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Abstract. We study braid varieties and their relation to open positroid varieties. First, we con-

struct a DG-algebra associated to certain braid words, possibly admitting negative crossings, show

that its zeroth cohomology is an invariant under braid equivalence and positive Markov moves, and
provide an explicit geometric model for its cohomology in terms of an affine variety and a set of

locally nilpotent derivations. Second, we discuss four different types of braids associated to open

positroid strata and show that their associated Legendrian links are all Legendrian isotopic. In
particular, we prove that each open positroid stratum can be presented as the augmentation variety

for different Legendrian fronts described in terms of either permutations, juggling patterns, cyclic

rank matrices or Le diagrams. We also relate braid varieties to open Richardson varieties and brick
manifolds, showing that the latter provide projective compactifications of braid varieties, with nor-

mal crossing divisors at infinity, and compatible stratifications. Finally, we state a conjecture on the

existence and properties of cluster A-structures on braid varieties.

Ona l�bila Riqardsona
Ne potomu, qtoby proqla

A. S. Puxkin, Evgeni$i Onegin1

1. Introduction

This article studies braid varieties [11, 62] and their relation to open positroid varieties [53]. In a
nutshell, we study four braids associated to any open positroid variety, and develop new techniques
to algebraically study their braid varieties, now including Markov moves and allowing for negative
crossings. In addition, this paper brings to bear insight from contact and symplectic topology to
explicitly study these braid varieties, with salient focus on the case of open positroid varieties in
Grassmannians and the differential graded algebras of their associated Legendrian links.

An open positroid variety Π of the Grassmannian Gr(k, n) can be indexed by either of the following
four pieces of data. First, a pair of permutations u,w ∈ Sn such that u ≤ w in the Bruhat order and w
is a k-Grassmannian permutation. Second, a k-bounded affine permutation f : Z −→ Z with period n.
Third, a cyclic rank matrix r and, fourth, a Le diagram. The bijections between these objects and the
description of their associated positroid varieties are provided in [53, 71]. In this article, we study four
braids, one associated to each of these four pieces of data, and introduce their associated Legendrian
links. The main geometric result of this manuscript is showing that these four Legendrian links are
all Legendrian isotopic. This requires resolving two challenges: the dissonance in the number of
strands between these braids and, more prominently, the necessity for introducing negative crossings
in proving equivalences between braids (even between positive braids). The existence of negative
crossings forbids us from simply using front projections to realize braid Legendrian isotopies, adding
a layer of complexity due to the existence of negative degree Reeb chords. To our knowledge, the
conceptual insight that certain Legendrian links, not just smooth links, underlie each of this three
presentations of a positroid variety is also new.2

In turn, the main algebraic result is showing that the braid varieties associated to ∆-equivalent
positive braids are C∗-equivalent algebraic varieties, in the sense of [56]. For us, two braids are said to
be ∆-equivalent if they are related by positive stabilizations, positive destabilizations, Reidemeister
moves II and III, and conjugations of type βσi ∼ σn−iβ for any i ∈ [1, n], where β is n-stranded.3 In

1The reason she loved Richardson was not that she had read him — A.S. Pushkin, Eugene Onegin (tr. V. Nabokov).
2In particular, the braid associated to (u,w) typically contains negative crossings and, prior to this work, braid

varieties where only defined for positive braids words. The generalizations in this manuscript, which allow for negative

crossings, will now relate the braid variety of a positroid braid for (u,w) with its positroid variety.
3∆-equivalence of braids is imposed in this geometric context, rather than the standard notion of braid equivalence.

Conjugations are forced to be βσi ∼ σn−iβ, instead of βσi ∼ σiβ, due to the necessary presence of a half-twist ∆.
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particular, the two challenges above force us to develop new Markov moves for braid varieties and, cru-
cially, introduce a new characterization of braid varieties associated to any braid word, possibly with
negative crossings, which represents a given positive braid. (Indeed, Reidemeister II moves introduce
negative crossings.) This new description requires the introduction of locally nilpotent derivations to
capture a derived presentation of these algebraic varieties. This expands the foundational techniques
available in the study of braid varieties – conceptually and pragmatically – and, as an immediate
consequence of the geometric result above, gives a precise relation between some of the different view-
points previously used to study open positroid varieties, including [33, 53, 77]. From the perspective
of symplectic topology, we provide an algebraic closed formula for the differentials in the DG-algebra
of Legendrian links obtained as the Lagrangian (−1)-closures of braid words and relate it to braid
matrices and braid varieties.

The article also includes new results relating braid varieties to projective brick manifolds and open
Richardson varieties. In particular, we show that brick varieties are good projective compactifications
for our affine braid varieties, and we deduce the curious Lefschetz property for open Richardson
varieties by combining our work and that of A. Mellit [62]. The article concludes with a discussion
on conjectural matters regarding cluster A-structures on braid varieties.

1.1. Scientific Context. Let Brn be the braid group in n strands and Br+
n ⊆ Brn the monoid of

positive braids. We denote by Bn the set of braid words on the n Artin generators σ1, . . . , σn−1,
of Brn, and B+

n the set of positive braid words. The set of braids ∆-equivalent to a braid word
β ∈ Bn is denoted by [β]; we will write [β] ∈ Brn, implicitly understanding that any equivalence is a
∆-equivalence, i.e. our braid equivalences are taken to always be in the presence of a half-twist ∆.
Now, let β be a positive braid word β ∈ B+

n , β = σi1 · · ·σi` , and π ∈ GL(n,C) a permutation matrix.
Associated to this braid word, we consider the braid variety

X(β;π) := {(z1, . . . , z`) : Bγ(z1, . . . , z`)π is upper-triangular} ⊆ C`,
where the matrix Bγ(z1, . . . , z`) ∈ GL(n,C[z1, . . . , z`]) is defined to be the matrix product

Bγ(z1, . . . , z`) := Bi1(z1) · · ·Bi`(z`),
and the matrices Bi(z) ∈ GL(n,C[z]) are defined by:

(Bi(z))jk :=


1 j = k and j 6= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

The matrices Bi(z) are referred to as braid matrices, and the only non-trivial (2× 2)-block is at the
ith and (i+ 1)st rows. Braid varieties were introduced in [11, 62], where part of their geometry was
studied in detail. In particular, we proved in [11] that X(β1;π) ∼= X(β2;π) if β1 and β2 are related
by Reidemeister III moves; hence the name braid varieties. In the present article, the permutation
(matrix) π will often be π = w0,n = [n, n − 1, . . . , 1] ∈ Sn and we will often abbreviate X(β) for
X(β;w0,n). Let ∆n ∈ B+

n be a positive braid lift of the permutation w0,n, i.e. ∆n will be a braid
word for the half-twist on n-strands; we abbreviate ∆n by ∆ if n can be implicitly understood by
context. Braid varieties will have a prominent role in the results of this manuscript.

Significant focus will be devoted to certain braid words and positroid varieties, which we now
discuss. These varieties first appeared in the study of total positivity [59, 60, 71, 73] and in the
context of Poisson geometry [8]. Let Πu,w be the open positroid variety of the Grassmannian Gr(k, n)
indexed by a pair of permutations u,w ∈ Sn, u ≤ w in Bruhat order and w a k-Grassmannian
permutation. Consider the KLS-bijections between such pairs (u,w), bounded affine permutations
f : Z −→ Z, cyclic rank matrices r and Le-diagrams Lestablished in [53, 71]. For instance, the
bounded affine permutation f(u,w) : Z −→ Z corresponding to a pair (u,w) is f(u,w) := u−1tkw,
where tk is the translation by the kth fundamental weight; conversely, f recovers (u,w). Here f is
interpreted as an n-periodic Z-bijection such that i ≤ f(i) ≤ i + n for all i ∈ Z. The four pieces of
data (u,w), f , r and Lare said to represent the same positroid type if they correspond to each other



POSITROID LINKS AND BRAID VARIETIES 3

under these bijections. Each piece of data, (u,w), f , r, and L, yields an open stratum Πu,v, Πf , Πr,
and Π Lin Gr(k, n), and Πu,v = Πf = Πr = Π Lif (u,w), f , r, and Lrepresent the same positroid
type, e.g. see [53].

In fact, each of these pieces of data, (u,w), f , r and Lalso yields a braid word. These four braids,
which we correspondingly denote Rn(u, v), Jk(f), Mk(r) and Dk( L), will be studied in detail in this
article. A succinct description of these braids now follows; see also the detailed example in Subsection
1.3 below, where these braids are illustrated:

(i) Richardson braid. Let u,w ∈ Sn be such that u ≤ w in the Bruhat order and w is a k-
Grassmannian permutation. Consider the two n-stranded positive braids β(u), β(w) ∈ Br+

n ob-
tained by choosing reduced words for u,w ∈ Sn and lifting the Coxeter generators of Sn to
the Artin braid generators of Brn. By definition, the Richardson braid associated to (u,w) is
Rn(u,w) := β(w) · β(u)−1. This braid was recently introduced by P. Galashin and T. Lam in
[33, 34].

(ii) Juggling braid. Given a bounded affine permutation f : Z −→ Z, which we assume to be of the
form f = f(u,w), consider the real plane R2 with Cartesian coordinates (x, y). We draw the integer
values 1, 2, . . . , 2n on the horizontal real axis {(x, y) : y = 0} ⊆ R2, and for each i ∈ N, 1 ≤ i ≤ n,
we draw the upper semicircumference arc Ai that starts at the point (f(i), 0) and ends at the point
(i, 0). Since i ≤ f(i), the arcs move leftwards and it follows from [53] that under our assumptions
on (u,w) there exist exactly k values of i such that n < f(i) ≤ 2n. The arcs starting at such points
correspond to the strands in the braid. Visually, the braid is just given by taking the union of all
the arcs Ai(f), 1 ≤ i ≤ n, declaring all the intersections Ai∩Aj to be positive crossings and locally
smoothing (the endpoints of) any two incident arcs at an integer point i into a smooth segment.
See Section 3 for details. By definition, the juggling braid Jk(f) associated to f = f(u,w) is this
resulting positive k-stranded braid.

(iii) Cyclic Rank Matrix braid. Given a cyclic rank matrix r = (rij), we define the positive braid
Mk(r) by using the local models in Figure 1. Namely, for each entry rij , the adjacent entries must
either be equal or differ by one. For each of the different possibilities near each entry, a certain
piece of braid is drawn. Figure 1 depicts the models around an entry rij = ρ with fixed value ρ: the
piece of the braid is drawn in red. The cyclic rank matrix condition implies that these five models
cover all possibilities. By definition, matrix braid Mk(r) associated to the cyclic rank matrix r is
this resulting positive braid. This braid was introduced in [77].

Figure 1. The local models for the k-stranded braid Mk(r) associated to a cyclic
rank matrix r = (rij) near each entry of the matrix. In these local models, the value
of a given entry rij has been set to rij = ρ and the braid is depicted in red. The
yellow lines just indicate the separation between the matrix entries of r.

(iv) Diagram braid. Given u,w as above, one can associate [71] a Young diagram to w and a certain
subset of its cells, known as Le-diagram L(u,w), to u. Given such a diagram, we construct a certain
k-strand braid word Dk( L), which in general is not positive. Each column in the Le-diagram L
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corresponds to a certain conjugate of an interval braid; see Figure 2 for an example. The precise
definition is in Section 3, but see also the example in Subsection 1.3 below for a sneak peek.

•

•

•

Figure 2. A column in a Le diagram L(u,w) and the corresponding braid.

Either of these four braids will be referred to as a positroid braid. Note that the n-stranded braid
Rn(u,w) is not necessarily a positive braid and neither is the k-stranded braid Dk( L), whereas the
braids Jk(f),Mk(r) are positive. To our knowledge, the juggling and diagram braids are new; they
certainly both have a crucial role in our arguments. In addition, a novel perspective for the conceptual
understanding of all these positroid braids is given by considering the following associated Legendrian
links:

Definition 1.1. The Legendrian link Λ(u,w) ⊆ (R3, ξ) associated to (u,w) is the Legendrian lift of the
Lagrangian (−1)-closure of the braid Rn(u,w)∆2

n. The Legendrian link Λ(f) ⊆ (R3, ξ) associated to f
is the Legendrian (−1)-closure of the braid Jk(f)∆k, and the Legendrian link Λ(r) ⊆ (R3, ξ) associated
to r the Legendrian (−1)-closure of the braid Mk(r). Finally, the Legendrian link Λ( L) ⊆ (R3, ξ) is
the Legendrian lift of the Lagrangian (−1)-closure of the braid Dk( L)∆2

k. �

Definition 1.1 is new and, we believe, gives the correct Legendrian links to be considered. Indeed,
a suitable augmentation variety associated to these Legendrian links precisely coincides with the
corresponding open positroid variety. Given that, either of these four types of Legendrian links will
be referred to as positroid links. Figure 3 exhibits three of these four links in the Lagrangian projection.
The reader is referred to Figure 14 for a table of the possible closures in the front and Lagrangian
projections, and Section 2 for more details. The precise engineering of which ∆k or ∆n factor is
optimal in Definition 1.1 has been guided by our upcoming Theorem 1.3.

Remark 1.2. Note that Rn(u,w)∆2
n ∈ Bn is not a positive braid word, despite representing a positive

braid [Rn(u,w)∆2
n] ∈ Br+

n . This prevents us from naively describing Λ(u,w) ⊆ (R3, ξst) with a braid
word in a Legendrian front projection, and thus our need to employ a Lagrangian projection. Indeed,
in a front projection all crossings of a Legendrian front must be positive crossings. In contrast,
Lagrangian projections of Legendrian links allow for negative crossings. �

1.2. Main Results. The manuscript contains two main new results: Theorem 1.3, of a geometric
nature, and Theorem 1.5, of an algebraic nature. En route, we also prove results, such as Theorem
1.8 relating the affine braid varieties X(β) to L. Escobar’s projective brick varieties brick(β) [20],
showing that the latter – which depends on the choice of braid word – is a smooth projective good
compactification of the former, which is a smooth affine variety. Section 2 will also contain a compre-
hensive discussion on Legendrian links and a proof that braid pairs yield quotients isomorphic to the
zeroth cohomology group of the Legendrian contact DG-algebra.

First, Theorem 1.3 reads as follows:

Theorem 1.3. Let u,w ∈ Sn be such that u ≤ w in the Bruhat order and w is a k-Grassmannian
permutation, f a bounded affine permutation, r a cyclic rank matrix, and La Le-diagram. Suppose
that these four pieces of data represent the same positroid type. Then

(i) The n-stranded braid Rn(u,w) and the k-stranded braid Jk(f)∆−1
k are equivalent, up to adding

unlinked disjoint strands. Also, the n-stranded braid Rn(u,w) and the k-stranded braid Dk( L)
are equivalent, up to adding unlinked disjoint strands.

(ii) The k-stranded positive braids Jk(f)∆k and Mk(r) are conjugate, and thus equivalent.
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In particular, the four Legendrian positroid links Λ(u,w),Λ(f),Λ(r),Λ( L) ⊆ (R3, ξst) are Legendrian
isotopic, up to unlinked max-tb Legendrian unknots, and thus their associated DG-algebras are stable
tame isomorphic. �

Theorem 1.3.(i) is the main intricate statement, as it relates braids, such as Rn(u,w) and Jk(f)∆−1
k ,

in a different number of strands and typically with negative crossings. We will explicitly prove this
first equivalence between Rn(u,w) and Jk(f)∆−1

k by using the Le-braid D( L), and comparing both
the Richardson braid and the juggling braid to D( L); this will occupy the majority of Section 3.
Figure 3 depicts the Legendrian isotopies between the positroid Legendrian links implied by Theorem
1.3. These are drawn in the Lagrangian projection; see Section 2 for a discussion on Legendrian fronts
and Lagrangian projections for Legendrian links in standard contact (R3, ξst).

Figure 3. The Legendrian isotopies for the three main Legendrian links underlying
the different presentations of a fixed open positroid variety in Gr(k, n). The Richard-
son braid Rn(u,w), associated to a pair of n-permutations (u,w), is n-stranded, as
depicted in the upper-left. The juggling braid Jk(f), associated to a bounded affine
permutation f , is k-stranded, as depicted in the upper-right. The matrix braidMk(r),
associated to a cyclic rank matrix, is k-stranded, as depicted in the second row.

Second, we now focus on the braid variety X(β;w0,`), where β ∈ B+
` is an `-stranded positive braid

word. Suppose that β is ∆-equivalent to an m-stranded braid word ϑ ∈ Bm, where ϑ might now have
negative crossings. That is, ϑ is obtained from β by applying a sequence of positive stabilizations,
positive destabilizations, ∆-conjugations and Reidemeister moves II and III. We would like to be able
to define the braid variety X(ϑ;w0,m) and compare it to X(β;w0,`). The main issue is that X(η;π)
is, so far, only defined for η a positive braid word. The dissonance in the number of strands `,m ∈ N
also needs to be addressed, even in the context of positive braids words β1 ∈ B+

` , β2 ∈ B+
m which

are connected through positive stabilizations and destabilizations. That is, we also need to compare
the braid varieties X(β1;w0,`) and X(β2;w0,m), i.e. study the behavior braid varieties under positive
Markov moves. This will be addressed in Section 2.

Remark 1.4. Even if we are only interested in comparing two positive braid words β1 ∈ B+
` , β2 ∈ B+

m

which yield the same smooth positive link, one must typically encounter braid words with negative
crossings in order to go between the two positive braid words β1 and β2. �

In order to address the appearance of negative crossings, we introduce a new pair (X(η), V (η)) for
any braid word η ∈ Bm such that [η] ∈ Br+

m. Here V (η) is a set of locally nilpotent derivations on
(the coordinate ring of) an affine variety X(η). In a nutshell, the algebraic variety X(η) comes from
the positive crossings of η∆m, as in the braid variety case, and each negative crossing of η contributes
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with a C-action on X(η). In particular, X(η) = X(η;w0,m) and V (η) = ∅ if η is a positive braid
word. In general, if we only have that η∆m is equivalent to a positive braid word β ∈ B+

` , we will
prove that the set of locally nilpotent derivations actually integrates to a free action whose quotient
X(η)/V (η) is algebraically isomorphic to the braid variety X(β;w0,`). In summary, we prove:

Theorem 1.5. Let ϑ` ∈ B`, ϑm ∈ Bm, `,m ∈ N, m ≤ `, be two ∆-equivalent braid words such that
[ϑ`] ∈ Br+

` and [ϑm] ∈ Br+
m. The following holds:

(i) Suppose that there exists a ∆-equivalence with no stabilizations. Then there exists an affine
algebraic isomorphism

X(ϑ`)/V (ϑ`) ∼= X(ϑm)/V (ϑm),

where the locally nilpotent derivations V (ϑ`), V (ϑm) integrate to free actions on X(ϑ`), X(ϑm)
and their quotients are smooth affine algebraic varieties.

(ii) Suppose that ϑ` = η`∆`, ϑm = ηm∆m for some equivalent braid words η` ∈ B`, ηm ∈ Bm.
Then X(ϑ`)/V (ϑ`) and X(ϑm)/V (ϑm) are C∗-equivalent. That is, there exist d1, d2 ∈ N and
an algebraic isomorphism

X(ϑ`)/V (ϑ`)× (C∗)d1 ∼= X(ϑm)/V (ϑm)× (C∗)d2 ,

of affine varieties, where the locally nilpotent derivations V (ϑ`), V (ϑm) integrate to free actions
on X(ϑ`), X(ϑm) and their quotients are smooth affine algebraic varieties.

In particular, there exist d1, d2 ∈ N and an algebraic isomorphism

X(β`∆`;w0,`)× (C∗)d1 ∼= X(βm∆m;w0,m)× (C∗)d2 .

between the affine braid varieties of any two equivalent positive words β`∆` ∈ B+
` , βm∆m ∈ B+

m. �

Thus, the pair (X(ϑ), V (ϑ)) is the correct generalization of a braid variety X(β;w0) when a braid
word, equivalent to a positive braid, acquires negative crossings. Hence, we can now compare braid
varieties for positive braid words which are equivalent, even if negative crossings are introduced when
realizing an equivalence. Note that the hypothesis in Theorem 1.5.(ii) is satisfied in all the cases we
consider, including that of the braid word Rn(u,w)∆n for the Richardson positroid link. In fact, we
will prove Theorem 1.5 by explicitly understanding the change of the pair (X(ϑ), V (ϑ)) under each
operation:

(i) A Reidemeister II move that creates a canceling pair of crossings changes the affine variety
X(ϑ) by adding a trivial C-factor and adding an additional locally nilpotent derivation to
V (ϑ). This is done such that the quotient X(ϑ)/V (ϑ) remains invariant.

(ii) Either type of Reidemeister III moves and ∆-conjugations in ϑ do not change the affine variety
X(ϑ) nor the action of V (ϑ) up to isomorphism.

(iii) Positive stabilization and destabilization change the affine variety X(ϑ) by adding or sub-
tracting a trivial C∗-factor, and the isomorphism respects the action of the locally nilpotent
derivations V (ϑ). Note that the hypothesis that ϑ is of the form ϑ = η∆ is already imposed
at the smooth level, since the closures we consider are all (−1)-framed and thus the standard
Markov stabilization needs to be modified by inserting a factor of ∆.

Remark 1.6. Geometrically, the locally nilpotent derivations V (η) are given by a count of certain
regions in the braid word η, as we will explain; this insight comes from considering negative crossings
as (−1)-graded Reeb chords in the Lagrangian projection and counting pseudo-holomorphic strips.
In the same vein, the stabilizing C∗-factor that appears in Theorem 1.5 parallels the fact that the
Legendrian DG-algebra is only invariant up to stable tame isomorphism. The technical hypothesis
[ϑ`] ∈ Br+

` and [ϑm] ∈ Br+
m in Theorem 1.5 is related to the concept of braid admissibility for

a Lagrangian projection, as introduced in [12]; this hypothesis is met in all interesting examples
through the manuscript, including the cases of positroid braids. See Subsection 2.5 for more details
on contact topology. �
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We shall also show that the pair (X(ϑ), V (ϑ)) provides a geometric model for computing the zeroth
cohomology group of a DG-algebra associated to certain braid words, see Section 2. This DG-algebra
will be constructed in Subsection 2.3 entirely using braid matrices associated to the braid words.
It will be later shown to be DG-isomorphic to a Floer theoretic invariant associated to Legendrian
links, in Subsection 2.5. In particular, we will show that the augmentation varieties of the Legendrian
positroid links are isomorphic to the corresponding open positroid stratum, and similarly with their
lifts to Richardson varieties.

