SU(2), but not of SO(3). This explains
why we study SU(2) instead of SO(3).

The Lie algebra su, is a real Lie algebra. It can be thought of as a real
subspace of B(C?). It is often useful to have a complex subspace instead. We
can define the complexification of suy, which is simply the complex vector
space spanned by S', §%, S3. Tt is easy to see that this is sl,(C), the set of
all trace-zero complex matrices in M,. (This is the Lie algebra for the Lie
group SLy(C) : all complex 2 x 2 matrices with determinant 1.) We define
S* = 51 +45?% € sl,(C), which satisfy the commutation relations

[S%, 8t =8, [$%,87]=-S", [St,57]=25°

The matrices (S3,S*,57) generate sly(C) just as well as (S',5%, 5%). St
and S~ are the raising and lowering operators.

2 Representations

Any linear map p : suy — M, such that [p(iS%), p(iSP)] = —eap,p(iS7),
is called an n-dimensional representation of su,. Such a representation is
specified by the images p(iS®), a = 1,2,3. A representation of sly(C) is a
linear map such that

[0(5%), p(SF)] = £p(S*),  [p(ST), p(S7)] = 2p(5?)

Any representation of sus can be extended to a representation of sly(C), and
any representation of sly(C) can be restricted to a representation of sily.

If p satisfies p(A*) = p(A)*, then it is called a unitary repesentation. An
important point is that if p is not unitary, a priori, we can always redefine



the inner-product on C* so as to make it unitary. This is because SU(2)
is a compact group, and so has a unique Haar measure, H. The unique
Haar measure is characterized by the fact that H(E) = H(UE) for every

measurable £ C SU(2) and U € SU(2), and H(SU(2)) = 1. Whatever
inner-product is on C" initially, we average over SU(2):

(Wlg) = /S o Ul) 1)

With the new inner-product on C", p is unitary. From now on all represen-
tations are unitary.

A representation is irreducible if there is no proper, invariant subspace
V C C". An invariant subspace is one for which p(S®)v € V for every
v € V and o« = 1,2,3. The entire list of finite-dimensional, irreducible
representations was given in lecture 2. They are specified by the spin S
matrices. We will not prove this here; it is proved in each of the three
references above. Suppose that W is an invariant subspace of C*. Then
the orthogonal complement W+ is also invariant, since p is unitary. This
proves that every finite-dimensional representation of sus (and so3(R) and
sl(C)) is completely reducible; i.e. it can be decomposed into a direct sum
of irreducible representations.

Suppose that p; : sus — B(V}) and ps : suy — B(V3) are two represen-
tations of suy; on two f.d. complex vector spaces Vi and V,. Then there is a
representation p : suy; — B(V; ® V3) given by

p(5%) = p1(S*) @ L + I; ® pa(5°)

where 1; is the identity operator on Vj;, 7 = 1,2. It is trivial to check that
this satisfies the commutation relations, since for A, By € Vi, Ay, By € Vy:

[ ] []I]_ ® AQ,Bl ® ]12] = O,
o I, ® Ay, I; ® By] = 1; ® [As, B,
o A1 @1y, B ® 1y =[A, B ® L.

It is also trivial to check that the tensor product of two unitary representa-
tions is again unitary. In general it is not true that if V; and V5 are irreducible
representations then the tensor product V; ® V5 is also irreducible. It is there-
fore a natural question to ask how V; ® V5, decomposes into irreducibles. This
is the Clebsch-Gordon problem, which we will now discuss.



3 Clebsch-Gordon coefficients

Instead of considering arbitrary representations V;, V5 we will consider irre-
ducible representations. The reason is that we already know V; and V5 can
de decomposed into irreducibles

Vi=Vii@®---0Vi, Vo=V @ - -®Vy,,.

Since ® is distributive w.r.t. @, we see that in general

T1

W@‘fz:@ém,h@%,b-

i1=1149=1

If we can say what each Vi ; ® Vs, is in terms of irreducibles, then we can
determinde the direct sum decomposition of V; ® V5. Since Vi ;, and V3 ;, are
each irreducible, it suffices to solve the Clebsch-Gordon problem for V; and
V5 both irreducible.

The entire list of irreps of suy; was given in Lecture 2, as the spin S
matrices. Let us suppose we have S = j; and S = j,. Therefore, V; = C¥1+!
and V5 = C%2+1, We will refer to these representations as PU1) and D),
following standard practice. The states of V,, will be labeled by ¥4 (ja, Ma)
where my = —ja, —Ja + 1, *, Ja, (@ = 1,2). This is chosen so that

qu/}a(jw ma) = mawa(jaa ma) .
We define the Casimir operator [S,|*> = (S2)% + (S2)? + (S2)2. Observe that
by the derivation property of [.,.] (namely, [AB, C| = A[B, C]+[A, C]B), we
have
A, BQ] ={[4, B], B}

where {X,Y} = XY + Y X is the anticommutator. Therefore
[Sar (82)°] = {[Sa, Sal; Sa} = i{Sa, Sa} -
Similarly,
[S(?J’n (52)2] = {[Sgu ng]ﬂ Sg} = _i{Séa ng} :

Finally, [S2,(52)?] = 0 for obvious reasons. Since the anticommutator is
symmetric, we see that [S2,[S,|?] = 0. By permutation symmetry, we also
have [SL, [Sal?] = [S?, |Sal?] = 0. Therefore [S=,[S,|?] = 0, and we see that
|So|? acts on V, as a constant times the identity matrix. To see just what



constant, we calculate it on ¥, (ja, ja). Note that |[S,|> = 2(SFS, +5,55)+
(82)%. Therefore, since Sy (ja; jo) = 0,

o 1 _ . . .
|Sa|2¢a(]aa]a) = ES;LSa ¢a(]aa]a) +]iwa(]aama)

An important fact is that this Casimir operator can distinguish vectors in
different irreps because its eigenvalue is an injective function of j.