We will combine Theorems 1.3 and 1.5, together with results of Knutson-Lam-Speyer [53] to show that
a positroid variety Πu,w in the Grassmannian Gr(k, n) can be expressed in terms of braid varieties:
either using the n-stranded braid Rn(u,w), which is not necessarily positive; or the k-stranded braid
Jk(f), which is always positive. For instance, we prove the following result.

Theorem 1.7. Let u,w ∈ Sn with u ≤ w in Bruhat order, w a k-Grassmannian permutation, and
f := u−1tkw the corresponding k-bounded affine permutation. Then we have isomorphisms

Πu,w
∼= X(Rn(u,w)∆n)/V ∼= X(β(w)β(u−1w0,n);w0,n) ∼= X(Jk(f);w0,k)× (C∗)n−s−k

of affine algebraic varieties, where s := #{i ∈ [1, n] : f(i) = i} is the number of fixed points of f . �

Third, we relate braid varieties X(β;w0) to intersections of Schubert cells and brick manifolds.
In her study of subword complexes, L. Escobar introduced a class of algebraic varieties called brick
manifolds, see [20, Definition 3.2]. They are parametrized by a positive braid word β, denoted Q in
[20], containing w0 as a subword; she proved in [20, Theorem 3.3] that brick manifolds are smooth and
projective. She also found certain explicit stratifications of brick manifolds, where the dual complexes
of spherical subword complexes of type A, as introduced by A. Knutson and E. Miller, describe the
adjacency of strata. We denote the brick manifold of β by brick(β) and its maximal open stratum in
this stratification by brick◦(β). Let us focus on brick manifolds with Lie group G = SLn(C), where
the corresponding Weyl group is Sn and the associated braids are indeed elements of the Artin braid
group Brn.

Given a positive braid word β ∈ B+ which contains w0 as a subword we consider its brick manifold
brick(β). Note that brick(β) depends on the choice of braid word β ∈ B+, and not just the braid
element [β] ∈ Br+, whereas X(β;w0) only depends on the positive braid [β]. The precise relation we
establish between braid varieties and brick manifolds is the following:

Theorem 1.8. Let β = σi1 · · ·σi` ∈ Bn be a positive braid word, β∈ Bn its opposite braid word, δ(β)
the Demazure product of β, and consider the truncations βj := σi1 · · ·σij , j ∈ [1, `]. The following
holds:

(i) The algebraic map

Θ : C` −→ F ``+1
n , (z1, . . . , z`) 7→ (F st,F 1, . . . ,F `),

where F j is the flag associated to the matrix B−1
βj

(z`−j+1, . . . , z`), restricts to an isomorphism

Θ : X( β; δ(β))
∼=−→ brick◦(β),

of affine varieties.

(ii) The complement to X( β; δ(β)) in brick(β) is a normal crossing divisor. Its components cor-
respond to all possible ways to remove a letter from βwhile preserving its Demazure product.

In particular, brick(β) is a smooth projective good compactification of the affine variety X( β; δ(β)).

Theorem 1.8, combined with [20], clarifies the connection between braid varieties and the combina-
torics of subword complexes. This allows us to translate properties of spherical subword complexes
via brick manifolds to braid varieties, and vice versa. In particular, the rotation invariance of the
subword complex for (β,w0) proved in [14, Proposition 3.9] can now be interpreted via invariance of
brick(β) and of X(β;w0) under conjugations of γ = β∆−1 by simple reflections.

Remark 1.9. Note that a consequence of Theorem 1.8 (i) is that the variety X( β; δ(β)) is smooth,
since L. Escobar proved in [20, Theorem 3.3] that brick varieties are smooth. In particular, X(β;w0)
is smooth whenever δ(β) = w0. �
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Finally, the article concludes with a discussion on conjectural matters regarding the existence of
cluster A-structures on the coordinate rings of braid varieties and their properties.

For instance, open brick manifolds brick◦(β) are subvarieties in open Bott-Samelson varieties and, if β
contains ∆ as a subword, the corresponding brick manifold is a half decorated double Bott-Samelson
cell, as introduced in [35, 76]. These cells are endowed with cluster A-structures and thus Theorem
1.8 implies that certain braid varieties are cluster A-varieties. In fact, there are more classes of
braid varieties whose coordinate rings are known to admit (upper) cluster algebra structures; e.g. P.
Galashin and T. Lam proved in [32] that the coordinate rings of all open positroid varieties admit
cluster algebra structures. More generally, for all open Richardson varieties, not necessarily in type
A, the proof of the existence of upper cluster algebra structures was recently announced by P. Cao
and B. Keller [9], based on works of B. Leclerc [57] and E. Ménard [63]; and in type A, it was proved
independently by G. Ingermanson [48]. Based on the results about cluster structures listed above and
the discussion on Section 5, we will present a series of conjectural results in Conjecture 5.1. A first
part of Conjecture 5.1 reads:

Conjecture 1.10. The coordinate ring of any braid variety X(η) admits a structure of a cluster
algebra. The exchange type of the mutable part of its defining quiver is preserved under Reidemeister
II moves, Reidemeister III moves and ∆-conjugations of the braid word η. In addition, each such
move gives rise to a quasi-cluster transformation. A positive stabilization adds one frozen vertex to
the defining quiver, and a positive destabilization specializes one frozen variable to 1. �

See Section 5 and Conjecture 5.1 for more details. For instance, we will state some stronger conjectural
properties about such cluster structures, based on the combinatorial properties which we expect the
corresponding quivers to enjoy. We will also explain the relation between the quivers considered in
[32, 75] in the context of positroids, and the quivers considered in [35, 76] in the context of half
decorated double Bott-Samelson cells.

As a side note, observe that positroid varieties are often considered inside Grassmannian varieties,
whereas Richardson varieties are subvarieties in complete flag varieties, and Bott-Samelson cells live
in Bott-Samelson varieties; as a consequence, the relation between these classes of varieties is, in a
sense, somewhat hidden in the existing literature. The following Figure 4 is intended to clarify part
of the interplay between them:

X(η)/V (η) ∼= X(η+) ∼= brick◦(+ η) ∼= Spec(H0(A(η∆)))

X(η̄+∆) ∼= brick◦(∆(+¯η)) ∼=

Spec(H0(A(η̄+∆2))) ∼= Confeη̄+(C)

X(Rn(u,w)∆n)/V (Rn(u,w)∆n)) ∼=

X(β(w)β(u−1w0)) ∼= R◦(u,w)

(u ≤ w)

R◦(u,w) ∼= Πu,w
∼=

X(Jk(f);w0,k)× (C∗)n−k−s

(u ≤ w; w k−Grassmannian)

Figure 4. Some of the varieties appearing in the present article and in the litera-
ture [32, 35, 75]. Here η+, η̄+ ∈ B+

n are positive braid words, where η+ represents
[η] ∈ Br+

n . Braid varieties, which are open brick manifolds for G = SLn, are subsets
of the open Bott-Samelson OBS(η∆). Open Richardson varieties are subsets of the
flag variety F `n ∼= G/B, and open positroid varieties are subsets of the Grassman-
nian Gr(k, n). The larger intersection in the middle consists of R◦(u,w) such that w
admits a decomposition w = vu, with l(w) = l(v) + l(u). The smaller intersection
further requires the permutation w to be k-Grassmannian. The positroids in the
small intersection were called skew Schubert varieties in [75].
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Remark 1.11. Theorem 1.5 implies the existence of cluster structures on quotients of braid pairs
X(η)/V (η) for braids η that are related to those considered in [35], or related to Richardson braids via
iterated positive (de)stabilizations, ∆-conjugations and Reidemeister moves II and III. Such varieties
are related to Bott-Samelson cells and open Richardson varieties by products and quotients by alge-
braic tori; nevertheless, it appears to be an interesting open problem to describe all braids appearing
in such way. For instance, the braid η = σ1σ2σ1σ2σ3σ3σ2σ3σ

−1
2 σ1σ3 ∈ Br4 contains a negative cross-

ing and it can be checked that it cannot be decomposed as a Richardson braid R4(u,w). However,
it is related to a braid σ3

1∆4 by a sequence of Reidemeister II and III moves, and thus the quotient
X(η)/V (η) is isomorphic to X(σ3

1∆4) and admits a cluster structure of type A2. We will describe
a class of braids appearing as juggling braids for opposite Schubert varieties in Grassmannians in
Section 3.7. �

1.3. A simple example. We conclude this introduction with an explicit simple example, illustrating
the different braids and links that feature in this manuscript. Let us choose k = 3 and n = 7, so that
the positroid stratum will be a subset of the Grassmannian Gr(3, 7). Consider the following positroid
data and associated braids:

(i) The pair of permutations (u,w) given by

w = [4, 5, 1, 6, 7, 2, 3] = s3s2s1s4s3s2s5s4s6s5 ∈ S7,

u = [1, 3, 4, 2, 5, 6, 7] = s2s3 ∈ S7,

where we are first using line notation and then s1, . . . , s6 are the simple transpositions gener-
ating S7. Note that u ≤ w in the Bruhat order, and w is indeed 3-Grassmannian. Then, the
7-stranded Richardson braid R7(u,w) reads

R7(u,w) := β(w)β(u)−1 = (σ3σ2σ1σ4σ3σ2σ5σ4σ6σ5)(σ2σ3)−1.

Note that this Richardson braid is presented with a non-positive word R7(u,w) 6∈ B+
7 . In

fact, it will not necessarily be the case that [Rn(u,w)] ∈ Br+
n , but only [Rn(u,w)∆n] ∈ Br+

n ,
and even then the exact braid word associated to (u,w) contains negative crossings if u is
non-empty.

(ii) The 3-bounded affine permutation f = [3, 5, 8, 6, 7, 11, 9], where again we are using the nota-
tion that f(i) is the ith entry of f , i.e. f(1) = 3, f(2) = 5 through f(7) = 9, and extended
7-periodically. This is the affine permutation associated to (u,w), as it is readily checked that
f = u−1t3w with (u,w) as in item (i) above. The arc diagram for this affine permutation is
thus

1 2 3 4 5 6 7 8 9 10 11 12 13 14

and its associated 3-stranded braid word J3(f) = J3([3, 5, 8, 6, 7, 11, 9]) reads

J3(f) = σ2σ1σ2σ2σ2σ1σ1 ∈ B3.

(iii) The cyclic rank matrix r = r(f) associated to f = [3, 5, 8, 6, 7, 11, 9] is given by Figure 5
where we have marked the squares (i, f(i)) in gray, and highlighted the 3-stranded braid
M3(r) in black, according to the rules in Figure 19. The braid reads

M3(r) = σ1σ2σ
3
1σ2σ1σ2σ

2
1 .

According to Theorem 1.3, the 7-stranded braid [Rn(u,w)] ∈ Br7 and [J3(f)∆−1
3 ] ∈ Br3 are equivalent.

This can be verified in this instance via

J3(f)∆−1
3 = σ2σ1σ

3
2σ

2
1 · (σ1σ2σ1)−1 = (σ1σ2σ1)−1 · σ2σ1σ

3
2σ

2
2 = σ2

2σ
2
1 ,

R7(u,w) = (σ3σ2σ1σ4σ3σ2σ5σ4σ6σ5)(σ2σ3)−1 = σ3σ2σ1σ4σ3σ2σ5σ4σ5(σ2σ3)−1 =
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i
j

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

1 2 2 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3 3

1 2 3 3 3 3 3 3

1 2 2 2 3 3 3

1 2 2 3 3 3

1 2 3 3 3

1 2 2 2

1 2 2

Figure 5. Cyclic rank matrix for the introductory example.

= σ3σ2σ1σ4σ3σ2σ4σ4(σ2σ3)−1 = σ3σ2σ1σ3σ3σ4σ3σ2(σ2σ3)−1 = σ3σ2σ1σ3σ3σ3σ2σ
−1
3 σ−1

2 =

= σ3σ2σ1σ3σ3σ
−1
2 σ3σ2σ

−1
2 = σ2σ3σ2σ1σ3σ

−1
2 σ3 = σ2σ3σ2σ2σ1σ3σ

−1
2 = σ2

2σ
2
3 ' σ2

2σ
2
1 .

where the braid R7(u,w) has been simplified using conjugations, Reidemeister II and III moves, and
Markov positive destabilizations. Theorem 1.5.(ii) states that the braid [J3(f)∆3] ∈ Br3 is equivalent
to [M3(r)] ∈ Br3. This is readily verified in this case as

J3(f)∆3 = σ2σ1σ
3
2σ1σ1·(σ1σ2σ1) = (σ1σ2σ1)·σ2σ1σ

3
2σ1σ1 = σ1σ2σ

2
1σ2σ1σ

2
2σ

2
1 = σ1σ2σ

3
1σ2σ1σ2σ

2
1 = M3(r),

where the second equality is conjugation by ∆ = σ1σ2σ1 and the third and fourth are Reidemeister
III moves. The Le diagram Lassociated to this positroid data in Gr(3, 7) has partition λ = (4, 4, 2)
and is depicted in Figure 6. This figure also depicts the smooth braid associated to L.

Figure 6. The Le diagram Lassociated to this introductory example with (k, n) =
(3, 7) and partition λ = (4, 4, 2), on the left. The 3-stranded Le braid word associated
to this L, on the right. See Section 3.4 for the general construction of a k-stranded
braid word from a Le diagram inside the Young diagram λ = (n− k)k.

Lastly, the Legendrian link Λ(u,w) ⊆ (R3, ξst), which is Legendrian isotopic to Λ(f), Λ(r) and Λ( L),
is the unique max-tb Legendrian representative of the link of the D2-singularity F (x, y) = (x2+1)y, or
equivalently the (A1×A1)-singularity; see [10] for details on this Legendrian link. Notice that Λ(u,w)
admits four immediate embedded exact Lagrangian fillings L, smoothly isotopic and with the topol-
ogy of a thrice-punctured sphere. These fillings yield four different cluster charts (C∗)b1(L) = (C∗)2

in the augmentation variety Aug(Λ(u,w)), and thus – upon stabilizing with frozens – in the cor-
responding positroid stratum Πu,w ⊆ Gr(3, 7). This matches the fact that the quiver associated
to the Le diagram Lin Figure 6, and the brick quiver of any of the braids, is of A1 × A1 type, as
is the mutable part of the quiver for the cluster structure in Πu,w ⊆ Gr(3, 7) given via plabic graphs. �

Organization: Section 2 constructs the pair (X(η), V (η)), studies its properties and proves Theorem
1.5. Theorem 1.3 is proven in Section 3, where the Le-braid is also introduced. Theorems 1.7 and
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1.8 are proven in Section 4. Section 5 concludes this manuscript with a few conjectures on cluster
A-structures on braid varieties. �
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Notational Conventions: The grading of a DG-algebra will always be integral, i.e. Z-grading,
and a graded commutative DG-algebra will be referred to as simply a commutative DG-algebra. The
differential decreases the grading by 1.

We use the notation [i, j] := {n ∈ N : i ≤ n ≤ j} for discrete intervals and denote σ[a,b] = σb · · ·σa,
for a ≤ b. Given a braid word β, read left to right, its opposite βis defined to be the braid word β
read right to left, in reverse order. The half-twist word we use will be denoted by

∆n := (σ1)(σ2σ1)(σ3σ2σ1) · . . . · (σn−1σn−2 . . . σ2σ1) ∈ B+
n ,

and its Coxeter projection is denoted by w0,n ∈ Sn. If u,w ∈ Sn, we denote u ≤ w if u is less than
w in the Bruhat order. We will sometimes write β1 = β2 when two braid elements β1, β2 ∈ Br are
conjugate, since we implicitly work with braid closures. Finally, given a matrix A ∈ GL(n,R), for a
ground ring R, we denote by Ai,j its (i, j) entry. �

2. Braid Varieties and DG-Algebras

This section constructs the braid pair (X(η), V (η)) associated to a braid word η ∈ B and proves
Theorem 1.5. This is achieved by first defining a DG-algebra A(η∆) associated to η and then finding
a geometric model that computes its zeroth cohomology group H0(A(η∆)). The invariance of the
quotient X(η)/V (η) associated to the braid pair, Theorem 1.5, is proven in Subsection 2.4, once all the
necessary ingredients have been constructed. The symplectic topological model of this DG-algebra,
based on the count of holomorphic strips, is proven in Theorem 2.16 in Subsection 2.5.

2.1. DG-algebra Ingredients. Let us first introduce the notions and results on DG-algebras that
we will need. The braid pair (X(η), V (η)) in the next subsection is constructed from an explicit and
particular DG-algebra A, and the main task will be computing the zeroth cohomology group H0(A).
In general, it is challenging to compute the cohomology of a DG-algebra; fortunately, the DG-algebras
that we associate to a braid word η, [η] ∈ Br+, are of the following particular sort:

Definition 2.1. A DG-algebra (A, ∂) is said to be first order if it is commutative, freely generated by
generators of degrees 1, 0 and −1, denoted {yi}i∈Y , {zj}j∈Z and {wk}k∈W respectively, Y,Z,W ⊆ N,
and the the differentials of the generators read

∂(yi) = fi(z), ∂(zj) =
∑
k∈W

gjk(z)wk, ∂(wk) = 0, for some fi, gjk ∈ C[z],

for all (i, j, k) ∈ Y × Z ×W , and where z denotes the tuple (zj)j∈Z .

Furthermore, a DG-algebra (A, ∂) is R≥0-filtered if it has an algebra R≥0-filtration h : A −→ R+ such
that all generators are endowed with strictly positive filtration degree h(yi), h(zj) and h(wk) and the
filtration satisfies h(∂(x)) ≤ h(x) for all x ∈ A. �

Should a commutative DG-algebra (A, ∂) be non-negatively graded and freely generated in degrees
0, 1, the zeroth cohomology group H0(A) is generated by the degree 0 generators {zj}j∈Z mod-
ulo the ideal 〈∂y1, . . . , ∂yY 〉 spanned by the differentials of the degree 1 generators {yi}i∈Y . Geo-
metrically, the degree 0 generators can be considered as Cartesian coordinates in the affine space
CZ = Spec(C[z1, . . . , zZ ]) and then Spec(H0(A)) is the affine subvariety cut out by the differentials
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{∂yi}, i ∈ Y . For any first order DG-algebra, as in Definition 2.1 above, we still consider the affine
variety

H0(A) := Spec(C[z1, . . . , zZ ]/〈∂y1, . . . , ∂yY 〉),
but, in general, H0(A) 6= Spec(H0(A)). The generators wk correspond to vector fields

Vk =
∑

gjk(z)
∂

∂zj

and it is easy to see that the equation ∂2 = 0 implies that these vector fields commute and preserve the
variety H0(A). Thus, we encode the data of a DG-algebra (A, ∂) as the affine subvariety H0(A) ⊆ CZ
endowed with a set of commuting tangent vector fields.

We will also use the following algebraic facts. Let A be a commutative algebra, then derivations
on A correspond to vector fields on SpecA and the kernel of a derivation V is defined as

Ker(V ) = {a : V (a) = 0}.

It is easy to see that Ker(V ) is a subalgebra of A. By definition, a derivation V is said to be locally
nilpotent if for all a ∈ A one has V n(a) = 0 for sufficiently large n (depending on a). If the algebra
A is commutative, then V is locally nilpotent if and only if the corresponding vector field on SpecA
integrates to an algebraic action of C. For instance, ∂x is a locally nilpotent derivation on C[x] while
x∂x is not locally nilpotent; correspondingly, the vector field ∂x yields the algebraic action t.x = x+ t
on SpecC[x] = C, whereas x∂x corresponds to the non-algebraic action t.x = etx.

Given a derivation V on an algebra A, we call an element x ∈ A a slice for V if V (x) = 1. The
following fact, also known as Slice Theorem [31, Corollary 1.26], will be useful for us:

Proposition 2.2. Let A be an algebra, V : A −→ A a locally nilpotent derivation, and x ∈ A a
central element that is also a slice for V . Then the following holds:

(i) We have an algebra isomorphism A ' C[x]⊗Ker(V ).

(ii) If the algebra A is commutative, then the action of V is free and we have an isomorphism

SpecA ∼= Spec(Ker(V ))× C.

Proof. For Part (i), the action of V and (left) multiplication by x satisfy the Heisenberg algebra
relation [V, x] = 1. Indeed,

V (xa) = V (x)a+ xV (a) = a+ xV (a).

If V is locally nilpotent then the corresponding module over the Heisenberg algebra is free over x,
and the natural map C[x]⊗Ker(V )→ A is an isomorphism of vector spaces. Since x is central in A,
this is an algebra isomorphism. The statement in Part (ii) readily follows from Part (i). �

The following proposition shows that, assuming that the first order DG-algebra A is filtered and
has no negatively graded cohomology, Spec(H0(A)) can still be geometrically described in terms of
the affine subvariety H0(A) ⊆ CZ and tangent vector fields.

Proposition 2.3. Let (A, ∂) be a first order filtered DG-algebra with H−1(A) = 0. Then there exists
a free CW -action on the affine subvariety H0(A) ⊆ CZ such that

Spec(H0(A)) ∼= H0(A)/CW

as affine varieties. In fact, the CW -action is generated by a set of globally commuting vector fields
defined in affine space CZ tangent to the affine subvariety H0(A) ⊆ CZ .

Proof. Let us show that, with the hypothesis of H−1(A) = 0, there exists a non-negatively graded
algebra A′, elements α1, . . . , αW ∈ A such that ∂αk = wk, 1 ≤ k ≤ |W |, and an algebra isomorphism

A ∼= A′ ⊗ C[α1, . . . , αW , w1, . . . , wW ],

where the differential sends ∂(A′) ⊆ A′ ⊗ C[α1, . . . , αW ]. This implies the desired statement, since
Ker(∂|A0

) = A′0 and thus H0(A) ∼= H0(A′), where A′0 is the degree 0 part of the graded algebra
A′. In order to construct the above isomorphism, we first notice that the elements α1, . . . , αW exist
because H−1(A) = 0 vanishes and the degree -1 generators w1, . . . , wW are closed. Thus, we must
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argue that A is free over the polynomial ring C[α1, . . . , αW , w1, . . . , wW ]. This can be done iteratively,
peeling off one C[αk, wk] factor at a time, as follows.

By hypothesis, the algebra A is free over the element w := wW . This element defines a derivation
∂w, by declaring ∂w(x) to be the coefficient in front of w of the differential ∂(x). Since A is a filtered
algebra, the derivation is locally nilpotent and, by construction, α := αW is a slice for the C-action
that ∂w induces. Since α has degree 0, it is central, and thus Proposition 2.2. (i) implies that the
quotient A/〈w〉 ∼= ker(∂w) ⊗ C[α] is isomorphic to the tensor product of the kernel ker(∂w) of the
locally nilpotent derivation ∂w and the polynomial ring C[α]. This implies A ∼= A′ ⊗ C[α,w], where
A′ := ker(∂w). It is readily verified that w1, . . . , wW−1, α1, . . . , αW−1 ∈ A′. This allows us to iterate
this process until we achieve the required isomorphism. �

2.2. Braid Ingredients. Let us continue introducing the necessary concepts in relation to braids.

Consider a braid word

β = σ
εi1
i1
σ
εi2
i2
· . . . · σεi`i` , εip ∈ {±1}, 1 ≤ ip ≤ n, 1 ≤ p ≤ l,

and associate the variable zj to the jth positive crossing of β, and the variable wk to the kth negative
crossing of β, read left to right. By definition, the braid word β(zj , wk) is the braid subword of β
strictly between the jth positive crossing and the kth negative crossing. Similarly, βc(zj , wk) denotes
the braid word obtained by removing the braid subwords β(zj , wk), zj , wk from β and reading left
to right the resulting braid word, by starting at the first crossing to the right of whichever crossing
zj or wk is rightmost, then cyclically continuing to the beginning when the rightmost crossing of β
is reached, and continuing until the first crossing to the left of the other crossing (the leftmost one
between zj and wk) is found.

Denote by β̇(zj , wk) the opposite of the braid word β(zj , wk) where each crossing σ
εip
ip

is changed to

σ
εip
n−ip ; the opposite braid word is just β(zj , wk) read right to left. Also, denote by βL(wk), respectively

βR(wk) the braid subword of β strictly to the left of wk, respectively strictly to the right of wk.

Example 2.4. Consider the braid word

β = σ1σ
−1
2 σ3σ2σ1σ2σ

−1
1 σ3σ

−1
1 σ3σ2σ

−1
1 σ3σ1 ∈ B3,

which has associated the variables z1, w1, z2, z3, z4, z5, w2, z6, w3, z7, z8, w4, z9, z10, reading the crossings
left to right. Same instances of braid subwords are

β(z2, w3) = σ2σ1σ2σ
−1
1 σ3, β(z7, w1) = σ3σ2σ1σ2σ

−1
1 σ3σ

−1
1 .

Their inverted opposites read

β̇(z2, w3) = σ1σ
−1
3 σ2σ3σ2, β̇(z7, w1) = σ−1

3 σ1σ
−1
3 σ2σ3σ2σ1,

and their complements are

βc(z2, w3) = (σ3σ2σ
−1
1 σ3σ1)(σ1σ

−1
2 ), βc(z7, w1) = (σ2σ

−1
1 σ3σ1)(σ1σ

−1
2 ).

We also have the braids

βL(w2) = σ1σ
−1
2 σ3σ2σ1σ2, βR(w2) = σ3σ

−1
1 σ3σ2σ

−1
1 σ3σ1.

These types of braid words associated to a braid β feature in the definition of the DG-algebra in
Subsection 2.3. �

Consider the matrix Bi(z) ∈ GL(n,C[z]) defined by:

(Bi(z))jk :=


1 j = k and j 6= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

This is the braid matrix in the introduction. Let us denote

χ(σj , ε) :=

{
zj if ε = 1

0 if ε = −1
.
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Definition 2.5. Let β ∈ Bn be a braid word

β = σ
εi1
i1
σ
εi2
i2
· . . . · σεi`i` , εip ∈ {±1}, 1 ≤ ip ≤ n, 1 ≤ p ≤ l.

The braid matrix Bβ(z1, . . . , zZ) is defined to be the product

Bβ(z1, . . . , zZ) :=
∏

1≤p≤`

Bip(χ(σip , εip)).

In words, the braid matrix Bβ(z1, . . . , zZ) associated to β is obtained by multiplying the braid matrices
for each of its crossings, left to right, where the jth positive crossing σi contributes with a braid matrix
Bi(zj) and the kth negative crossing σ−1

l contributes with a braid matrix Bl(0). �

The additive terms in the (i, j)-entry Bβ(z1, . . . , zZ)i,j of the braid matrix Bβ(z1, . . . , zZ) corre-
spond bijectively to paths from the leftmost end of the ith strand to the rightmost end of the jth
strand. A path γ is defined to be a path contained in the braid diagram, moving left to right, which
abides by the following local rule: if γ is at the (i+ 1)th strand and encounters a positive σi-crossing,
then it either remains in the same (i + 1)th strand moving past the crossing (i.e. it jumps above
the crossing), or moves downwards (through the crossing) to the ith strand. In any other situation,
including encountering a negative crossing, the path must just continue through the crossing, and
therefore switch level, to either the (i + 2)th strand, if σ±i+1 is encountered or the ith strand, if σ−1

i

is encountered. The bijection between each monomial term in the (i, j)-entry Bβ(z1, . . . , zZ)i,j and
paths γ from the ith strand on the left to the jth strand on the right is given by recording the cross-
ings where the path jumps, staying at the same level strand: the product of these crossings yields a
monomial term in Bβ(z1, . . . , zZ)i,j and, by construction, this is a bijection.

The geometric path associated to monomial m in Bβ(z1, . . . , zZ)i,j will be denoted by γ(m). Note
that γ(1) is a well-defined path, where no jumps are taken: the path starts tracing the ith strand
from the left and always remains in that connected component, moving through all the crossings it
encounters. Finally, consider two paths γ1, γ2 on a braid word β, where γ1 starts at the ith strand
on the left and finishes at the jth strand on the right, and γ2 starts at the (i + 1)th strand on the
left and finishes at the (j + 1)th strand on the right. By definition, the pair (γ1, γ2) is said to define
an unoriented immersed region R(γ1, γ2) if the paths γ1 and γ2 bound the projection of an immersed
2-dimensional disk into the plane R2 with boundary on the braid diagram.

Definition 2.6. An unoriented immersed region R(γ1, γ2) is said to be orientable if its defining paths
(γ1, γ2) can be oriented such that the boundaries of the region R(γ1, γ2) are oriented according to the
local models in Figure 7. Note that these local models only apply if the region is (locally) to the left,
or right, of a positive or negative crossings.

By definition, an immersed region is an unoriented immersed region which is orientable. �

Figure 7. The allowed local orientations for an oriented immersed region.

Let us now define a certain quantity that records these (oriented) immersed regions bounded by
two paths with fixed endpoints. Let iu1 , i

l
1, i

u
2 , i

l
2 ∈ [1, n] index strands and η ∈ Bn be a positive braid

word; intuitively, il1, i
u
1 are indexing two strands to the left of the regions, lower and upper, and il2, i

u
2

are indexing two strands to the right of the regions. The coefficient E(B(η); iu1 , i
l
1, i

u
2 , i

l
2) is described

as follows. Consider the product

c(η; iu1 , i
l
1, i

u
2 , i

l
2) := (Bη)il1,il2 · (Bη̇)n−iu1 +1,n−iu2 +1

of the (il1, i
l
2)-entry of the braid matrix associated to the braid word η and the (n−iu1 +1, n−iu2 +1)-entry

of the braid matrix associated to the braid word η̇. By definition, the coefficient E(B(η); iu1 , i
l
1, i

u
2 , i

l
2)

is the sum of the terms in c(η; iu1 , i
l
1, i

u
2 , i

l
2) which are the product of two monomials m1,m2, where m1
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is a monomial in (Bη)il1,il2 and m2 a monomial in (Bη̇)n−iu1 +1,n−iu2 +1 such that the pair of associated

paths (γ(m1), γ(m2)) defines an immersed region in η. We will abbreviate E(B(η); iu1 , i
l
1, i

u
2 , i

l
2) to

E(B(η); i1, i2), if i1 = il1 = iu1 − 1 and i2 = il2 = iu2 − 1. These quantities appear in the differential of
the DG-algebra in Subsection 2.3.

Lastly, a braid word β ∈ Bn was said to be admissible in [12, Definition 2.5] if there existed braid
words η1, η2 ∈ Bn such that β = η1∆nη2, i.e. if β contains ∆n as a subword. We will always use
admissible words β ∈ Bn with trivial η2, and thus, just for this article, we say that a braid word
β ∈ Bn is admissible if it is of the form β = η∆n ∈ Bn for some η ∈ Bn and [η] ∈ [Br+

n ].

2.3. The braid pair (X(η), V (η)). In this section we first associate a DG-algebra A(β) to admis-
sible braid words β = η∆n ∈ Bn. Then, we introduce the braid pair (X(η), V (η)), which is defined
using A(η∆n). Let us introduce the DG-algebra by describing its generators, their grading and the
differential.

Generators and Degrees. By definition, the DG-algebra A(β) is the graded commutative alge-
bra over the ground ring R = Z[Zn] generated by n2 generators ylm in degree 1, 1 ≤ l,m ≤ n, |Z|
generators z1, . . . , zZ in degree 0 and |W | generators w1, . . . , wW in degree -1, where |Z| denotes the
number of positive crossings in β and |W | denotes the number of negative crossings. Thus, as a graded
algebra, A(β) is rather simple: all the intricate information is contained in the graded differential ∂.
Let us fix an isomorphism R ∼= Z[t±1 , . . . , t

±
n ] of the ground ring with the Laurent polynomial ring in

the ground variables t1, . . . , tn.4. �

The Differential. The differential can be extended to A(β) by the Leibniz rule once it has been
defined on the generators. The differential of the degree 1 generators ylm is given by

∂ylm := Bβ(z1, . . . , zZ)l,m + δl,mtl + X(ylm), 1 ≤ l,m ≤ n,
where the braid matrix Bβ(z1, . . . , zZ)l,m has been introduced in Definition 2.5 above and δl,m is the
Kronecker delta. The term X(ylm) will be described momentarily. Nevertheless, see Remarks 2.7
and 2.8 below noting that the X-term directly vanishes in many interesting cases and can otherwise
be removed by using an automorphism of the DG-algebra; we still define it for completeness.

Figure 8. A pictorial depiction of the generators ylm, l,m ∈ [1, n] and their dif-
ferentials. On the left, regions contributing to the X(yij) term in the differential
∂(yij), drawn in green and blue. On the right, regions contributing to the X(y1n)
term in the differential ∂(y1n), drawn in green and blue. In contrast, the differential
∂yij does not include the contributions from the red and yellow regions drawn on the
right, due to the admissibility hypothesis on β.

4In many cases, it is equally useful to consider the DG-algebra over Z, instead of R. Should the reader feel more
comfortable this way, they may set the ground variables t1, . . . , tn to ±1 such that the product of all the t-variables in

the same connected component multiply to −1.
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For each l,m ∈ [1, n], and degree -1 generator wk we write

X(ylm;wk) := XL(ylm;wk) + XR(ylm;wk),

where
XL(ylm;wk) =

∑
l<p≤n

E(B(βL(wk)); l, p, ι(wk), ι(wk) + 1)ypm,

XR(ylm;wk) =
∑

1≤p<m

E(B(βL(wk)); p,m, ι(wk), ι(wk) + 1)ylp.

Then, the coefficient X(ylm) is simply given by

X(ylm) :=
∑

1≤k≤W

X(ylm;wk)wk.

The term X(ylm;wk) is computing regions that start at ylm, as depicted in Figure 8, continue to
the left of the braid β, and end at the negative crossing wk. This gives a simple combinatorial
intuition behind the rather algebraic definition of X(ylm). Only half of the regions starting at ylm
are accounted for due to the presence of ∆n to the right of the admissible word β; we could have
expanded X(ylm) to account for all the regions starting at ylm, but the corresponding coefficients
E(B(βR(wk)); l, p, ι(wk), ι(wk) + 1) and E(B(βR(wk)); p,m, ι(wk), ι(wk) + 1) would have been all zero.
This concludes the description of the differential of the degree 1 generators.

The differential of the degree 0 generators zj , 1 ≤ j ≤ |Z|, is given by

∂zj =
∑

1≤k≤|W |

Sign(zj , wk) [E(B(β(zj , wk)); ι(zk), ι(wk))− E(B(βc(zj , wk)); ι(zk), ι(wk))] · wk,

where Sign(zj , wk) ∈ {±1} is one if zj is to the left of wj and minus one otherwise. The coefficients
E(B(β(zj , wk)); ι(zk), ι(wk)) and E(B(βc(zj , wk)); ι(zk), ι(wk)) have been defined in Subsection 2.2

and we have denoted ι(a) = i if the a-variable is assigned to a σi or σ−1
i crossing.

The differential of the degree -1 generators wk, 1 ≤ k ≤ |W |, is defined to be

∂w1 = 0, ∂w2 = 0, . . . , ∂wW = 0.

That is, all degree -1 generators have zero differential. �

Remark 2.7. The terms X(ylm) in the differentials ∂ylm vanish for many interesting cases. For
instance, if β ∈ Bn is of the form β = ∆nη∆n, for some η ∈ Bn, then X(ylm) = 0 for all indices l,m
in their domain. Note that the Richardson braid Rn(u,w)∆2

n, that gives the Legendrian link Λ(u,w),
yields the braid word ∆nRn(u,w)∆n in Theorem 1.3, after conjugation. Hence, all computations
related to open positroid varieties can be performed with the braid word ∆nRn(u,w)∆n and the
X-terms vanish. �

This defines the braid DG-algebra A(β) for any admissible braid word β ∈ Bn such that [β] ∈ Br+
n .

The fact that ∂2 = 0 can be deduced from the combinatorial argument in [15]; this also implies that
A(β) can be R≥0-filtered by the integral of the Liouville form at each crossing. For these DG-algebras,
the R≥0-filtration h : A −→ R≥0 can be taken to be any positive function such that

0 < h(wk) < h(zj) < h(ylm), ∀l,m, j, k, and h(ypq) < h(ylm), if q < p+ (m− l).
Any such filtration will be fixed and implicitly chosen throughout the computations.

Remark 2.8. Note that the DG-algebra A(β), as presented, is not of first order, as in Definition
2.1, due to the appearance of the terms X(ylm) in the differentials of the degree 1 generators. That
said, the differential ∂ylm only contains terms of the form ypqwk, which are linear in wk and satisfy
h(ypq) < h(ylm), by construction. Thus, if H−1(A(β)) = 0 vanishes, there exists an automorphism
of A(β) fixing the degree 0 and degree -1 generators, and only modifying the degree 1 generators
ylm 7−→ ỹlm, such that the new degree 1 generators ỹlm have no degree -1 term in their differentials
∂(ỹlm), i.e. ∂(ỹlm) ∈ C[z1, . . . , zZ ]. This can be proved similarly to Proposition 2.3. Hence we will
implicitly assume that this change of coordinates has been performed and A(β) is of first order. Note
that for braid words β = ∆nη∆n which also have a ∆n to their left, this automorphism is the identity.
�
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Two simple examples are presented in Examples 2.10 and 2.12. The DG-algebra associated to
any 2-stranded word β ∈ B2 is computed by readily generalizing Example 2.12. The main algebraic
structure that we use for this DG-algebra is its zeroth degree cohomology H0(A(β)), which we now
discuss.

Following Subsection 2.1 above, we consider the affine variety H0(A) associated to a commutative
DG-algebra, which in the context of a braid DG-algebra A(β), for β = η∆n, we denote X(η). It is
an affine R-scheme given by the equations:

X(η) := {(z1, . . . , zZ) ∈ CZ : Bβ(z1, . . . , zZ)l,m + δl,mtl = 0, 1 ≤ l,m ≤ n} ⊆ CZ .

It is, in general, not true that X(η) ∼= SpecH0(A(β)), e.g. see Example 2.12 below. Nevertheless,
A(β) is an algebra of first order, as in Definition 2.1, and thus SpecH0(A(β)) can be computed
by incorporating a set of commuting vector fields V (w1), . . . ,W (wW ) associated to the degree -1
generators. Indeed, Proposition 2.3 implies that

SpecH0(A(β)) = Spec (Ker{V (w1), . . . , V (wW )}) .
This leads us to the following definition, using the same notation as above:

Definition 2.9. Let η ∈ Bn be a braid word such that [η] ∈ Br+
n and let β := η∆n. By definition,

the braid pair (X(η), V (η)) consists of the affine variety

X(η) := {(z1, . . . , zZ) ∈ CZ : Bβ(z1, . . . , zZ)l,m + δl,mtl = 0, 1 ≤ l,m ≤ n} ⊆ CZ ,

endowed with the set V (η) := {V (w1), . . . , V (wW )} of tangent vector fields defined by

V (wk) :=
∑

1≤j≤|Z|

Sign(zj , wk)E(B(β(zj , wk))) · ∂zj , 1 ≤ k ≤ |W |.

By definition, the braid variety associated to η ∈ Bn is the affine quotient X(η)/V (η) of X(η) by the
CW -action induced by the commuting vector fields in V (η). �

Let us conclude this subsection with two simple examples, which hopefully illustrate the concepts and
definitions introduced thus far.

Example 2.10. Consider the braid β = σ1σ3σ
3
2σ1σ3σ

2
2σ1σ3σ2σ

2
3σ
−1
1 depicted in Figure 9. The

leftmost crossing carries the variable z1 and the rightmost crossing the variable w1. In this case
β(z1, w1) = σ3σ

3
2σ1σ3σ

2
2σ1σ3σ2σ

2
3 . The crossing z1 is between strands 1, 2, i.e. of σ1-type, and is a

generator of degree 0. Its differential includes a term of the form ∂(z1) = c · w1 + . . ., where w1 is a
(negative) crossing between strands 1, 2, i.e. of σ−1

1 -type and a generator of degree −1. The coefficient
c in the differential of z1 is computed by noticing that B(β(z1, w1))1,1 = 1 and that the only terms in

B(β̇(z1, w1))3,3 which yield immersed regions with respect to the unique term B(β(z1, w1))1,1 = 1 are
1 and z2z3. Hence we obtain E(B(β(z1, w1))) = 1 + z2z3 and the w1-coefficient of the differential is
given by c = 1 + z2z3, i.e.

∂(z1) = (1 + z2z3) · w1 + . . .

The region associated to the second term z2z3 in 1 + z2z3 is depicted in red in Figure 9. �

Figure 9. A region contributing to the differential of the degree 0 generator z1

discussed in Example 2.10. The red region highlighted in the picture contributes to
a summand (z2z3)w1 in ∂z1.
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Example 2.11. As a variation, consider the braid β = σ−1
2 σ1σ3σ

2
2σ1σ3σ

−1
2 σ2σ1σ3σ2 depicted in

Figure 10. Label the crossings with zj- and wk-variables accordingly, the former for positive crossings
and the latter for negative crossings, indices increasing left to right. Then

β(z9, w1) = σ1σ3σ
2
2σ1σ3σ

−1
2 σ2σ1σ3.

The crossing z9 is between strands 2, 3, i.e. of σ2-type and a generator degree 0; its differential includes
a term of the form ∂(z9) = c ·w1 + . . ., where w1 is a (negative) crossing between strands 2, 3, i.e. of
σ−1

2 -type and a generator of degree −1. In this case, we obtain

B(β(z9, w1))2,2 = z1 + z7 + z1z5z7

and B(β̇(z9, w1))2,2 is similarly computed. The product of z2 and z7 is assigned to the embedded region
depicted in Figure 10, and thus contributes to a summand −(z2z7)w1 in the differential ∂z9. �

Figure 10. A region contributing to the differential of the degree 0 generator z9, as
discussed in Example 2.11. The red region contributes with (z2z7)w1 in ∂z9.

Example 2.12. Let us consider the admissible braid word β = σ1σ
−1
1 σ5

1 = (σ1σ
−1
1 σ4

1)∆2 = η∆2 ∈ B2,
η = (σ1σ

−1σ4
1), depicted in Figure 11, with [β] ∈ Br+

2 representing the trefoil knot with an inserted
negative crossing, coming from a Reidemeister II move. For its associated DG-algebra A(β), there are
four degree 1 generators y11, y12, y21, y22, six degree 0 generators z1, z2, z3, z4, z5, z6 and one generator
w1 of degree −1. For simplicity, we set the ground variables t1 = 1, t2 = 1 to one in this example. The
differentials of the degree 1 generators can be computed directly from the four entries of the matrix
product

B1(z1)B1(0)B1(z2)B1(z3)B1(z4)B1(z5)B1(z6)

and explicitly read

∂y11 = z3 + (1 + z3z4)z5, ∂y12 = 1 + z3z4 + (z3 + (1 + z3z4)z5)z6 + 1,

∂y21 = 1 + (z1 + z2)z3 + (z1 + z2 + (1 + (z1 + z2)z3)z4)z5

∂y22 = z1 + z2 + (1 + (z1 + z2)z3)z4 + (1 + (z1 + z2)z3 + (z1 + z2 + (1 + (z1 + z2)z3)z4)z5)z6 + 1.

The differentials of the degree 0 generators are

∂z1 = w1, ∂z2 = −w1, ∂zi = 0, 3 ≤ i ≤ 6.

The regions associated to the terms contributing to the two non-zero differentials ∂z1 and ∂z2 are
drawn in red in Figure 11. Note that in this case the intermediate braids β(z1, w1) and β(z2, w1) are
both empty and all the associated braid matrices are the identity. Note that ∂2y11 = 0 and ∂2y12 = 0
are immediate, and ∂2y22 = 0 and ∂2y21 = 0 hold because, in addition, ∂(z1 + z2) = 0.