The representation on Vi ® V5 is generated by the operators S3 = S? + 53
and S* = Sf + SF. In general this will be a direct sum of irreps given by
spin j matrices for j taking on some values. Note that the Casimir operator
for the tensor product is

IS|? = [S1 + So|* = |S1 > + [Sa|* +2S; - Sy,

where

1
S, -8, =535 + §(SI+S; +8,55).

Since |Si|? and |Sy|? are essentially constants times the identity matrix,
(1S112,1S2/%, |S|?, S?) is a commuting family of operators. We prefer to keep
the decorations [S;|?,|S,|? since it makes clear what the dimensions of the
two irreps are that we are tensoring. Suppose ¥(j1, j2, j, m) is a simultaneous
eigenstate with eigenvalues (5% + ji, 2 + Jjo, 72 + j,m). Then

Y dim) = > MG, mu, 2, ma; i, Jas §y M) (i, ma) @ 1o (o, ma) -
my Fmg=m

It is an abuse of notation to label the eigenstates ¥(j1, j2, j, m) before proving

that for each quadruple of eigenvalues there is at most one eigenstate. But we

will systematically prove this fact regardless of the label for the eigenstates,

so the abuse is not important.

We consider ¥ (j1,J1) ® ¥2(ja, j2). This is a simulatneous eigevector of
IS1]?, [S2]* and S3, with eigenvalues j;(j; + 1), j2(j2 + 1) and j; + jo. But
also, since St1(j1,m1) ® Ye(ja, me) = 0 for @ = 1,2, we see that it is an
eigenvector of S; - Sy with eigenvalue j;7,. This means it is an eigenvector of
|J|?, with eigenvalue (j1 + j2)(j1 + j2 + 1). In other words,

V1(j1, m2) @ VP2(J2, m2) = ¥ (J1, J2, J1 + Jo, 1 + J2) -



So there is at least one copy of the irrep D711/, generated by the spin j; + j,
matrices. This is the only state ¥(j1, jo, j, j1 + j2) for any j. Thus every irrep
in the direct sum decomposition of V; ® V5 has spin at mose j; + j2, and
in fact there is only one copy of that irrep. (If there were any other irrep
with spin at least j; + j» it would contain an eigenstate of J® with eigenvalue
J1 + J2, orthogonal to the one we just determined.)

Suppose now that we have proved there is a unique copy of the irrep DU
in DU @ DU2) for j = j; + jo, 51 + jo — 1,..., 4", where 5' > |j; — ja|. The
eigenspace of J? with eigenvalue j' — 1 has dimension j; + j» — j' + 2, while
the eigenstates {t(j1,j2,7,7' —1) € DY : j = 5, + jo,j1 + 7o — 1,...,5'}
only account for a (j; + jo — j' + 1)-dimensional subspace. Taking the unique
vector orthogonal to all of these yields a state ¥ (j1, j2, 7,5 — 1) with j < 5.
(Because the orthogonal complement of an invariant subspace is invariant.)
But since the third component of spin for this state is j' — 1, it must be that
j = j' — 1. So there is at least one copy of DY =1, Since any other copy
of DU'—Y) would give an additional orthogonal state in the eigenspace of J3
with eigenvalue j' — 1, there is a unique copy of DU'~1.

Thus we have proved that there is a unique copy of PU) in the tensor
product DY) @ DU2) for each j = ji + jo, 51 + jo — 1,..., |1 — j2|- To see
that this is actually the entire list of irreps, note that the dimensions match.
The dimension of DUV @ DU2) is (25, + 1)(272 + 1), and

Ji1+j2
dim(PUt)gpliticg. . .gpli—i) = Z (27+1) = (21+1)(2j2+1) .
J=|j1—3z|
We have thus solved the problem of stating which irreps appear in the di-
rect sum decomposition of Vi ® V5. We have not said what the matrix

M (j1, m1, j2, ma; j1, jo, j,m) is, which connects them. Foregoing the anal-
ysis, the result is zero unless m = my 4+ my and

M (j1, jo, m1 + ma, j; j1, M2, j2, m2)
_ [(2j + 1)1 + g2 — D' — g2 + )N =d1 + 2 + 4)!
(j1+je+j+1)!

x[(j1 + ma)! (1 — m1)!(ja + m2)!(ja — ma)!(j + m)!(j — m)!])/?
1

1/2

X -1 . . — —
g( ) 21 + 52 — 7 — )W —m1 = 2)l(J2 + me — 2)1(j — j2 + ma + 2)(j — j1 —ma + 2)!



Details of this calculation, as well as more symmetric forms of the vector-
coupling coefficients can be found in Edmonds.