Figure 11. Embedded regions contributing to the differentials ∂z1 and ∂z2 for the
braid word β = σ1σ

−1
1 σ5

1 ∈ B2 discussed in Example 2.12. The red region on the left
yields the term w1 in ∂z1, whereas the red region on the right gives w1 in ∂z2.
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The affine variety X(η) = H0(A) is cut out by the four equations

X̃ := {(z1, z2, z3, z4, z5, z6) ∈ C6 : ∂y11 = 0, ∂y12 = 0, ∂y21 = 0, ∂y22 = 0} ⊆ C6,

coming from the degree 1 differentials, which can be explicitly read right above. The vector field
associated to the negative crossing w1 is given by V (w1) = ∂z1 − ∂z2 ∈ H0(C6, TC6). Since ∂y11, ∂y12

contain no terms in z1, z2 and ∂y21, ∂y22 are functions on the sum z1 + z2 (and not just z1, z2 ), the
Lie derivatives

LV (w1)(∂yij) = 0, 1 ≤ i, j ≤ 2,

vanish. Hence, the vector field V (w1) ∈ H0(X̃, T X̃) is tangent to X̃. This vector field integrates to
the free C-action given by

C× X̃ −→ X̃, (t, (z1, z2, z3, z4, z5, z6)) 7−→ (z1 + t, z2 − t, z3, z4, z5, z6),

and the quotient X̃/V (w1) yields the affine variety

X̃/V (w1) = {(ζ, z3, z4, z5, z6) ∈ C5 : ∂y11 = 0, ∂y12 = 0, f1(ζ, z3, z4, z5, z6) = 0, f2(ζ, z3, z4, z5, z6) = 0}

in affine space C5, where ∂y11, ∂y11 are seen as functions on (z3, z4, z5, z6), and we have denoted

f1(ζ, z3, z4, z5, z6) := 1 + ζz3 + (ζ + (1 + ζz3)z4)z5,

f2(ζ, z3, z4, z5, z6) := ζ + (1 + ζz3)z4 + (1 + ζz3 + (ζ + (1 + ζz3)z4)z5)z6.

Note that this quotient X̃/V (w1) is isomorphic to the affine variety X̧ ⊆ C5 cut out by the vanishing
of the four entries of the product of braid matrices, minus the identity, given by

B1(ζ)B1(z3)B1(z4)B1(z5)B1(z6)− Id.

This precisely describes is the affine spectrum SpecH0(A(ϑ)) of the cohomology H∗(A(ϑ)) = H0(A(ϑ))
of the DG-algebra A(ϑ) associated to the positive braid word ϑ = σ5

1, which is readily equivalent to
the braid word β. In this case, the degree −1 generator w1 of β contributed to the vector field V (w1)
tangent to H0(A(β)). In general, there will be as many (commuting) vector fields freely acting on
H0(A(β)) as there are negative crossings in β. �

Note that, in general, the introduction of Reidemeister II moves will require the use of immersed,
and not just embedded, regions. For instance, we might have varied Example 2.12 by considering the
braid word β = σ3

1σ
−3
1 σ1 ∈ B2 or the braid word β = σ1σ

−1
1 σ2

1σ
−2
1 σ1 ∈ B2. In both these cases, there

are (orientable) immersed regions contributing to the differentials which are not embedded regions.
Two such regions are depicted in Figure 12.

Figure 12. Immersed regions, both orientable, contributing to the differentials ∂z1

for the braid word β = σ3
1σ
−3
1 σ1 ∈ B2, on the left, and for the braid word β =

σ1σ
−1
1 σ2

1σ
−2
1 σ1 ∈ B2, on the right. In both cases, the red regions indicate immersed

disks that yield the terms w1 in ∂z1.

2.4. Proof of Theorem 1.5. Let η ∈ Bn be such that [η] ∈ Br+
n and let β := η∆n. In this section

we show that the braid pair (X(ϑ), V (ϑ)) is an invariant of the braid word η up to ∆-equivalence,
as described in Theorem 1.5. In precise terms, we prove that the affine isomorphism type of the
quotient X(η)/V (η) remains invariant under Reidemeister II moves, Reidemeister III moves, and ∆-
conjugations, and it is multiplied or quotiented by a trivial C∗-factor under positive stabilizations and
destabilizations.

Reidemeister III Moves. The Reidemeister move σiσi+1σi ↔ σi+1σiσi+1 between positive cross-
ings preserves the affine variety X(η) thanks to the identity

Bi(z1)Bi+1(z3)Bi(z2) = Bi+1(z2)Bi(z3 − z1z2)Bi+1(z1).
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Namely, under a Reidemeister III move σiσi+1σi ↔ σi+1σiσi+1, the initial variables z1, z2, z3 for the
three crossings on the left, as Figure 13, relate to the resulting variables z′1, z

′
2, z
′
3 on the right via

z1 7−→ z′2, z2 7−→ z′1, z3 7−→ z′3 + z′1z
′
2.

This change of variables readily preserves the differentials of z1, z2: Figure 13 illustrates the case of
z2, where the regions contributing to ∂z2 and ∂z′2 are drawn, with colors indicating the bijection.
Hence, the Reidemeister III does not affect the vector fields just involving z1, z2. For z3, the change of
variables z′3+z′1z

′
2 is precisely such that the isomorphism is of DG-algebras. This follows by comparing

regions corresponding to the differential ∂z3 and its image

∂z3 7−→ ∂(z′3 + z′1z
′
2) = ∂z′3 + ∂(z′1z

′
2) = ∂z′3 + ∂(z2z1) = ∂z′3 + z1∂(z2) + z2∂(z1).

For instance, the crossing z′3 has a contribution in its differential of the form z′2 · c′, where c′ is a
term that would be obtained by following the two bottom strands to the right. The region giving
this contribution is depicted in blue in Figure 13 (bottom right), and it is precisely c′ = (∂z′1)+, the
terms in ∂(z′1) counting regions to the right of z′1. In contrast, the crossing z3 before performing the
Reidemeister III move has a contribution in its differential of the form z2 · c, where c is a term that
would be obtained by following the two top strands to the right, as depicted in Figure 13 (bottom
left). The term c coincides with (∂z1)+, counting regions to the right of z1. By gathering all these
regions together, and taking into account pieces to the right and the left of ∂z3 and ∂z′3, we conclude
that the isomorphism intertwines with the differentials as defined. In particular, the braid variety
X(η)/V (η) is invariant under these Reidemeister III moves.

Figure 13. The Reidemeister III move and its effect on the differential of the degree
0 generators z1, z2, z3. The regions are to be compared for the DG-algebra generated
by z1, z2, z3 and the DG-algebra generated by z′1, z

′
2, z
′
3 under the isomorphism de-

scribed in the text.

The argument for the Reidemeister move σ−1
i σ−1

i+1σ
−1
i ↔ σ−1

i+1σ
−1
i σ−1

i+1 between negative crossings also
preserves the affine variety X(β) thanks to the identity

Bi(0)Bi+1(0)Bi(0) = Bi+1(0)Bi(0)Bi+1(0).

An argument similar to the above, comparing the possible regions that contribute to the differential
from degree 0 to degree 1, shows that these Reidemeister III moves yield DG-algebra isomorphisms.

Reidemeister II Moves. Let η′ ∈ Bn be η with an additional canceling pair σiσ
−1
i of crossings

inserted, and let us write β′ = η′∆n. In comparison to A(β), the DG-algebra A(β′) contains an
additional pair of generators (z, w), in degree 0 and degree -1 respectively, such that the differential
∂z = w+ . . . is linear on w, with coefficient one. This implies that z is a slice for the locally nilpotent
derivation V (w). In particular, the affine varietyX(η) is isomorphic to the intersectionX(η′)∩{z = 0},
and the C-action on X(η′) associated to V (w) is free. (Note that Bi(0)2 = Id.) In addition, the affine
variety X(η′) is isomorphic to X(η′) ∼= X(η) × C and the required invariance follows. Note that
(similarly to Example 2.12 and Figure 12) there is a bijection between the immersed disks connecting
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other pairs (z′, w′) before and after cancelling σiσ
−1
i , so all other vector fields transform correctly.

The case where we insert σ−1
i σi is analogous.

In light of Proposition 2.3, we also need to check that the algebraic condition H−1(A) = 0 is
preserved by the Reidemeister move. Indeed, assume that all generators wi 6= w of degree -1 are in
the image of ∂. We get ∂z = w + g(wi) where g does not depend on w. By the assumption, g(wi)
is a boundary, so that g(wi) = ∂x and ∂(z − x) = w. Therefore w is also in the image of ∂ and
H−1(A) = 0.

Remark 2.13. In fact, the composition of moves σi → (σiσ
−1
i )σi = σi(σ

−1
i σi) → σi, inserting a

canceling pair (σiσ
−1
i ) near a crossing σi and then canceling an adjacent pair, yields the identity

isomorphism. �

Conjugation. Invariance of (X(σiη), V (σiη)) under the ∆-conjugation σiη → ησn−i is verified
directly by studying the differentials in A(β). For the corresponding affine varieties X(σiη) and
X(ησn−i), we look at the differentials ∂(ylm) on generators of degree 1, and we separately consider
the comparison of the braid matrix terms

Bσiη∆ ↔ Bησn−i∆,

and the corresponding X-terms. These latter terms involving X(ylm) can be assumed to vanish up
to a change of coordinates, as observed in Remark 2.8, and so we focus on the former braid matrix
terms. Since X(σiη) and X(ησn−i) are cut out by equations which equate Bσiη∆, resp. Bησn−i∆
to a diagonal matrix, it is immediate that the affine varieties are invariant under such conjugation.
Regarding the locally nilpotent derivations V (σiη), V (ησn−i), we note that the differentials ∂(zj)
are defined cyclically, up to a sign, due to the appearance of both terms E(B(β(zj , wk)); ι(zk), ι(wk))
and E(B(βc(zj , wk)); ι(zk), ι(wk)) in ∂(zj). Thus, the regions contributing to ∂(zj) do not change if
a crossing σi transfers from σiη∆ to ησn−i∆, and the associated vector fields yield isomorphic ac-
tions (and quotients). Note that σn−i appears for reasons strictly related to the braid group relation
σn−i∆n = ∆nσi, and not any further DG-algebra considerations.

Positive Stabilizations and Destabilizations. Let ηn ∈ Bn, βn := ηn∆n, and denote by ηn+1 ∈
Bn+1 the same braid word as ηn, but considered as a braid word in (n+ 1) strands. Let us consider
ηn+1σn ∈ Bn+1 and associate the degree 0 generator z inA(ησn∆n+1) to this additional σn+1-crossing.
We must compare the braid pairs (X(ηn∆n), V (ηn∆n)) and (X(ηn+1σn∆n+1), V (ηn+1σn+1∆n+1)).
Given that the additional crossing σn is positive and the differential ∂z = 0 vanishes, it suffices to
reduce to the case where η ∈ B+

n is a positive braid word.

Let zj be the degree 0 generators in A(ηn∆2
n) associated to the positive crossings, j ∈ [1, `(ηn) +

2
(
n
2

)
], and ζ1, . . . , ζn be the n generators associated to n crossings of the rightmost interval υ :=

σnσn−1 . . . σ2σ1 of ∆n+1, i.e. those crossings of ∆n+1 not in ∆n. The degree 0 generator associated
to the rightmost σ1-crossing in ηn+1∆n+1σ1 ∼ ηn+1σn∆n+1 will still be denoted by z.

In this case, the variety X(ηn∆n) is cut out by the condition that the matrix

Bηn
(
z1, . . . , z`(ηn)

)
B∆n

(
z`(ηn)+1, . . . , z`(ηn)+(n2)

)
w0,n

is upper triangular. Let us denote by m := (mij) the (n× n)-matrix associated to the factor

Bηn
(
z1, . . . , z`(ηn)

)
B∆n

(
z`(ηn)+1, . . . , z`(ηn)+(n2)

)
,

so that the (n+ 1)× (n+ 1)-matrix associated to the product

Bηn+1

(
z1, . . . , z`(ηn)

)
B∆n

(
z`(ηn)+1, . . . , z`(ηn)+(n2)

)
Bυ(ζ1, . . . , ζn)

reads as the product

m :=


m11 · · · m1n 0

...
. . .

...
...

mn1 · · · mnn 0
0 · · · 0 1




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 ζn · · · ζ1

 =


0 m11 · · · m1n

...
...

. . .
...

0 mn1 · · · mnn

1 ζn · · · ζ1

 ,



22 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

as it is readily verified that

Bυ (ζ1, . . . , ζn) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 ζn · · · ζ1

 .

The variety X(ηn+1∆n+1σ1) is cut out by the (n+1)×(n+1) matrix condition that (m·B1(z))·w0,n+1

is upper triangular. It thus suffices to compute

m ·B1(z) =


0 m11 · · · m1n

...
...

. . .
...

0 mn1 · · · mnn

1 ζn · · · ζ1




0 1 · · · 0

1 z
. . .

...
...

... · · · 0
0 0 · · · 1

 =


m11 z ·m11 · · · m1n

...
...

. . .
...

mn1 z ·mn1 · · · mnn

ζn 1 + zζn · · · ζ1


and note that, by direct comparison, (m·B1(z))w0,n+1 is upper triangular if and only if m·w0,n is upper
triangular and the bottom row (ζn, 1 + zζn, · · · , ζ1) of (m ·B1(z))w0,n+1 is parallel to (1, 0, · · · , 0), i.e.
ζi = 0, for i ∈ [1, n−1], and 1+zζn = 0. The equation 1+zζn = 0 allows us to determine ζn in terms
of z, and this latter z-variable is non-vanishing z ∈ C∗. Hence we obtain the required isomorphism

X(ηn+1σn∆n+1) ∼= X(ηn∆n)× C∗z.

Adding a disjoint strand. We keep the notation from the previous paragraph, so ηn ∈ Bn and
ηn+1 ∈ Bn+1 is the same braid word as ηn, considered as a braid word in (n + 1) strands. We want
to compare the braid pairs (X(ηn∆n), V (ηn∆n)) and (X(ηn+1∆n+1), V (ηn+1∆n+1)). Since we are
not adding any extra crossing to ηn it suffices, just as in the previous check, to consider the case
where ηn ∈ B+

n . Using the notation from above, we need the matrix mw0,n+1 to be upper triangular.
But it is immediate that this is the case if and only if the matrix m = (mij) is upper triangular and
ζ1 = · · · = ζn = 0. Thus, we obtain

X(ηn+1∆n+1) ∼= X(ηn∆n).

This concludes the proof of Theorem 1.5. It should be noted that, conceptually, a neat proof of
Theorem 1.5 is also brought forth by contact topology, as will be discussed in Subsection 2.5. In brief,
it can be proven that the DG-algebra A(β) is the Legendrian contact DG-algebra of the Legendrian
link associated to the Lagrangian (-1)-closure of the braid β, and thus its cohomology H0(A(β)) is a
Legendrian invariant, from which Theorem 1.5 would follow by Floer geometric means. Instead, we
have preferred to maintain our present arguments within the algebra realm and prioritized giving a
direct proof of invariance. The reader interested in the connection with contact topology can proceed
to the next subsection.

2.5. Legendrian Links and Symplectic Topology. Let us conclude this section by discussing the
contact and symplectic topology that steers part of the results of the manuscript, including Theorem
1.5. The ambient geometry is given by the standard contact 3-space (R3, ξst) and a piece of its
symplectization R3 × R, which is symplectomorphic to the standard Darboux 4-ball (D4, dλst). The
contact boundary (∂D4, kerλst|∂D4) is contactomorphic to the standard contact 3-sphere (S3, ξst),
and the complement of a point in this latter contact 3-manifold is contactomorphic to (R3, ξst). We
implicitly interchange (R3, ξst) and (S3, ξst) as any objects we discuss can be assumed to lie on the
complement of a fixed point. See [4, 36] for the basics of contact topology and [12, 21, 22] for details
on Legendrian links.

Let us fix a Legendrian link Λ ⊆ (R3, ξst), then the intuitive geometric question that gives rise to the
algebraic objects being discussed, such as the braid variety, or the Richardson and positroid strata,
is the following: what is the moduli space of embedded exact Lagrangian surfaces L ⊆ (D4, dλst) in
the standard symplectic 4-ball whose intersection ∂L = L ∩ ∂D4 ⊆ (R3, ξst) is ∂L = Λ?

Such Lagrangian surfaces are said to be Lagrangian fillings of the Legendrian link Λ. This question
needs to be phrased carefully if one is to be precise. First, we would like to understand the set
of embedded exact Lagrangian surfaces L ⊆ (D4, dλst) which have a fixed conical end of the form
Λ× (−ε, 0], for some small ε ∈ R+, i.e. in a neighborhood of ∂L, the surface is fixed to be the product
Λ × (−ε, 0]. Second, a few degenerations of exact Lagrangian surfaces L ⊆ (D4, dλst) are allowed,
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such as certain immersed Lagrangian filling. Third, each Lagrangian fillings will be endowed with
a GL1(C)-local system when considering their moduli. And fourth, we are interested in studying
Lagrangian fillings up to compactly supported Hamiltonian diffeomorphism of the standard 4-ball
(D4, dλst). In contact topology, a candidate for such a moduli space of Lagrangian fillings up to
Hamiltonian isotopy is constructed as follows.

Given the fixed Legendrian link Λ ⊆ (R3, ξst), we consider the Legendrian contact DG-algebra
C(Λ). This DG-algebra was first introduced by Y. Chekanov [15], and see also [12, 21, 22] for a
survey, and it has two salient properties:

Theorem 2.14 ([15, 19]). Let Λ ⊆ (R3, ξst) be a Legendrian link and C(Λ) its Legendrian contact
algebra. The following holds:

(i) C(Λ) is a Legendrian isotopy invariant, i.e. if Λ′ ⊆ (R3, ξst) is Legendrian isotopic to Λ,
then the DG-algebra C(Λ̄) is stable tame isomorphic to C(Λ′). In particular, the cohomology
H∗(C(Λ)) ∼= H∗(C(Λ′)) remains invariant.

(ii) Each embedded exact Lagrangian filling of Λ induces an augmentation

εL : C(Λ) −→ Z[H1(L,Z)],

i.e. a DG-algebra morphism to the trivial DG-algebra R = Z[H1(L,Z)], concentrated in degree
0 and with trivial differential.5

In contact topology, Theorem 2.14.(ii) indicates that a rigorous Floer theoretic avatar of the moduli
of Lagrangian fillings of Λ is the set M(Λ) of all R-augmentations of C(Λ). It can be proven that
M(Λ) is an affine R-scheme, and it has become one of the central moduli space of interest in contact
topology. The quest for understanding geometric properties of the affine varieties M(Λ), such as
partial compactifications, the existence of holomorphic symplectic structures, cluster structures and
so forth, is an interesting one, e.g. see [11, 35]. There is no known algebraic geometric characterization
for those affine varieties which arise as M(Λ). Nevertheless, several remarkable families of known
moduli spaces and classical spaces, such as Richardson varieties and wild character varieties, appear
as M(Λ) for certain classes of Legendrian links Λ. Now comes the simple, yet crucial, question: is
there a way to associate a Legendrian link Λ(β) to a braid word β ∈ B such that equivalent β ∼ β′

yield Legendrian isotopic links Λ(β) ' Λ(β′)?

If we were able to do so, we would obtain a DG-algebra associated to any braid word β ∈ Bn and the
affine variety M(Λ(β)) would be an invariant of the braid word β. The short answer to the question
is that it depends. For a positive braid word β ∈ B+, we will momentarily describe a Legendrian
link Λ(β∆2) ⊆ (R3, ξst) with these properties. In this case, M(Λ(β∆2)) is precisely the braid variety
X(β∆;w0), which we studied in [11], and its cohomology H∗(M(Λ(β∆2))) is tightly related to the
link homology of the smooth link underlying Λ(β∆2). In contrast, for a sufficiently negative braid
word β, such as β = σ−3

1 ∈ B2 or a braid obtained by a negative Markov stabilization, there is no
known way (and in a sense, there cannot be) to associate a Legendrian link Λ(β) to β with the basic
invariance properties. The threshold for which braid words are allowed is, nevertheless, a bit more
interesting than just the positive–or–not dichotomy.

Let us now discuss how to construct Legendrian links in (R3, ξst) associated to braid words β ∈ B.
Let us choose Cartesian coordinates (x, y, z) ∈ R3 and the contact form αst = dz − ydx, such that
ξst = kerαst. These Legendrian links will be described by using either front projections, which describe
their image in R2

x,z under the Legendrian projection πx,z : R3 −→ R2
x,z given by πx,z(x, y, z) = (x, z),

or Lagrangian projections, which describe their image in R2
x,y under the projection πx,y : R3 −→ R2

x,y

given by πx,y(x, y, z) = (x, y). We can proceed with either:

Legendrian Fronts. A crossing in the front projection always lifts to the same type of crossing, a
positive one. Thus, positive braids δ, ϑ ∈ B+ can be drawn in R2

x,z, as a usual link tangle, and they
define a Legendrian tangle. These tangles can be closed up in different ways: the two mains ones

5Base point t-variables and the choice of spin structures are required in order to have a Z-algebra, and not just a

Z2-algebra, but we will refer to [12] for these technical details.
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Figure 14. Three possible closures of braids in the Lagrangian projection, where
η, β, τ ∈ Brn are not necessarily positive braids (First Row). Two possible closures
of braids in the Legendrian projection, where δ, ϑ ∈ Br+

n must be positive braids
(Second Row).

are the Legendrian rainbow closure of a positive braid word δ, and the Legendrian (-1)-closure of a
positive braid word ϑ. They are depicted in the bottom row of Figure 14. There is a relation between
them: the Legendrian link given by the rainbow closure of δ is Legendrian isotopic to the Legendrian
link given by the Legendrian (-1)-closure of δ∆2.

Lagrangian Projections. A crossing in the Lagrangian projection might be positive or negative,
but it is not true that any knot diagram in R2

x,y gives rise to a Legendrian knot in (R3, ξst). Certain
area considerations must be met for that to be true, and that makes the threshold interesting. First,
for any positive braid words η, β, τ ∈ B+, we can draw two closures in the Lagrangian projection: the
Lagrangian rainbow closure of η and the Lagrangian (-1)-closure of τ , as depicted in the first row of
Figure 14.

There is a relation between them: the Legendrian link given by the Lagrangian rainbow closure of η
is Legendrian isotopic to the Legendrian link given by the Lagrangian (-1)-closure of η∆2. It is also
Legendrian isotopic to the Legendrian link given by the Legendrian rainbow closure of η, and thus to
the Legendrian (-1)-closure of η∆2.

There is a third Lagrangian projection that we can draw, associated to a braid word β ∈ B: the
Lagrangian Pigtail closure of β, as depicted in the middle of the top row of Figure 14. In general, it
is not true that such a drawing defines a Legendrian link. For instance, if β is empty, this Lagrangian
pigtail closure does not define a Legendrian link. A class of β for which the Lagrangian pigtail closure
does yield a Legendrian link is given by the following:

Proposition 2.15 ([12]). Let β ∈ B be a braid word of the form β = η∆, where η ∈ B is equivalent
to a positive braid word η+ ∈ B+ by a sequence of Reidemeister II moves, Reidemeister III moves and
∆-conjugations. Then the Lagrangian Pigtail closure of β represents a Legendrian link Λ(β).

In addition, the Legendrian link Λ(β) is isotopic to the Lagrangian (−1)-closure of η+∆. Also, if η+

can be taken to be of the form η+ = η̄+∆, η̄+ ∈ B+, Λ(β) is Legendrian isotopic to the Lagrangian
rainbow closure of η̄+. �

Geometrically, Proposition 2.15 is the contact topology result that allows us to go beyond the braid
varieties associated to just positive braids, as we had considered in [11]. For completeness, let us state
and succinctly prove the contact geometric theorem that implies Theorem 1.5, thus providing a more
conceptual, independent second argument for Theorem 1.5. It reads as follows:

Theorem 2.16. Let η ∈ B be a braid word which is equivalent to a positive braid word η+ ∈ B+

by a sequence of Reidemeister II moves, Reidemeister III moves and ∆-conjugations. Consider the
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Legendrian link Λ(η∆) ⊆ (R3, ξst) associated to the Lagrangian Pigtail closure of η∆. Then the
DG-algebra A(η∆) is isomorphic to the Legendrian contact DG-algebra C(Λ(η∆)).

Proof. In the case that η ∈ B+ is a positive braid word, this was proven in [12], building on [49]. For
the general case, where η ∈ Bn contains negative crossings, we need to justify the grading and, more
importantly, the differentials. The generators of C(Λ(η∆)) are given by crossings in the Lagrangian
Pigtail of ηn∆n, as they correspond to Reeb chords in the front projection. Hence, there are `(ηn∆n)+
n2 generators.

The grading in C(Λ(η∆)) is given by winding numbers6, which are readily computed to be 1, 0 and
−1 for these Lagrangian projections. Indeed, the n2 crossings in the pigtail yield generators yml of
degree 1, because they are satellited from the 1-stranded case, where the unique generator bounds a
closed loop of winding number 1. The positive crossings of η∆ give degree 0 generators zj because
the figure-eight Lagrangian projection of the standard Legendrian unknot – the Whitney immersion
– has winding number 0. For the same reason, the negative crossings of η∆ give degree -1 generators
wk, since the winding number all around the braid is zero but the last π/4-rotation to match up the
strands contributes to a resulting -1 winding number. See for example [21, 22] for more details on
such grading computations.

The differential in C(Λ(η∆)) counts rigid pseudo-holomorphic strips with asymptotic ends on Reeb
chords of Λ(η∆), which in this case translate into counting certain allowed regions in the Lagrangian
Pigtail projection bounded by the strands and the crossings. We refer to [12, 22] for a combinatorial
description of such allowed regions. The differentials ∂wk vanish for degree reasons. The differentials
∂ylm, ∂zj respectively, count polygons with a positive puncture at yml, respectively zj , and arbitrarily
many negative punctures on other degree 0 elements, respectively degree 1 elements.

Figure 15. Two holomorphic strips contributing to the X-terms in the differ-
ential of the degree 1 generators for the DG-algebra C(η∆4), for the braid word
η = σ2σ1σ3σ2σ2σ

−1
1 σ3σ2σ2σ1σ3σ2σ2σ1σ3σ2 ∈ B4. The red holomorphic strip on the

left contributes to the coefficient z ·w in the differential ∂y34 = z(w · y44), where z is
of degree 0 and w of degree -1. The red holomorphic strip on the left contributes to
the coefficient z ·w in the differential ∂y24 = z(w · y23), where z is of degree 0 and w
of degree -1.

For the differentials of the degree 1 generators, the regions contributing to the term Bη∆ in ∂ylm
are justified similarly to the case of a positive braid, the only new addition are possible punctures at
negative crossings. The regions starting at the left positive quadrant of ylm, and only using degree
0 and degree 1 negative punctures, cannot acquire a puncture at a negative crossing wk. Indeed,
their boundaries never come from the same side of wk, and thus the only possibility at a negative
σ−1
i -crossing wk is for the boundary of the region to switch strands; this is precisely accounted for in

the matrix Bi(0) and the totality of allowed regions at the left positive quadrant of ylm is in bijection
with the terms in the (l,m)-entry of Bη∆. In addition to the holomorphic strips contributing to Bη∆

in ∂ylm, which consist solely of degree 0 and degree -1 generators, there may be holomorphic strips
which start at either of the positive quadrants of ylm – left or right – and use exactly one degree
1 generator and exactly one degree -1 generator. Two such strips are depicted in Figure 15. By
dimension count, any rigid strip with a positive puncture at ylm and exactly one negative puncture at
w (with possibly more negative punctures at degree 0 generators) must be using exactly one degree 1

6Given an appropriate choice of capping paths in the case of a link.
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generator ypq. The grid combinatorics of the n2 crossings in the pigtail imply that the generator ypq
must be in either the lth strand or the mth strand. Should ypq be used, then the rigid strip is forced
to go parallel between two strands until it reaches the region with the braid word η∆. If it reaches the
braid word from the right, then the presence of ∆4 forbids from any pair strands hitting any crossing
– in particular a negative crossing – to the left of ∆4. Thus those strips do not exist and only ypq
which lie below the generator ylm may contribute to ∂ylm. It is readily seen that the contributions are
given by those regions described by X(ylm), for the same combinatorial reason that the term Bη∆

accounted for the initial term of the ∂ylm.

Finally, for the differentials ∂zj of the degree 0 generators, note that the positive quadrants are to
the right and left of the corresponding crossings. By degree reasons, any rigid strip that has a positive
puncture at zj cannot contain any degree 1 generators. Thus, strips may emerge from the right or the
left of zj , potentially continue through the pigtail without any punctures there, and proceed to the
other side of the braid word η∆. These holomorphic strips are in bijection with the terms account
for in the two coefficients E(B(β(zj , wk)); ι(zk), ι(wk)), E(B(βc(zj , wk)); ι(zk), ι(wk)), one of which
records the rigid strips with a positive puncture in the left quadrant of zj and the other records the
rigid strips with a positive puncture in the right quadrant of zj . �

3. Positroid Braids and Proof of Theorem 1.3

In this section we introduce the Richardson braid Rn(u,w), the juggling braid and the Le braid, and
prove Theorem 1.3.(i). This occupies the majority of this section. Then, we discuss the matrix braid
and conclude Theorem 1.3.(ii), which uses a much simpler argument. In particular, the results of this
section show that the Legendrian links Λ(Rn(u,w)∆2

n), Λ(Jk(f)∆k) and Λ(Mk(r)) are Legendrian
isotopic in (R3, ξst) if (u,w), f and r represent the same positroid content.

3.1. Combinatorial Data. Let us succinctly describe the combinatorial data that we use to describe
the positroid braids. Fix two natural numbers k, n ∈ N such that k ≤ n. There are four equivalent
pieces of combinatorial objects, indexing open positroid strata, that we employ: certain pairs of
permutations u,w ∈ Sn, certain bijections f : Z −→ Z, Le diagrams and cyclic rank matrices. These
are schematically depicted in Figure 16. The object of this subsection is to define part of these pieces
of combinatorial data and review the bijections we will need.

Figure 16. The four types of combinatorial data indexing positroid braids.

By definition, a permutation w ∈ Sn is said to be k-Grassmannian if

w−1(1) < w−1(2) < · · · < w−1(k), and w−1(k + 1) < · · · < w−1(n).

A pair u,w ∈ Sn such that u ≤ w in the Bruhat order and w is k-Grassmannian will be said to
be a positroid pair. We will interchangeably discuss partitions λ = (λ1, . . . , λk), given by a weakly
decreasing sequence of non-negative integers, and their associated Young diagrams, which we draw
in French notation. We write λ ⊆ (n − k)k for partitions λ whose Young diagrams fit inside the
k× (n−k) rectangle (n−k)k. There exists a bijection between k-Grassmannian permutations w ∈ Sn
and Young diagrams λ ⊆ (n− k)k, as recorded in [71, Section 19]. It is thus reasonable to denote wλ
for the permutations associated to the Young diagram λ. By using one-line notation, we can actually
write

w−1
λ = [1 + λk, 2 + λk−1, . . . , k + λ1, k + 1− λt1, k + 2− λt2, . . . , n− λtn−k],

and its length is `(wλ) = |λ| := λ1 + . . . + λn−k. From a Young diagram λ, we read a reduced
decomposition for the permutation wλ as

wλ = (sksk+1 · · · sk+λ1−1)(sk−1sk · · · sk+λ2−2) · · · (s1 · · · sλk)
= (sksk−1 · · · sk+1−λt1)(sk+1sk · · · sk+2−λt2) · · · (sn−1 · · · sn−λtn−k)

,
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where λt denotes the transposed Young diagram. This expression can be read pictorially: we draw the
Young diagram λ and fill the box in row i and column j with the number k+ j− i. The first reduced
expression above is obtained by reading this diagram by rows, and the second reduced expression is
obtained by reading it by columns.

Example 3.1. Let us consider the values k = 3 and n = 7 and the Young diagram λ = (4, 3, 1). By
filling the (i, j)-box of λ with 3 + (j − i), we obtain:

3

2

1

4

3

5

4

6

Then, the associated 3-Grassmannian permutation is

wλ = (s3s4s5s6)(s2s3s4)(s1) = (s3s2s1)(s4s3)(s5s4)(s6),

and note that the length `(wλ) is indeed |λ| = 8. �

Now, in order to additionally record the data of u in a positroid pair u,w ∈ Sn, one enhances the
Young diagram λ for w into a Le diagram. By definition, a Le diagram is a collection of dots in λ such
that the intersection of any pair of lines which belong to hooks for two different boxes with a dot must
itself be in a box with a dot. It is proven in [71, Theorem 19.1] that considering the wiring diagram
associated to a Le diagram for λ gives a bijection between Le diagrams and pairs u,wλ ∈ Sn such
that u ≤ wλ in Bruhat order. In particular, the boxes in the Le diagram with no dots correspond to
the letters of u.

Example 3.2. Let us consider the values (k, n) = (4, 6) and the Young diagram λ = (2, 2, 2, 2). The
associated permutation is wλ = (s4s3s2s1)(s5s4s3s2). Choose the permutation u = (s3)(s4s2) ∈ S6,
which readily satisfies u ≤ w. The Le diagram associated to this pair (u,w) is drawn on Figure 17.(B).

4

3

2

1

5

4

3

2

(a) The Young diagram λ = (2, 2, 2, 2) associated
to wλ = (s4s3s2s1)(s5s4s3s2).

•

•

•

•
•

(b) The Le diagram associated to the pair
(u,wλ), for u = (s3)(s4s2) = (s3s2)(s4).

Figure 17. Constructing a Le diagram from a pair (u,w).

Finally, let us discuss affine k-bounded permutations of size n, following [53]. By definition, an
affine permutation f : Z → Z of size n is a bijection such that f(i + n) = f(i) + n for all i ∈ N; we
often denote affine permutations in one-line window notation f = [f(1) . . . f(n)]. Also by definition,
an affine permutation is said to be k-bounded if the following conditions are satisfied:

i ≤ f(i) ≤ i+ n, i ∈ N and

n∑
i=1

(f(i)− i) = nk.

By [53], a k-bounded permutation f admits a unique decomposition of the form

f = u−1
f tkwf , where tk := [1 + n, 2 + n, . . . , k + n, k + 1, k + 2, . . . , n],

with uf , wf ∈ Sn a positroid pair. Let us provide an explicit description of the permutations uf , wf
appearing in this decomposition. For that, we note that there exists exactly k values i1 < i2 < · · · < ik
of i ∈ [1, n] such that n < f(i), and exactly (n− k) values j1 < j2 < · · · < jn−k of i ∈ [1, n] such that
f(i) ≤ n. We describe uf , wf via their inverses u−1

f , w−1
f , which in one-line notation read

w−1
f := [i1, i2, . . . , ik, j1, j2, . . . , jn−k].
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u−1
f := [f(i1)− n, . . . , f(ik)− n, f(j1), . . . f(jn−k)]

Note that wf is a k-Grassmannian permutation and u ∈ Sn, since n < f(ir) ≤ 2n for every r ∈ [1, k].
It is readily verified that uf , wf are the same permutations that are used in [53].

Example 3.3. First, for the trivial n-translation f = tk = [1 + n, . . . , k + n, k + 1, . . . , n], we have
(i1, . . . , ik) = (1, . . . , k) and thus wf = [1, 2, . . . , n]. Similarly, uf = [1, 2, . . . , n] is also the identity.

Second, for the k-bounded permutation f defined by f(i) = i + k, we obtain that (i1, . . . , ik) =
(n− k+ 1, . . . , n) and hence w = [k+ 1, . . . , n, 1, . . . , k] is the maximal k-Grassmannian permutation.
In this second case, the permutation u = [1, 2, . . . , n] is still the identity. �

Cyclic rank matrices, the fourth piece of combinatorial data, will be reviewed in Subsection 3.6.
For now, we have enough ingredients to start addressing Theorem 1.3.(i), and we focus on that.

3.2. Richardson Braid. Given a permutation v ∈ Sn, we will denote by β(v) ∈ Br+
n its positive

braid lift to the n-stranded braid group. A positive braid word for β(v) ∈ Br+
n , which we also denote

by β(v) ∈ B+
n , is obtained by considering a reduced expression v = si1 . . . si`(v) for v ∈ Sn in terms

of a product of the simple transpositions s1, . . . , sn−1 ∈ Sn generating the symmetric group Sn and
substituting each si by the Artin braid generator σi, i ∈ [1, n], i.e. β(v) = σi1 . . . σi`(v) .

Definition 3.4 (Richardson Braid). Let u,w ∈ Sn be two permutations such that u ≤ w in the
Bruhat order. The Richardson braid word Rn(u,w) ∈ Bn associated to the pair (u,w) is

Rn(u,w) := β(w)β(u)−1.

By definition, the Richardson link is the Legendrian link Λ(u,w) ⊆ (R3, ξst), i.e. the Legendrian lift
of the Lagrangian (−1)-closure of Rn(u,w)∆2

n, cf. Definition 1.1. �

Note that the smooth type of the Richardson link Λ(u,w) is that of the standard 0-framed (rainbow)
closure of the braid word Rn(u,w). Thus, the smooth link underlying Λ(u,w) coincides with the
smooth link studied in [33]. It is relevant to notice that the Richardson braid word Rn(u,w) ∈ Bn
in Definition 3.4 is not necessarily a positive braid word, hence the need to consider the Lagrangian
(-1)-closure in order to describe the Legendrian type of Λ(u,w) ⊆ (R3, ξst), if we are using the braid
word Rn(u,w) as an input. Note as well that Rn(u,w)∆n is equivalent to a positive braid word, and
thus Proposition 2.15 applies.

In Theorem 4.3, we show that X(Rn(u,w)∆n)/V (Rn(u,w)∆n) is isomorphic to the open Richardson
variety Rwu for any pair of permutations u,w ∈ Sn, and thus isomorphic to the open positroid stratum
Πw
u if w is k-Grassmannian. This is the reason for the terminology assigned to the braid word Rn(u,w),

[33]. A crucial feature of Rn(u,w) ∈ Bn is that it is a braid word in n-strands, whereas the juggling
braid associated to (u,w) – defined momentarily – is a braid in k-strands. This dissonance in strands
implies the necessity of using Markov moves when comparing the Richardson braid Rn(u,w) to other
positroid braids.

In order to address this, let us first show that the n-stranded braid word Rn(u,w) ∈ Bn is equivalent
to a k-stranded braid word. Let us use the bijection between k-Grassmannian permutations w and
Young diagrams λ, as explained in Subsection 3.1 above, and write the positive braid lift β(w) of
w = wλ as

β(w) = (σk · · ·σk−λt1+1)(σk+1 · · ·σk−λt2+2) · · · (σn−1 · · ·σk−λtd+d) =

= σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd+d,n−1],

where we fix the notation d := n − k onwards. Recall that we are denoting interval braids by
σ[a,b] := σb · · ·σa, a, b ∈ N, a ≤ b. Similarly, write the positive braid lift β(u) as

β(u) = u1 · · ·ud, where ui ⊆ σ[k+i−λti,k+i−1], i ∈ [1, d].

We will momentarily use the following properties of braid groups:

(i) Let a, c ∈ N, a ≤ c, and consider a subword u ⊆ σ[a,c] of the interval braid word σ[a,c]. Then

the product σ[a,c]u
−1 can be expressed as σ[a,c]u

−1 = υ−1σ[b,c], for some b ∈ [a, c], where
υ ⊆ σ[b,c−1] is obtained by applying a sequence of Reidemeister III (and II) moves which,
coarsely put, push u to the left. In precise terms, it suffices to do this for each crossing of u,
and for a given crossing σk of u, we either use σ[k,c]σ

−1
k = σ[k+1,c] or σ[`,c]σ

−1
k = σ−1

k−1σ[`,c],
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k ∈ [` + 1, c]. The braid word υ obtained in this manner, satisfying σ[a,c]u
−1 = υ−1σ[b,c], is

said to be obtained by sliding the word u−1 through σ[a,c].

(ii) Let a, b, c, d ∈ N be such that a ≤ b ≤ c ≤ d, then

σ[b,c]σ[a,d] = σ[a,d]σ[b−1,c−1] and σ−1
[b,c]σ[a,d] = σ[a,d]σ

−1
[b−1,c−1].

This is readily verified, and particularly immediate from a pictorial representation of the
braids. We refer to this relation as a nested interval exchange.

We are ready to show that the n-stranded braid word Rn(u,w) ∈ Bn is equivalent to a k-stranded
braid word. This is the content of the following

Proposition 3.5. Let (u,w) be a positroid pair and Rn(u,w) ∈ Bn its associated Richardson word.
Then there exist a d-tuple (γ1, . . . , γd) ∈ Zd, a d-tuple of braid words (v1, . . . , vd) ∈ Bdk, and a sequence
of Reidemeister II and III moves and positive destabilizations which realize an equivalence between
the n-stranded braid word Rn(u,w) and the k-stranded braid

v−1
d σ[k−γtd+1,k−1]v

−1
d−1σ[k−γd−1+1,k−1] · · · v−1

2 σ[k−γ2+1,k−1]v
−1
1 σ[k−γ1+1,k−1] ∈ Bk,

where γi ≤ λti and vi ⊆ σ[k−γi+1,k−1] for all i ∈ [1, d].

Proof. Let us write Rn(u,w) = β(w)β(u)−1 by using

β(w) = β(wλ) = σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd+d,n−1],

β(u) = u1 · · ·ud, where ui ⊆ σ[k+i−λti,k+i−1], i ∈ [1, d].

That is, the Richardson braid word reads

β(w)β(u)−1 = σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd−1+(d−1),n−2]σ[k−λtd+d],n−1u
−1
d · · ·u

−1
1

where ui ⊆ σ[k+i−λti,k+i−1], for all i ∈ [1, d]. The argument is now iterative, starting with u−1
d . Since

ud ⊆ σ[k+d−λtd,k+d−1] = σ[k+d−λtd,n−1], we can slide the word u−1
d through σ[k−λtd+d,n−1], producing

the equivalent braid word

β(w)β(u)−1 = σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd−1+(d−1),n−2]υd
−1σ[k−γd+d,n−1]u

−1
d−1 · · ·u

−1
1 ,

where γd ≤ λtd and υd ⊆ σ[k−γd+d,n−2] are defined according to the sliding process. In this expression,
the crossing σn−1 appears exactly once, in the term σ[k−γd+d,n−1]. Thus, we can apply a positive
Markov destabilization and write

β(w)β(u)−1 = σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd−1+(d−1),n−2]υd
−1σ[k−γd+d,n−2]u

−1
d−1 · · ·u

−1
1 .

First, we claim that υd
−1 can be pushed to the leftmost part of this braid word. Indeed, since

υd ⊆ σ[k−γtd+d,n−2] and γd ≤ λtd ≤ λtd−1, the word υd can be first moved past σ[n−2,k−λtd−1+(d−1)].

The word σ[k−λtd−1+(d−1),n−2] corresponding to the larger interval remains the same, and the former

υd yields a new word υd
′, obtained by lowering the indices of υd by one. Thanks to the inequalities

γd ≤ λtd ≤ λti for all i ∈ [1, d − 1], and again using the hypothesis υd ⊆ σ[k−γd+d,n−2], the word υd
′

can now be moved past the next interval braid. By iterating this process (d− 1) times, we obtain vd
which satisfies

β(w)β(u)−1 = v−1
d σ[k,k−λt1+1]σ[k+1,k−λt2+2] · · ·σ[n−2,k−λtd−1+(d−1)]σ[n−2,k−γd+d]u

−1
d−1 · · ·u

−1
1 ,

and v−1
d ⊆ σ[k−γd+1,k−1], since it is obtained from υd

−1 by decreasing all the indices down by (d− 1).

Second, we claim that the term σ[k−γd+d,n−2] in this latter expression for β(w)β(u)−1 can also be

pushed to the leftmost part of this braid word – leaving just v−1
d to its left. This follows again from

the inequalities γd ≤ λti, which hold for all i ∈ [1, d− 1], and the interval in σ[k−γd+d,n−2] will always
be the smaller one. Hence, all words to the left of σ[k−γd+d,n−2] will remain the same and the braid
word σ[k−γtd+d,n−2] will become σ[k−γd+1,k−1]. This leads to the expression

β(w)β(u)−1 =
(
v−1
d σ[k−γd+1,k−1]

) (
σ[k−λt1+1,k]σ[k−λt2+2,k+1] · · ·σ[k−λtd−1+(d−1),n−2]u

−1
d−1 · · ·u

−1
1

)
,

where γd ≤ λtd and vd ⊆ σ[k−γd+1,k−1]. The expression in red is precisely as required in the statement
of Proposition 3.5, whereas the expression in blue is exactly of the same form than the expression
at the start of this proof. Thus, we now iterate the same exact algorithm for the expression in blue,
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which produces the d-tuples (γ1, . . . , γd) ∈ Zd and (v1, . . . , vd) ∈ Bdk with the required properties.
This concludes the argument. �

In the case of u = 1 being the identity, the proof of Proposition 3.5 implies that the Richardson braid
word Rn(1, w) is equivalent to the k-stranded braid

σ[k−λtn−k+1,k−1] · · ·σ[k−λt1+1,k−1]

by a sequence of positive Markov stabilizations.

Example 3.6. Let us choose the Young diagram λ = (n−k)k and u = 1. Then the associated w = wλ
is the maximal k-Grassmannian permutation in Sn, and Rn(1, w) = β(w) is a shuffle braid. Smoothly,
it yields the (k, n− k)-torus link. By Proposition 3.5, we may apply positive Markov destabilizations
until we obtain the equivalent k-stranded braid word (σk−1 · · ·σ1)n−k, which also yields to the (k, n−k)-
torus link.

Example 3.7. Let us choose k = 4 and λ = (2, 2, 2, 2); and thus λt = (4, 4). Then we have

β(w) = (σ4σ3σ2σ1)(σ5σ4σ3σ2) ∈ B6

and u = (σ3)(σ4σ2) ≤ w. The proof of Proposition 3.5 gives the following sequence of simplifications:

R6(u,w) = β(w)β(u)−1 = (σ4σ3σ2σ1)(σ5σ4σ3σ2)(σ−1
2 σ−1

4 )(σ−1
3 ) =

(σ4σ3σ2σ1)(σ5σ4σ3)(σ−1
4 )(σ−1

3 ) = (σ4σ3σ2σ1)(σ−1
3 )(σ5σ4σ3)(σ−1

3 ) =

(σ4σ3σ2σ1)(σ−1
3 )(σ4σ3)(σ−1

3 ) = (σ−1
2 )(σ3σ2)(σ4σ3σ2σ1)(σ−1

3 ) =

(σ−1
2 )(σ3σ2)(σ−1

2 )(σ4σ3σ2σ1) = (σ−1
2 )(σ3σ2)(σ−1

2 )(σ3σ2σ1) ∈ B4.

The two positive Markov destabilizations are marked in red in this sequence of equivalences. �

3.3. Juggling Braid. In this subsection we construct the juggling braid Jk(f) associated to an affine
k-bounded permutation f and provide an algorithm to obtain a k-stranded positive braid word for
Jk(f).

Given a k-bounded affine permutation f : Z −→ Z, we consider the real plane R2 with Cartesian
coordinates (x, y) and draw the integer values 1, 2, . . . , 2n on the horizontal real x-axis {(x, y) : y =
0} ⊆ R2. For each of the values i ∈ N, 1 ≤ i ≤ n, we draw the upper-circumference arc

Ai(f) = {(x, y) ∈ R2 : 4(x− f(i) + 1)2 + 4y2 = (f(i)− i)2} ∩ {y ≥ 0} ⊆ R2

that starts at the point (f(i), 0) and ends at (i, 0). The union of these arcs is referred to as a juggling
diagram, see [53] for the reason behind this terminology. By virtue of being a k-bounded affine
permutation, there exist exactly k values (i1, . . . , ik) of i such that n < f(i) ≤ 2n. The juggling braid
is defined via a tangle diagram obtained from the juggling diagram, as follows:

Definition 3.8 (Juggling Braid). Let f : Z −→ Z be a k-bounded affine permutation of size n, and
consider the k values (i1, . . . , ik) of i such that n < f(i) ≤ 2n. The juggling braid Jk(f) associated to
f is defined by the tangle diagram obtained by considering the union of the arcs Ai1 , . . . , Aik ⊆ R2

in the juggling diagram associated to f , declaring all crossings between these arcs to be positive, and
smooth the intersections of the arcs with the x-axis, according to the local models in Figure 18. �

Figure 18. Local models constructing the juggling braid from the juggling diagram.
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By construction, Jk(f) is a positive k-stranded braid7. Note that there is a natural diagrammatic
closure of this braid diagram, by connecting the points f(i) and f(i) − n by a lower-circumference
arc below the axis if n < f(i). The smooth link associated to this diagram is a closure for the braid
Jk(f)∆k ∈ Bk, i.e. adding these lower-circumference arcs yields an additional ∆k factor.

Example 3.9. First, let us choose k = 3, n = 7 and f = [3, 4, 9, 6, 7, 12, 8]. Then the juggling diagram
has the following form.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Note that a braid word for it is J3(f) = σ1σ2σ2σ1σ1. Second, consider k = 3, n = 7 and f = t3 =
[8, 9, 10, 4, 5, 6, 7]; then the juggling diagram reads:

1 2 3 4 5 6 7 8 9 10 11 12 13 14• • • •

The braid J3(t3) is the half twist in 3-strands. In general, the positive braid word Jk(tk)∆k ∈ Bk is
the full twist ∆2

k ∈ Bk on k-strands. Finally, as a third example, let us consider k = 3, n = 7 and
f = [4, 5, 6, 7, 8, 9, 10]. The juggling diagram then reads:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

More generally, if we consider the permutation f(x) = x+k, the corresponding links associated to the
braids Jk(f)∆k will be (k, n)-torus links. �

Let f = f(u,w) = u−1tkw be the k-bounded affine permutation associated to a positroid pair (u,w).
The length of the braid word Jk(f(u,w)), which we also denote by Jk(u,w), can be read from the
pair (u,w) as follows.

Lemma 3.10. Let u,w ∈ Sn be a positroid pair. The length of Jk(u,w) equals

`(Jk(u,w)) = `(w) +

(
k

2

)
− `(u)− (n− k) + s

where s is the number of fixed points in the interval [1, n] of the associated k-bounded affine permutation
f = u−1tkw.

Proof. Let us denote βk := Jk(u,w) and suppose that f = f(u,w) has no fixed points, which can be
done without loss of generality. We use the notations as in Section 3.1. Two arcs starting at points
x, y in the horizontal axis, x < y, will intersect if and only if x < y < f(x) < f(y). Then, we have
the following four cases depending of the values ia, jb that x, y acquire:

7In principle, one can use parabolas (which correspond to actual juggling trajectories) or other curves instead of
circles in the definition of Jk(f). As long as these curves are convex, the resulting braids are all related by Reidemeister

III moves.
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(i) (x = ia, y = jb). Then f(jb) ≤ n < f(ia), so these arcs do not intersect.

(ii) (y = ib, x = ja). Then the arcs intersect if ja < ib < f(ja), since f(ja) ≤ n < f(ib) au-
tomatically. The number of all pairs (ja, ib), ja < ib, equals `(w), and we have to subtract
]{(a, b) : f(ja) ≤ ib}.

(iii) (x = ia, y = ib for a < b). Then the arcs intersect if f(ia) < f(ib), so (a, b) is not an inversion
for u. The condition ib < f(ia) is always satisfied.

(iv) (x = ja, y = jb for a < b). Then the arcs intersect if jb < f(ja) < f(jb). The number of such
pairs equals(

n− k
2

)
− ]{(a, b) : a < b, f(jb) < f(ja)} − ]{(a, b) : a < b, f(ja) ≤ jb}.

Observe that

]{(a, b) : f(ja) ≤ ib}+ ]{(a, b) : a < b, jb ≤ f(ja)} =
∑
a

(n− f(ja) + 1),

and therefore the total number of intersection points equals

`(βk) = `(w)− ]{(a, b) : f(ja) ≤ ib}+

(
k

2

)
− ]{(a, b) : a < b, u(ib) < u(ia)}+

(
n− k

2

)
− ]{(a, b) : a < b, f(jb) < f(ja)} − ]{(a, b) : a < b, f(ja) ≤ jb} =

= `(w) +

(
k

2

)
+

(
n− k

2

)
− ]{(a, b) : a < b, u(ib) < u(ia)}−

−]{(a, b) : a < b, u(jb) < u(ja)} −
∑
a

(n− u(ja) + 1).

On the other hand, let us compute the number of inversions in u. The number of inversions
involving ib on the right equals ]{(a, b) : a < b, u(ia) > u(ib)}. To compute the number of
inversions involving jb on the right, observe that there are n−u(jb) values greater than u(jb),

and
(
n−k

2

)
− ]{(a, b) : a < b, u(jb) < u(ja)} of them are not inversions. Therefore

`(u) = ]{(a, b) : a < b, u(ib) < u(ia)}+
∑
a

(n− u(ja))+

−
(
n− k

2

)
+ ]{(a, b) : a < b, u(jb) < u(ja)}

and we conclude, for this case with r = 0, that

`(βk) = `(w) +

(
k

2

)
− `(u)− (n− k).

It is immediate that adding fixed points increases the length by s and we have thus proven the required
formula in the statement. �

Note that the difference n − k which appears in the formula corresponds to the number of vertical
cusps in the juggling diagram, i.e. to the right ends of short arcs connecting two points ja and f(ja).
In the comparison between the juggling braid Jk(u,w) and the Richardson braid Rn(u,w) we will use
two additional results. First, an alternative algorithm that also computes the juggling braid Jk(f),
and a result that produces a positive k-stranded braid word for Jk(f) = Jk(u, v) in terms of a Young
diagram λ for w = wλ and the data of u ≤ w. The next two subsections contribute with these two
results.
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3.3.1. An algorithmic construction for Jk(f). Let us explicitly construct a braid word for the braid
Jk(f). First, note that the set {1, 2, . . . , n} \ {f(1), f(2), . . . , f(n)} has exactly k elements, which
correspond precisely to the values f(i1)− n, . . . , f(ik)− n. Here is a recursive procedure to obtain a
braid word for Jk(f):

Algorithm 3.11. The input is a k-tuple of numbers a = (a1, . . . , ak), the bounded affine permutation
f , and a braid β.

Step 1: Choose i0 such that f(ai0) = min{f(ai) | i ∈ [1, k]} and ai0 ∈ [1, n], and declare

j0 := max({j | aj ≤ f(ai0)} ∩ [1, n]).

Note that we have i0 ≤ j0, since i0 ≤ f(i0).

Step 2: Declare
β′ := σ[j0−1,i0] · β.

Note that σ[j0−1,i0] might be the trivial braid. Declare the new values of the k-tuple

a′ := (a′1, . . . , a
′
k)

to be the elements in ({a1, . . . , ak} \ {ai0}) ∪ {f(ai0)} ordered such that a′1 < a′2 < . . . < a′k.

Step 3: If {a′1 < · · · < a′k} ∩ [1, n] = ∅, then print the braid β′.
Else, apply Algorithm 3.11 to the triple (a′, f, β′). �

Lemma 3.12. Let f be a k-bounded affine permutation, and consider the associated values (i1, . . . , ik)
in [1, n] such that n < f(ij), j ∈ [1, k]. If Algorithm 3.11 is initialized with β = 1 and aj := f(ij)−n,
j ∈ [1, k], then it outputs a braid word for the juggling braid Jk(f).

Proof. The initialization numbers a1, . . . , ak are precisely those points in the juggling diagram for f
where the strands for Jk(f), read from right to left, start. At each step of the algorithm, it produces
precisely the crossings in the juggling diagram, as follows. Start with bi0 to the left of the vertical
dotted line

{(x, y) : 2x = 2n+ 1} ⊆ R2,

in the juggling diagram. Then, for each j with bj ≤ n and bi0 < bj < f(bi0) the strands containing
bi0 and bj will cross. These are the crossings that the interval σj0−1 · · ·σi0 produces. �

Example 3.13. For instance, Algorithm 3.11 readily computes Jk(1, w) where w is the k-Grassmannian
permutation associated to a partition λ ⊆ (n − k)k. Indeed, the affine permutation f = tkw has, in
window notation, (n+ i) in position (i+ λk−1+i), and (k+ j) in positions (k+ j − λtj), j ∈ [1, n− k],
i ∈ [1, k]. Hence Algorithm 3.11 produces

Jk(f) = (σ1)(σ2σ1) · · · (σk−1 · · ·σ1)(σk−1 · · ·σk+1−λtn−k) · · · (σk−1 · · ·σk+1−λt2)(σk−1 · · ·σk+1−λt1).

This is to be compared with the Richardson braids at the beginning of Example 3.2 above. �

A simple modification of Algorithm 3.11 also produces an explicit braid word for the braid Jk(f)∆k:

Algorithm 3.14. The input is a k-tuple of numbers a = (a1, . . . , ak), the bounded affine permutation
f , and a braid β.

Step 1: Choose i0 such that f(ai0) = min{f(ai) | i ∈ [1, k], ai ≤ n} and ai0 ∈ [1, n], and
declare

j0 := max({j | aj ≤ f(ai0)}.
Step 2: Declare

β′ := σ[j0−1,i0] · β.
Note that σ[j0−1,i0] might be the trivial braid. Declare the new values of the k-tuple

a′ := (a′1, . . . , a
′
k)

to be the elements in ({a1, . . . , ak} \ {ai0}) ∪ {f(ai0)} ordered such that a′1 < a′2 < . . . < a′k.

Step 3: If {a′1 < · · · < a′k} ∩ [1, n] = ∅, then print the braid β′.
Else, apply Algorithm 3.14 to the triple (a′, f, β′). �
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In line with Lemma 3.12, Algorithm 3.14 initialized with β = 1 and aj := f(ij)− n, j ∈ [1, k] prints
a braid word for Jk(f)∆k. Let us now discuss how to produce a positive k-stranded braid word for
Jk(f) = Jk(u, v) in terms of a Young diagram λ for w = wλ and the data of u ≤ w, where u,w ∈ Sn
are a positroid pair.

3.3.2. Braid group action. Let kSn be the set of left k-Grasmannian permutations, i.e., w ∈ kSn if
and only if w(1) < · · · < w(k), w(k + 1) < · · · < w(n)., and consider the set (Z2)n × kSn. Elements
of (Z2)n × kSn are to be thought of as triples (ai, bi, w(i)), where ai, bi ∈ Z, i ∈ [1, n], and we will
visually depict these elements as follows:

(3.1) (a1, b1)︸ ︷︷ ︸
w(1)

(a2, b2)︸ ︷︷ ︸
w(2)

· · · (an, bn)︸ ︷︷ ︸
w(n)

.

Associated to any such an element (~a,~b, w) = (ai, bi, w(i))i, we introduce a braid

σ(~a,~b,w) := σ[an,bn] · · ·σ[a1,b1],

where σ[ai,bi] is an interval braid σbiσbi−1 · · ·σai .8 By definition, we say that a left k-Grassmannian
permutation w breaks i if

{w−1(i), w−1(i+ 1)} ∩ {1, . . . , k} and {w−1(i), w−1(i+ 1)} ∩ {k + 1, . . . , n}

are both nonempty, i.e. w breaks i if and only if siw is a left k-Grassmannian permutation. If w does
not break i, we say that the pair (i, i+ 1) is on the left of w if {w−1(i), w−1(i+ 1)} ⊆ {1, . . . , k}, and
on the right of w if {w−1(i), w−1(i+ 1)} ⊆ {k + 1, . . . , n}.

Let us now construct an action of the n-stranded braid group Brn on the set (Z2)n× kSn. It suffices

to define it on the Artin generators σ1, . . . , σn−1, and we define σi(~a,~b, w) = (~a′,~b′, w′) according to
the two following cases:

(i) (w does not break i). Then (i, i+ 1) is either on the left or on the right of w. In both cases, we
define w′ := w, and define σi such that it only changes the w−1(i) and w−1(i+ 1) = w−1(i) + 1

components of (~a,~b), as follows:

(3.2) (aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+1

σi7→


(aj+1 + 1, bj+1)︸ ︷︷ ︸

i

(aj , bj)︸ ︷︷ ︸
i+1

if (i, i+ 1) is on the left of w

(aj+1 + 1, bj)︸ ︷︷ ︸
i

(aj , bj+1)︸ ︷︷ ︸
i+1

if (i, i+ 1) is on the right of w,

where we set j := w−1(i).

(ii) (w breaks i). Then we define w′ := siw, which is left k-Grassmannian. We also declare a′j := aj
and b′j := bj except for the values of j = w−1(i) and w−1(i+ 1). In these two cases, we define
a′j , b

′
j via:

(3.3) (a1, b1)︸ ︷︷ ︸
w(1)

· · · (aj , bj)︸ ︷︷ ︸
i

· · · (ak, bk)︸ ︷︷ ︸
i+1

· · · (an, bn)︸ ︷︷ ︸
w(n)

σi7→ (a1, b1)︸ ︷︷ ︸
w(1)

· · · (aj , bj)︸ ︷︷ ︸
i+1

· · · (ak, bk)︸ ︷︷ ︸
i

· · · (an, bn)︸ ︷︷ ︸
w(n)

(3.4) (a1, b1)︸ ︷︷ ︸
w(1)

· · · (aj , bj)︸ ︷︷ ︸
i+1

· · · (ak, bk)︸ ︷︷ ︸
i

· · · (an, bn)︸ ︷︷ ︸
w(n)

σi7→ (a1, b1)︸ ︷︷ ︸
w(1)

· · · (aj , bj − 1)︸ ︷︷ ︸
i

· · · (ak, bk)︸ ︷︷ ︸
i+1

· · · (an, bn)︸ ︷︷ ︸
w(n)

Note that (3.3) changes only the permutation w but not the entries ~a,~b.

Let us show that these formulas indeed define an action of the braid group Brn:

Lemma 3.15. Formulas (3.2), (3.3) and (3.4) define an action of Brn on (Z2)n × kSn.

8Recall that we declare σ[ai,bi] = 1 if it is not the case that 0 < ai ≤ bi.
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Proof. We only need to show the relation σi+1σiσi+1 = σiσi+1σi. This is a tedious yet straightforward
computation. First, if w does not break i nor i + 1, then (i, i + 1) and (i + 1, i + 2) are on the same
side of w. Then it is easy to check that part of interest transforms as follows under both σiσi+1σi and
σi+1σiσi+1.

(aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+1

(aj+2, bj+2)︸ ︷︷ ︸
i+2

7→ (aj+2 + 2, bj+2)︸ ︷︷ ︸
i

(aj+1 + 1, bj+1)︸ ︷︷ ︸
i+1

(aj , bj)︸ ︷︷ ︸
i+2

(aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+1

(aj+2, bj+2)︸ ︷︷ ︸
i+2

7→ (aj+2 + 2, bj)︸ ︷︷ ︸
i

(aj+1 + 1, bj+1)︸ ︷︷ ︸
i+1

(aj , bj+2)︸ ︷︷ ︸
i+2

where in the top line we assume that (i, i+ 1) and (i+ 1, i+ 2) are on the left of w, and in the bottom
line we assume that they are on the right. The remaining part can be verified by cases. In the first
case, w does not break i but breaks i+ 1. In the second case, w does not break i+ 1 but breaks i, and
in the third case w breaks both i and i+ 1. The proofs in these three cases are similar, and thus we
provide the details for the first case, leaving the second and third cases as analogous exercises for the
reader. In the case that w does not break i but breaks i+ 1, we proceed as follows.

If w does not break i but breaks i+ 1, the pair (i, i+ 1) could be on the left, or on the right, of the
permutation w. In the former case, we directly compute:

(aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+1

· · · (ak, bk)︸ ︷︷ ︸
i+2

σi7→ (aj+1 + 1, bj+1)︸ ︷︷ ︸
i

(aj , bj)︸ ︷︷ ︸
i+1

· · · (ak, bk)︸ ︷︷ ︸
i+2

σi+17→

(aj+1 + 1, bj+1)︸ ︷︷ ︸
i

(aj , bj)︸ ︷︷ ︸
i+2

· · · (ak, bk)︸ ︷︷ ︸
i+1

σi7→ (aj+1 + 1, bj+1)︸ ︷︷ ︸
i+1

(aj , bj)︸ ︷︷ ︸
i+2

· · · (ak, bk)︸ ︷︷ ︸
i

and

(aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+1

· · · (ak, bk)︸ ︷︷ ︸
i+2

σi+17→ (aj , bj)︸ ︷︷ ︸
i

(aj+1, bj+1)︸ ︷︷ ︸
i+2

· · · (ak, bk)︸ ︷︷ ︸
i+1

σi7→

(aj , bj)︸ ︷︷ ︸
i+1

(aj+1, bj+1)︸ ︷︷ ︸
i+2

· · · (ak, bk)︸ ︷︷ ︸
i

σi+17→ (aj+1 + 1, bj+1)︸ ︷︷ ︸
i+1

(aj , bj)︸ ︷︷ ︸
i+2

· · · (ak, bk)︸ ︷︷ ︸
i

.

This indeed shows that the braid relation σiσi+1σi = σi+1σiσi+1 is satisfied if (i, i+ 1) is on the left
of w. If (i, i+ 1) were on the right of w, then it is equally straightforward to verify that the end result
of applying both σiσi+1σi and σi+1σiσi+1 is

(ak, bk − 2)︸ ︷︷ ︸
i

· · · (aj+1 + 1, bj)︸ ︷︷ ︸
i+1

(aj , bj+1)︸ ︷︷ ︸
i+2

.

This concludes the argument. �

Let us now use this braid group action to produce a braid word for Jk(u,w). The intuitive idea is
that we start with the k-Grassmannian permutation w and consider a positive braid lift β(u−1) ∈ Brn
of the word u−1. We will momentarily define an element (~a,~b, w) ∈ (Z2)n × n−kSn so that the braid
σβ(u−1)(a,b,w) associated to the resulting action of β(u−1) applied to (a, b, w) will coincide with the

juggling braid Jk(u,w). To that end, let us consider the Young diagram λ ⊆ (n − k)k associated to
the k-Grassmannian permutation w and define the following element of (Z2)n × n−kSn:

xλ := (k − λt1 + 1, k − 1)︸ ︷︷ ︸
k+1

(k − λt2 + 1, k − 1)︸ ︷︷ ︸
k+2

· · · (k − λtn−k + 1, k − 1)︸ ︷︷ ︸
n

(1, k − 1)︸ ︷︷ ︸
1

(1, k − 2)︸ ︷︷ ︸
2

· · · (1, 0)︸ ︷︷ ︸
k

.

Note that the permutation associated to xλ is always the maximal left (n− k)-Grassmannian permu-
tation. The vector xλ gives us a bridge between the action of Bn on (Z2)n× n−kSn and the braid word
Jk(u,w). Indeed, it follows from Example 3.13 that Jk(1, w) is precisely the braid word associated

to the vector xλ. Also, if we write xλ = (~a,~b, w), note that w(1), w(2), . . . , w(n − k), w(n − k + 1) +
n, . . . , w(n) + n give us the new labels of the strands appearing in each step of Algorithm 3.14. The
precise result reads:
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Theorem 3.16. Let λ ⊆ (n− k)k be a Young diagram, and u ∈ Sn be such that u ≤ wλ. Then, the
k-stranded braid Jk(u,wλ) is the braid associated to

β(u−1) · (xλ),

where the dot indicates the image of xλ acted upon by β(u−1) ∈ Brn, a positive braid lift of the
permutation u−1.

Before giving the proof of Theorem 3.16, we need the following preparatory lemma.

Lemma 3.17. In the same notation of Theorem 3.16, define (~a,~b, w) = β(u−1) · (xλ). Then

w(i+ 1)− w(i) = bi+1 − bi + 1, i ∈ [1, n− k − 1].

Proof. Let us proceed by induction on the length `(u). In the base case `(u) = 0, the definition
of xλ implies w(i + 1) − w(i) = 1 for i ∈ [1, n − k − 1], while b1, . . . , bn−k = k − 1. Thus we have
w(i+ 1)− w(i) = 1 = bi+1 − bi + 1 as needed.

To prove the induction step, we make the following observation: if we ignored the ~a,~b components
in the action of Brn on the set (Z2)n× n−kSn, we obtain an action of Brn on n−kSn which is transitive
and factors through the symmetric group Sn. In fact, this action coincides with the one given by
identifying the set of left (n − k)-Grassmannian permutations with the set of minimal-length left
coset representatives of Sn−k × Sk in Sn. Let us be a bit more explicit about it. The stabilizer
of the maximal left (n − k)-Grassmannian permutation wmax ∈ n−kSn is Sk × Sn−k. Moreover, if
w ∈ n−kSn is any other (n−k)-Grassmannian permutation, a distinguished element sw ∈ Sn satisfying
sw(w

max) = w is
sw = (sw(n−k) · · · sn−1) · · · (sw(2) · · · sksk+1)(sw(1) · · · sk−1sk).

It follows that if v ∈ Sn is any permutation satisfying v(wmax) = w, then v−1sw ∈ Sk × Sn−k.9

In particular, if v < siv – or equivalently, if v−1(i) < v−1(i + 1) – then we cannot have s−1
w (i) ∈

{k + 1, . . . , n} and s−1
w (i+ 1) ∈ {1, . . . , k}. By construction of sw, this is equivalent to saying that we

cannot have w−1(i) ∈ {1, . . . , n − k} and w−1(i + 1) ∈ {n − k + 1, . . . , n}. With this in mind, let us
address the induction step for the proof of the lemma.

By induction, assume that the result is valid for a permutation u, and consider i such that u−1 <
siu
−1. If both w−1(i), w−1(i + 1) ∈ {1, . . . , n − k} then the induction assumption implies that the

vector ~b remains unchanged after applying σi. Since the same is true for w, the result follows in this

case. If both w−1(i) and w−1(i + 1) belong to {n − k + 1, . . . , n}, then again neither ~b nor w change.
If w−1(i + 1) ∈ {1, . . . , n − k} and w−1(i) ∈ {n − k + 1, . . . , n} then, after applying σi, one of the

components of ~b will decrease by 1; that said, the w-component of the same index will also decrease by
1, as it changes from i+ 1 to i. From our discussion in the previous paragraph, applied with v = u−1,
we conclude that the last case, w−1(i) ∈ {1, . . . , n − k} and w−1(i + 1) ∈ {n − k + 1, . . . , n}, cannot
occur and the argument is concluded. �

Finally, let us proceed with the proof of Theorem 3.16.

Proof of Theorem 3.16. Let us (also) proceed by induction on the length `(u). In the base case
`(u) = 0, the result follows from the definition of xλ and Example 3.13. For the induction step, we
assume the statement to hold for u, and we show that the result is also true for usi, where u < usi ≤ w.
In fact, we will prove a stronger statement: the new label appearing after applying the m-th interval
braid σ[am,bm] is precisely w(m). Denote the associated k-bounded affine permutation by f := u−1tkw,
and note that the requirement that w ≥ usi is equivalent to the fact that sif is a k-bounded affine
permutation. Let us prove this by considering cases.

First, let us assume that i, i + 1 ∈ f · [1, n] and that none of them are fixed points of f . Then, if
we write

β(u−1)xλ = (~a,~b, w),

we get that w−1(i), w−1(i + 1) ∈ {1, . . . , n − k} and we have to apply the top row of (3.2) to obtain
(σiβ(u)) · (xλ). On the other hand, the part of the strand labeled by i in Algorithm 3.11 comes after

9In fact, note that sw is left k-Grassmannian and the map w 7→ sw gives an explicit bijection between the sets n−kSn
and kSn; we will nevertheless not need this.
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applying the interval braid σ[aj ,bj ], and the part of the strand labeled by i + 1 comes after applying

the next interval braid σ[aj+1,bj+1], where we set j = w−1(i). Now, (sif)−1(i) = f−1(i + 1) implies
that the new initial point of the interval finishing with label i will start at the position aj+1 + 1.
Similarly, the initial point of the interval finishing with label i+ 1 will start at aj . Hence, we need to
apply the transformation σ[aj+1,bj+1]σ[aj ,bj ] 7→ σ[aj ,bj+1]σ[aj+1+1,bj ] to obtain the correct braid word.
By applying Lemma 3.17, we obtain that bj+1 = bj , and we see that the formula coincides with the
top component of (3.2). If i + 1 is a fixed point of f then bj+1 < aj+1, and so bj < aj+1 + 1; thus
we see that the braid action (σiβ)(xλ) indeed computes sif , which has i as a fixed point. Finally, if
i is a fixed point of f then the condition u < usi forces i+ 1 to be a fixed point of f too. Otherwise,
we would have f−1(i + 1) < i < n, and the formula for u in terms of f implies that u(i + 1) < u(i),
which is a contradiction with the assumption that u < usi.

The second case, when n + i, n + i + 1 ∈ f · [1, n] is proven analogously. Finally, we arrive
at the case where i + 1 ∈ f · [1, n], and n + i ∈ f · [1, n]. Note that the case i ∈ f · [1, n] and
n + i + 1 ∈ f · [1, n] is excluded by the condition u < usi. In this case, w−1(i + 1) ∈ {1, . . . , n − k}
and w−1(i) ∈ {n − k + 1, . . . , k}, so we have to apply (3.4) to find the image (σiβ)(xλ) of xλ under
the braid action of σiβ. In Algorithm 3.11, we have a initial strand for f that is labeled by i; thus
for the new permutation sif , the same strand will now be labeled by i+ 1. In particular, we see that
the algorithm applied to sif will be identical to that of f , except in the case when the new label in
f is i + 1. In the case of the new permutation sif , this new label will be i, and will not include the
last crossing of the corresponding interval braid for f . This matches (3.4) and finishes the proof. �

Example 3.18. Let us choose (k, n) = (4, 6) and the Young diagram λ = (2, 2, 2, 2). Then the
permutation xλ reads

xλ = (1, 3)︸ ︷︷ ︸
5

(1, 3)︸ ︷︷ ︸
6

(1, 3)︸ ︷︷ ︸
1

(1, 2)︸ ︷︷ ︸
2

(1, 1)︸ ︷︷ ︸
3

(1, 0)︸ ︷︷ ︸
4

Let us choose the permutation u = σ2σ4σ3 ∈ S6. Then we have

β(u−1)xλ = (1, 1)︸ ︷︷ ︸
3

(1, 3)︸ ︷︷ ︸
6

(1, 3)︸ ︷︷ ︸
1

(2, 2)︸ ︷︷ ︸
2

(1, 1)︸ ︷︷ ︸
4

(1, 0)︸ ︷︷ ︸
5

so that resulting braid reads
(σ1)(σ2)(σ3σ2σ1)(σ3σ2σ1)(σ1).

If we instead choose the permutation u1 = σ3σ4σ2, then

β(u−1
1 )xλ = (1, 2)︸ ︷︷ ︸

4

(1, 3)︸ ︷︷ ︸
6

(1, 3)︸ ︷︷ ︸
1

(3, 2)︸ ︷︷ ︸
2

(1, 1)︸ ︷︷ ︸
3

(1, 0)︸ ︷︷ ︸
5

and thus the braid reads (σ1)(σ3σ2σ1)(σ3σ2σ1)(σ2σ1).

Finally, the choice of permutation u2 = σ4σ3σ2 leads to

β(u−1
2 )xλ = (1, 0)︸ ︷︷ ︸

2

(1, 3)︸ ︷︷ ︸
6

(1, 3)︸ ︷︷ ︸
1

(1, 2)︸ ︷︷ ︸
3

(1, 1)︸ ︷︷ ︸
4

(1, 0)︸ ︷︷ ︸
5

and the braid word σ1(σ2σ1)(σ3σ2σ1)(σ3σ2σ1). �

Let us conclude this section on the juggling braids Jk(f) = Jk(u,w) by noticing that these braids
are always a product of certain interval braids

Jk(u,w) = σ[an,bn] · · ·σ[a1,b1].

If we denote

J
(1)
k (u,w) = σ[an−k,bn−k] · · ·σ[a1,b1], J

(2)
k (u,w) = σ[an,bn] · · ·σ[an−k+1,bn−k+1],

so that we can write Jk(u,w) = J
(2)
k J

(1)
k , and define

Jk(u,w) := J
(1)
k (u,w)∆−1

k J
(2)
k (u,w),

we obtain that Jk(u,w) is conjugate to Jk(u,w)∆−1
k . Indeed

Jk(u,w) = (J
(2)
k (u,w)−1)Jk(u,w)∆−1

k (J
(2)
k (u,w)).

This equivalent expression Jk(u,w) for Jk(u,w) will be used in Subsection 3.5.
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Remark 3.19. The braid J
(2)
k := σ[an,bn] · · ·σ[an−k+1,bn−k+1] that appears in the decomposition of Jk

is a positive lift of the minimal-length permutation that sorts f(i1), . . . , f(in) in decreasing order; so

that f(i1) < · · · < f(ik) implies J
(2)
k = ∆k. For example, in Example 3.9 (i) we get J

(2)
k (f) = σ1. �

This concludes our initial results and discussion on the juggling braids Jk(f). In order to compare
the juggling braids Jk(f) to the Richardson braids Rn(uf , wf ), we introduce a third braid, the Le
braid, which is the subject of the following subsection.

3.4. Le Braid. Let us define the Le braid Dk( L) associated to a Le-diagram L. For that, let Lbe a
Le-diagram and c a column of L. Denote by δ(c) ⊆ [1, k] the set of indices for the rows in the column
c that contain a dot, where the bottom row carries the number 1, and the index increases as we go
up by height. The Le braid Dk( L) will be constructed by concatenating k-stranded tangles of the
following type:

Definition 3.20 (Column Tangle). Let c be a column in a Le-diagram with δ(c) ⊆ [1, k] its set of dots.
By definition, the column tangle τ(c) is the tangle whose braid diagram in [0, 1] × R is constructed
using the following k strands:

(i) (k − |δ(c)|) horizontal strands of the form [0, 1]× {i}, for i ∈ [1, k] \ δ(c),

(ii) (|δ(c)| − 1) strands given as the unique straight segments Sj , j ∈ δ(c) \ {min(δ(c))}, where Sj
unites the points {0} × {j} and {1,m(j)}, with m(j) := max{k ∈ δ(c) : k < j},

(iii) A strand given as the unique straight segment S0 uniting the points {0} × {min(δ(c))} and
{1,max(δ(c))},

and resolving the crossings such that the strand S0 of type (iii) is above all strands Sj of type (ii)
and type (i), and all strands Sj of type (ii) lie above the stands of type (i). �

For instance, the tangle associated to a column with no dots is given by the trivial braid word, whereas
the tangle associated to a column of height k with a dot in every entry is given by the braid word
σ−1

[1,k].

Remark 3.21. Intuitively, the tangle τ(c) associated to a column c of Lis drawn as follows. First,
add empty boxes to the top of the column c until it acquires height k, and draw two parallel copies
of this extended column at the same height. Then draw straight horizontal segments connecting the
empty boxes of these two columns at the same level. After, draw strands that connect a box with a
dot (on the left) with the box with a dot right below it (on the right), all above the horizontal strands.
Finally, add a strand that connects the bottom box with a dot (on the left) with the top box with a
dot (on the right), which runs above all previous strands. �

Definition 3.22 (Le braid). The Le braid Dk( L) associated to the Le-diagram Lis the tangle whose
braid diagram is constructed by horizontally concatenating the column tangles of L, where the tangle
associated to the right-most column is drawn at the left, and the subsequent tangles are concatenated
by being added to the right, in left to right order, according to the reverse order (right to left) of the
corresponding columns in L. �

Example 3.23. Let us choose k = 6 and consider a column c of height 5 with δ(c) = {1, 3, 5} ⊆ [1, 6].
This column c and its associated tangle τ(c) read:

•

•

•

Notice that k = 6, and thus we have added an additional trivial (horizontal) strand at the top, as the
height of c was only five. The resulting tangle is 6-stranded. �
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Our argument for Theorem 1.3.(i) uses an inductive construction of Le-diagrams. The upcoming
Lemma 3.24 provides a simple characterization of Le-diagrams, of an inductive nature, which we
will employ. A piece of terminology: a collection of dots in a column of a Le-diagram is said to be
top-adjusted if for any dot in that collection, all boxes above it are filled with dots.

Lemma 3.24. Let λ be a Young diagram and La collection of dots in λ. The following rules hold:

- Suppose Lhas a column with no dots, and let L′ be the result of removing this column, then
Lis a Le-diagram if and only if L′ is.

- Suppose Lhas a row with no dots and let L′ be the result of removing this row, then Lis a
Le-diagram if and only if L′ is.

- Suppose Lhas no empty column nor empty row, let L′ be the result of removing the last column
from L. Then Lis a Le-diagram if an only if the last column in Lis top-adjusted and L′ is a
Le-diagram.

Proof. Parts (a) and (b) are immediate. For part (c), observe that if Lhas no empty row then each
box in the last column of Lis intersected by a horizonal line. If there is a dot in the last column,
the northward line from it intersects all horizontal lines above it, and the intersections should contain
dots. Therefore the last column is top-adjusted. �

Let us conclude this subsection by interpreting the above conditions on a Le-diagram L= L(u, v)
associated to a positroid pair (u, v) in terms of the affine permutation f = u−1tkw, as follows.

Lemma 3.25. Let L= L(u, v) be the Le-diagram associated to a positroid pair (u, v), and consider
the associated affine permutation f = u−1tkw. The following hold:

(a) If L(u,w) has an empty column then f(i) = i for some i.
(b) If L(u,w) has an empty row then f(i) = n+ i for some i.

Proof. For Part (a), if L(u,w) has an empty column then k < w(i) = u(i) for some i ∈ [1, n]. Hence
we obtain

f(i) = u−1tkw(i) = u−1w(i) = i.

For Part (b), if L(u,w) has an empty row, then w(i) = u(i) < k for some i ∈ {1, . . . , n}. Thus we
have

f(i) = u−1tkw(i) = u−1(w(i) + n) = u−1(w(i)) + n = i+ n.

�

3.5. Proof of Theorem 1.3.(i). Let us prove Theorem 1.3.(i) by showing that both the Richardson
braid Rn(u,w) and the juggling braid Jk(u,w)∆−1

k are equivalent to the Le braid Dk( L(u,w)). First,
we start with the comparison between Rn(u,w) and Dk( L(u,w)), which essentially follows from our
Proposition 3.5, and then proceed with the comparison between Jk(u,w)∆−1

k and Dk( L(u,w)), which
constitutes the majority of this subsection.

Let us denote Dk(u,w) := Dk( L(u,w)) for the Le braid associated to the Le diagram L(u,w)
corresponding to a positroid pair u,w ∈ Sn.

Theorem 3.26. Let u,w ∈ Sn be a positroid pair. Then, the Le braid Dk(u,w) is equivalent to the
Richardson braid Rn(u,w), related by a sequence of braid moves and positive stabilizations.

Proof. Consider the structure of the braid word for Rn(u,w) produced in Proposition 3.5: the argu-
ment in its proof proceeded by iteratively sliding the words u−1

i , composing β(u)−1, i ∈ [1, n − k].
We can employ a similar procedure for analyzing the Le braid Dk(u,w), by iteratively studying each
column of the Le diagram L(u, v). Thus, it suffices to study the case of a single column L(u, v), i.e.
k = n− 1, which corresponds to one iteration in the proof of Proposition 3.5, as d = n− k = 1.

Thus assume that the Young diagram for w consists of a single column, and denote its height by
λ. Then the braid lifts of the positroid pair u,w ∈ Sn read

β(w) = σk · · ·σk−λ+1, and β(u) = σa1 · · ·σar ,
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for certain values aj , j ∈ [1, r], and r ∈ N, such that k − λ + 1 ≤ ar < ar−1 < . . . < a2, a1 ≤ k, and
the Richardson braid reads

Rn(u,w) = β(w)β(u)−1 = σk · · ·σk−λ+1σ
−1
ar · · ·σ

−1
a1 .

Now, the dots in the Le diagram L(u,w) then correspond to the set complement

{k, . . . , k − λ+ 1} \ {a1, . . . , ar}.

In case ar = k − λ + 1, we can perform a Reidemeister II move on the above braid word Rn(u,w)
which cancels the two generators σk−λ+1σ

−1
ar . In parallel, on the Le-diagram L(u,w), the top box is

empty in this case and corresponds to a straight line; thus the braids coincide at this piece. Hence we
proceed with the case k − λ + 1 < ar. Then, we can slide the σ−1

aj generators to the left and obtain
the expression

Rn(u,w) = σ−1
ar−1 · · ·σ

−1
a1−1σk · · ·σk−λ+1.

By applying a positive Markov destabilization to the crossing σk, we arrive at the expression

σ−1
ar−1 · · ·σ

−1
a1−1σk−1 · · ·σk−λ+1.

By direct inspection, this agrees with the column tangle in Definition 3.20, for the unique column
we are studying. For instance, the case of a single dot in the column precisely corresponds to the
cancellation

σk · · ·σk−λ+1σ
−1
k−λ1+2 · · ·σ

−1
k = σ−1

k−λ+1 · · ·σ
−1
k−1σk · · ·σk−λ+1 ∼

σ−1
k−λ+1 · · ·σ

−1
k−1σk−1 · · ·σk−λ+1 = 1.

This shows the required equivalence between the Le braid Dk(u,w) and the Richardson braid Rn(u,w)
for the case of a Le diagram with a single column; as explained above, the general case follows by
applying this procedure iteratively. �

Example 3.27. In Example 3.23, where we chose k = 6 and a column c of height 5 with dots
δ(c) = {1, 3, 5} ⊆ [1, 6], the Richardson braid reads:

Rn(u,w) = σ6σ5σ4σ3σ2σ
−1
3 σ−1

5 = σ−1
2 σ−1

4 σ6σ5σ4σ3σ2 ∼ σ−1
2 σ−1

4 σ5σ4σ3σ2.

At the last step we apply a positive destabilization and remove σ6. The result of this operation, which
we now depict on the left, is equivalent to the column tangle τ(c) from Example 3.23, depicted on the
right:

In both cases the sixth strand, on the top, interacts trivially with the other strands. �

Let us continue with the comparison between Jk(u,w)∆−1
k and Dk( L(u,w)). This is the main

content of Theorem 3.31 below, whose proof contains several steps. In order to improve the clarity in
the exposition, we first prove three lemmas, Lemma 3.28, 3.29 and 3.30, which will be used in proof of
Theorem 3.31. These three lemmas address the changes of the braids Jk(u,w)∆−1

k and Dk( L(u,w))
upon certain simple modifications of the Le diagram L(u,w), and thus the positroid pair u,w ∈ Sn.

Lemma 3.28. Let L(u,w) be a Le diagram with an empty column, L′ = L(u′, w′) the Le diagram
obtained by removing this empty column, where u′, w′ ∈ Sn−1 is the respective positroid pair. Then

Jk(u,w) = Jk(u′, w′) and Dk(u,w) = Dk(u′, w′).

Proof. By Lemma 3.25, the associated k-bounded affine permutation has a fixed point and, by con-
struction, the braid Jk(u,w) does ignore the fixed points of f . Hence we obtain Jk(u,w) = Jk(u′, w′).
Now, an empty column in L(u,w) yields a trivial column tangle according to 3.20, and thus Dk(u,w) =
Dk(u′, w′) as well. �
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Lemma 3.29. Let L(u,w) ⊆ λ be a Le diagram with no empty rows or columns, λtn−k−µ the number

of dots in its last column, and L′ = L(u′, w′) the Le diagram obtained by removing the last column,
where u′, w′ ∈ Sn−1 is the associated positroid pair. Then

Dk(u,w) = (σk−1−µ · · ·σk+1−λtn−k)Dk(u′, w′)

Lemma 3.29 is straightforward, i.e. the change of the Le braid Dk(u,w) readily follows from Definition
3.22. Note that by Lemma 3.24 the last column in Lis top-adjusted. The analogous statement for
the juggling braid Jk(u,w) will now be proven in Lemma 3.30. For that, let us recall that we have a
decomposition Jk(u,w) = J (2)(u,w)J (1)(u,w) where, intuitively, J (1)(u,w) consists of the crossings
appearing before n in the juggling diagram; see Subsection 3.3.

Lemma 3.30. Let L(u,w) ⊆ λ be a Le diagram with no empty rows or columns, λtn−k−µ the number

of dots in its last column, and L′ = L(u′, w′) the Le diagram obtained by removing the last column,
where u′, w′ ∈ Sn−1 is the associated positroid pair. Then

J
(1)
k (u,w) = (σk−1−µ · · ·σk+1−λtn−k)J

(1)
k (u′, w′), and J

(2)
k (u,w) = J

(2)
k (u′, w′).

Proof. Both Jk(u,w) and Jk(u′, w′) are products of interval braids, the precise form of which is
obtained by Theorem 3.16. Let λ′ be the Young diagram of the permutation w′ ∈ Sn−1. Then
Theorem 3.16 produces the two expressions

xλ := (k − λt1 + 1, k − 1)︸ ︷︷ ︸
k+1

(k − λt2 + 1, k − 1)︸ ︷︷ ︸
k+2

· · · (k − λtn−k + 1, k − 1)︸ ︷︷ ︸
n

(1, k − 1)︸ ︷︷ ︸
1

(1, k − 2)︸ ︷︷ ︸
2

· · · (1, 0)︸ ︷︷ ︸
k

,

xλ′ := (k − λt1 + 1, k − 1)︸ ︷︷ ︸
k+1

(k − λt2 + 1, k − 1)︸ ︷︷ ︸
k+2

· · · (k − λtn−1−k + 1, k − 1)︸ ︷︷ ︸
n−1

(1, k − 1)︸ ︷︷ ︸
1

(1, k − 2)︸ ︷︷ ︸
2

· · · (1, 0)︸ ︷︷ ︸
k

.

Hence, up to conjugation, the corresponding braids differ by the interval braid σk−1 · · ·σk−λtn−k+1.

Since a reduced expression for the permutation u′ can not include the crossing σn−1, the same is true
for the braids associated to β′ · (xλ′) and β′ · (xλ), where β′ is a reduced lift of (u′)−1. Let us denote

β · (xλ′) = (~a,~b, w).

Now, if β denotes a reduced lift of u−1, we have that β = σn−µ · · ·σn−1β
′, which follows from the

dots in the rightmost column of L(u,w) being top-aligned (which is the case by Lemma 3.24). Hence,
we need to compute the element (σn−µ · · ·σn−1β

′) · (xλ), i.e. the image of xλ acted upon by the braid
(σn−µ · · ·σn−1β

′). Applying σn−1 to β · (xλ) will either produce the change

(k − λtn−k + 1, k − 1)︸ ︷︷ ︸
n

7→ (k − λtn−k + 1, k − 2)︸ ︷︷ ︸
n−1

,

in the case bn−1−k < k − 1, by Lemma 3.17, or it will produce the change

(an−1−k, k − 1)︸ ︷︷ ︸
n−1

(k − λtn−k + 1, k − 1)︸ ︷︷ ︸
n

7→ (k − λtn−k + 2, k − 1)︸ ︷︷ ︸
n−1

(an−1−k, k − 1)︸ ︷︷ ︸
n

for the critical case bn−1−k = k − 1, or equivalently w(n− 1− k) = n− 1. In this case, the inequality
an−1−k < k−λtn−k + 2 holds and each one of σn−2, . . . , σn−µ will either subtract 1 from the endpoint
of the new interval, or add 1 to the initial point and move it to the left of the previous interval. Thus,
at the end, we will have inserted an interval of the form (k − λtn−k + 1 + a, k − 1 − b) to β · (xλ′),
where a+ b = µ. By using a sequence of nested interval exchanges, we conclude that

Jk(u′, w′) = σ[an−1,bn−1] · · ·σ[an−k,bn−k]σ[an−1−k,bn−1−k] · · ·σ[a1,b1],
Jk(u,w) = σ[an−1,bn−1] · · ·σ[an−k,bn−k]σ[k+1−λtn−k,k−1−µ]σ[an−1−k,bn−1−k] · · ·σ[a1,b1]

from which the result follows. �

As a simple verification, note that the case µ = λn−k in Lemma 3.30 yields Jk(u,w) = Jk(u′, w′),
in accordance to Lemma 3.28 above. Finally, we can now show the equivalence between the juggling
braid Jk(u,w)∆−1 and the Le braid Dk(u,w).
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Theorem 3.31. Let u,w ∈ Sn be a positroid pair, and consider the juggling braid Jk(u,w)∆−1, and
the Le braid Dk(u,w). Then

Dk(u,w) = J (1)(u,w)∆−1
k J (2)(u,w).

In particular, the juggling braid Jk(u,w)∆−1 is conjugate to the diagram braid Dk(u,w), and the
Richardson braid Rn(u,w) is related to them by a sequence of braid moves, conjugations and positive
destabilizations.

Proof. Let us denote

Jk(u,w) := J (1)(u,w)∆−1
k J (2)(u,w),

to ease notation, and prove the theorem by induction on n ∈ N. Note that for the empty L-diagram
both sides of the equation are the trivial braid, which gives us the base of induction. Now, given the
positroid pair u,w ∈ Sn, we consider the associated Le diagram L(u,w). The induction step is now
performed by modifying the Le diagram L(u,w) to a smaller Le diagram, in line with the inductive
description if Lemma 3.24. There are three cases, as follows.

Case 1: There is an empty column in L(u,w). Let L′ = L(u′, w′) be the Le-diagram obtained by
deleting this column. In this case, Lemma 3.28 implies that Dk(u′, w′) = Dk(u,w) and Jk(u′, w′) =
Jk(u,w), and the induction step is immediate.

Case 2: There are no empty rows or columns in L(u,w). In this case, we let L′ = L(u′, w′) be the Le-
diagram obtained by deleting the last column of L. The induction hypothesis Jk(u′, w′) = Dk(u′, w′)
and Lemmas 3.29 and 3.30 imply J (u,w) = Dk(u,w), as desired.

Case 3: There is an empty row in L(u,w). This case needs to be argued entirely, as none of the
previous lemmas apply. Let L′ = L(u′, w′) be the result of removing this row, so that it has k − 1
rows and (n− k) columns, where we have denoted by u′, w′ ∈ Sn−1 the corresponding positroid pair.

First, assume for the moment that the empty row that we have removed is actually the bottom
row of L. Then Dk(u,w) = Dk−1(u′, w′), where we abuse notation by considering Brk−1 ⊆ Brk. On
the juggling side, it is clear from the juggling diagram that we obtain the juggling braid Jk(u,w) from

Jk−1(u′, w′) by inserting an arc going from n to 2n; this implies that J
(1)
k (u,w) = J

(1)
k−1(u′, w′) while

J (2)(u,w) = (σ1 · · ·σk−1)J (2)(u′, w′). Thus,

Dk(u,w) = Dk−1(u′, w′) = J
(1)
k (u′, w′)∆−1

k−1J
(2)
k−1(u′, w′) = J

(1)
k (u,w)(∆−1

k−1σ
−1
k−1 · · ·σ

−1
1 )J

(2)
k (u,w).

and the result in this case follows from the equality ∆−1
k = ∆−1

k−1σ
−1
k−1 · · ·σ

−1
1 .

Let us now assume that we have removed the j-th row of L, counting from top to bottom, which is an
empty row. In particular, the j-th strand of Dk(u,w) goes below all other strands. Let L1 = L(u1, w1)
be the diagram obtained by removing the j-th row of Land attaching a new empty row at the bottom
of L, of maximal possible length n − k. In terms of partitions, we are replacing λ = (λ1, . . . , λk) by
the partition

(n− k, λ1, . . . , λ̂j , . . . , λk),

where a hat means that an element is omitted. The Le braid Dk(u1, w1) coincides with that of
Dk(u,w) after moving the j-th strand all the way to the bottom. This implies that

Dk(u1, w1) = (σk−1 · · ·σj)Dk(u,w)(σk−1 · · ·σj)−1.

On the juggling side, let us first compare J
(1)
k (u1, w1) with J

(1)
k (u,w). In J

(1)
k (u,w), we have a

strand starting at the i-th position, say, that goes below all other strands and finishes in the j-th
position, where i ≥ j and j is precisely the position of the row that we have removed from L. The

braid word J
(1)
k (u1, w1) is obtained by pulling this strand all the way to the bottom. Thus, we have

J (1)(u,w) = (σk−1 · · ·σj)−1J (1)(u1, w1)(σk−1 · · ·σi).

Still on the juggling side, let us now compare J
(2)
k (u1, w1) with J

(2)
k (u,w). The braid J

(2)
k (u,w) has

a strand starting at the j-th position and finishing at the (k − i + 1)-st position, with i, j as before.
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We then obtain J
(2)
k (u1, w1) by pulling this strand so that now it starts at the bottom and ends at

the top of the braid. Hence the J (2) piece changes according to

J (2)(u,w) = (σ1 · · ·σk−i)−1J (2)(u1, w1)(σk−1 · · ·σj).

In conclusion, gathering the comparisons above, we obtain:

Dk(u,w) = (σk−1 · · ·σj)−1Dk(u1, w1)(σk−1 · · ·σj)
= (σk−1 · · ·σj)−1J (1)(u1, w1)∆−1

k J (2)(u1, w1)(σk−1 · · ·σj)
= J (1)(u,w)(σk−1 · · ·σi)−1∆−1

k (σ1 · · ·σk−i)J (2)(u,w)
= J (1)(u,w)∆−1

k J (2)(u,w),

as required, where the second equality follows because L(u1, w1) has an empty row at the bottom.
and the last equality follows from the identity σ−1

` ∆−1
k = ∆−1

k σ−1
k−`. �

3.6. Matrix Braids and Proof of Theorem 1.3.(ii). Let us finally introduce cyclic rank matrices
r = (rij), their associated matrix braids Mk(r) ∈ Bk, and conclude Theorem 1.3.(ii).

Definition 3.32. A cyclic rank matrix of type (k, n) is an array r = (rij) indexed by (i, j) ∈ Z2

satisfying the following conditions:

(i) rij = 0 if j < i and rij = k if i+ n− 1 ≤ j.
(ii) rij − r(i+1)j ∈ {0, 1}, rij − ri(j−1) ∈ {0, 1}, and rij = r(i+n)(j+n), for all i, j ∈ Z.
(iii) If r(i+1)(j−1) = r(i+1)j = ri(j−1) then rij = r(i+1)(j−1).

Note that we can restrict to a grid i ∈ [1, n] due to the condition rij = r(i+n)(j+n), for all i, j ∈ Z. �

Given a cyclic rank matrix r = (rij), and each i ∈ Z, there is a unique index f(i) such that

ri f(i) = r(i+1) f(i) = ri (f(i)−1) = r(i+1) (f(i)−1) + 1.

Then the map f : Z −→ Z defined by f(i) = j if and only if

rij = r(i+1)j = ri(j−1) = r(i+1)(j−1) + 1,

defines a bounded affine permutation. In fact, this establishes a bijection between cyclic rank matrices
and bounded affine permutations.

Definition 3.33. Let r = (rij) be a cyclic rank matrix of type (k, n), (i, j) ∈ Z2. By definition, the
infinite matrix braid M∞k (r) ∈ Bk is given by the tangle diagram obtained by drawn in R2 the five
local tangles according to Figure 19.

Figure 19. The local models for the matrix braid Mk(r) associated to a cyclic rank
matrix r = (rij), drawn near each four entries of the matrix. The value of a given
entry rij is denoted by rij = ρ and the braid is depicted in red strands. The yellow
lines are used to separate the matrix entries of r.

By definition, the matrix braid Mk(r) ∈ Bk is obtained from the infinite matrix braid M∞k (r) ∈ Bk
by restricting its diagram to the grid i ∈ [1, n]. �
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The conditions in Definition 3.32 imply that the matrix braid Mk(r) ∈ Bk is a k-stranded tangle. The
following result concludes Theorem 1.3.(ii).

Theorem 3.34. Let r = (rij) be a cyclic rank matrix of type (k, n), (i, j) ∈ Z2, and f its associated
bounded affine permutation. The matrix braid Mk(r) ∈ Bk is equivalent to the braid Jk(f)∆k ∈ Bk.

Proof. First, we note that

ri+1,j − ri,j =

{
1 if j < f(i),

0 if f(i) ≤ j.

In particular, if f(i) = i then rij = ri+1,j for all j ≥ i, and there are no horizontal segments separating
the rows i and i+1. In the other case, there is a horizontal line which starts at the bottom left corner
of the square (i, i), makes a turn at the bottom left corner of the square (i, f(i)) and goes down after
that. By examining the cases in Figure 19, we see that a vertical downward line cannot turn left
and can turn right only at diagonal. If f(i) ≤ n then this vertical line will hit the diagonal, and
corresponds to the arc connecting i with f(i). In case n < f(i), the vertical line would end at the
bottom of the matrix braid Mk(r) ∈ Bk, and thus connect to f(i)− n after braid closure. �

3.7. Reverse engineering. Note that we can also try to reverse the logic of Subsection 3.3 and
attempt to reverse engineer pairs of permutations u,w ∈ Sn starting from a braid Jk so that Jk =
Jk(u,w). In this line, we pose the following question:

Question 3.35. What is the set of positive k-stranded braids β ∈ Brk that can be presented as
β = Jk(u,w), for some w, u ∈ Sn and n ∈ N ?

The general answer to this question seems complicated, e.g. see Theorem 3.16 for an algorithm
computing the braid word for Jk(u,w). Note that by Theorem 1.7, which will be proved in Section
4.2, such a braid β = Jk(u,w) would have a non-empty braid variety X(β), and thus a necessary
condition for a braid β to be of this form is that it contains w0 as a subword, cf. [11, Corollary 5.2].
The answer to the question becomes simpler in many special cases, for instance our computations
above yield the following result:

Theorem 3.36. Let γ ∈ Brk be a k-stranded braid of the form

(3.5) γ = (σk−1 · · ·σk−λd) · · · (σk−1 · · ·σk−λ1), for some λ1 ≥ . . . ≥ λd.

Then we have γ∆k = Jk(1, w), where w ∈ Sk+d is the k-Grassmannian permutation corresponding to
the partition λ. �

This result immediately implies the following:

Corollary 3.37. Let γ ∈ Brk be a k-stranded braid of the form

(3.6) γ = (σk−1 · · ·σk−λd) · · · (σk−1 · · ·σk−λ1
), for some λ1 ≥ . . . ≥ λd.

Then the braid variety X(γ∆k;w0,k) is isomorphic, up to a torus factor, to a positroid variety in
Gr(k, k + d). �

Note that the presence of the torus factor in Corollary 3.37 is important. Indeed, the class of varieties
Y , for which there exists a positroid Π in an appropriately big Grassmannian, such that Π is a direct
product of Y with an algebraic torus, seems to be much larger that the class of positroids. This is
what makes Question 3.35 interesting. In particular, we cannot always expect varieties X(γ∆k;w0,k)
in Corollary 3.37 to be positroids. Note also that there are plenty of braids satisfying the condition
(3.5). For example, let FTi = (σk−1 · · ·σk−i+1)i denote the full twist braid on the last i strands; then
the braid

γ(a2, . . . , ak; s) = FTa22 · · ·FTakk (σk−1 · · ·σ1)s

satisfies the condition (3.5) above for arbitrary ai, s ∈ N ∪ {0}, i ∈ [2, k]. These braids play an
important role in the articles [39, 34, 41]. Finally, we observe that the results of [32, 75] yield an
explicit cluster structure on the braid variety X(γ(a2, . . . , ak; s)∆k;w0,k); see also the discussion in
Section 5.
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4. Braid Varieties, Richardson varieties and Brick Manifolds

In this section, we succinctly argue that open Richardson varieties in Type A are braid varieties,
which allows us to apply results of [62] to show that they satisfy the curious Lefschetz property, and use
results of [53] to prove Theorem 1.7 in the introduction. In parallel, we also show that brick manifolds
brick(β), for different braid words β ∈ B of a braid [β] ∈ Brn, provide different smooth projective
good compactifications of the same affine braid variety X(β), which only depends on [β] ∈ Brn.

4.1. Braid varieties and open Richardson varieties. Let us consider the flag variety F `n = G/B
for G = GLn(C), B a Borel subgroup, and denote by FA the flag associated to matrix A ∈ GLn.
Namely, the i-th space in the flag FA is spanned by the first i columns of the matrix A. Let us denote
by F st = (0 ⊆ 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, . . . , en−1) ⊆ Cn) the standard flag.

Let w ∈ W = Sn be a permutation, i.e. an element of the Weyl group of G. Then, the Schubert
cell X◦w associated to w ∈ Sn is defined to be

◦
Xw:= {F ∈ F `n | dim(F st

p ∩ Fq) = #{i ≤ p | w(i) ≤ q} for all p, q ∈ [1, n]}.

The variety
◦
Xw is actually an affine space of dimension `(w), the length of w, which can be

described as follows. Consider w as a permutation matrix and let Elm be the (lm)-elementary matrix,
so that the (s, t) entry of Elm is the product (δl,s)(δm,t) of Kronecker deltas. Inside the space of

(n × n)-matrices Mn(C) ∼= Cn2

, consider the unique affine subspace Mw which contains w ∈ Mn(C)
and is spanned by all the matrices Ew(j),i such that the pair (i, j) satisfies (i, j) ∈ inv(w).10 It can be
proven that the map

ι : Mn(C) −→ F `n, A 7→ FA,

restricts to an isomorphism between Mw−1 and the Schubert cell
◦
Xw, i.e. ι(Mw−1) ∼=

◦
Xw. Let us now

relate to braid matrices. In fact, braid matrices serve as a parametrization of the affine spaces Mw,
and thus the corresponding Schubert cells. This is the content of the following lemma, see e.g. [62,
Section 5] and [11, Section 2].

Lemma 4.1. Let w ∈ Sn be a permutation and β = σi1 · · ·σi` ∈ Bn a choice of reduced positive lift
for w. Then the map

C`(w) →Mw, (z1, . . . , z`) 7→ B−1
i1

(z1) · · ·B−1
i`

(z`)

is an isomorphism of affine algebraic varieties.

The story in the case of opposite Schubert cells is analogous. Briefly, consider the anti-standard flag

F ant := (0 ⊆ 〈en〉 ⊆ 〈en, en−1〉 ⊆ · · · ⊆ 〈en, . . . , e2〉 ⊆ Cn),

and let w0 be the longest element of Sn, considered as a permutation matrix. The opposite Schubert
cell is defined to be

◦
X w := {F ∈ F `n | dim(Fp ∩ F ant

q ) = #{i ≤ p | w0w(i) ≤ q} for all p, q = 1, . . . , n}

The variety
◦
X w is also an affine space, in this case of dimension `(w0w) = `(w0) − `(w). It can be

described explicitly by considering

Mw := ww0 +
∑

(i,j)∈inv(w)

CEw(i),n−j ,

the unique affine subspace Mw which contains ww0 ∈ Mn(C) and is spanned by all the matrices
Ew(j),n−j such that the pair (i, j) satisfies (i, j) ∈ inv(w). Similarly to above, the map A 7→ FA

gives an isomorphism between the affine space Mw−1

and the opposite Schubert cell
◦
X w0w, and the

analogue of Lemma 4.1 is the following

10Recall that an inversion of w is a pair (i, j) where i < j and w(i) > w(j), and inv(w) denotes the set of inversions

of w; note that `(w) = # inv(w).
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Lemma 4.2. Let w ∈ Sn be a permutation and β = σi1 · · ·σi` ∈ Bn a choice of reduced positive lift
for w. Then the map

C`(w) →Mw, (z1, . . . , z`) 7→ Bβ(z)w0

is an isomorphism of affine algebraic varieties. �

Lemmas 4.1 and 4.2 now suffice to show that if β = β1β2 with each one of β1 and β2 a reduced word,
the braid variety are isomorphic to the intersection of a Schubert cell and an opposite Schubert cell.

Theorem 4.3. Let β1, β2 ∈ B+
n be two positive reduced braid words, and w1, w2 ∈ Sn be their respective

Coxeter projections. Then the map

ι : C`(β1) × C`(β2) −→ F `n, (z1, z2) 7→ FB−1
β1

(z1), (z1, z2) ∈ C`(β1) × C`(β2),

restricts to an isomorphism

X(β1β2;w0) −→ ι(X(β1β2;w0)) ∼=
◦
Xw1

∩
◦
X w0w

−1
2

of affine algebraic varieties.

Proof. First, we verify that the image ι(X(β1β2;w0)) is indeed in the required intersection, i.e. that

the flag FB−1
β1

(z) belongs to both Schubert cells
◦
Xw1 and

◦
X w0w

−1
2 . By Lemma 4.1, the matrix

B−1
β1

(z) belongs to the affine subspace Mw−1
1

, and thus FB−1
β1

(z) ∈
◦
Xw1

, as needed. For the inclusion

FB−1
β1

(z) ∈
◦
X w0w

−1
2 , we note that we can write

Bβ1(z)Bβ2(z′)w0 = U

for some upper triangular matrix U . This implies that

B−1
β1

(z) = Bβ2(z′)w0U
−1,

and, since U−1 is upper triangular, we conclude that FB−1
β1

(z) = FBβ2 (z′)w0U
−1

= FBβ2 (z′)w0 . Then

Lemma 4.2 shows that the matrix Bβ2
(z′)w0 belongs to Mw2 , and thus FBβ2 (z′)w0 ∈

◦
X w0w

−1
2 , as

required. In order to show that ι restricts to a bijection, consider a flag F ∈
◦
Xw1

∩
◦
X w0w

−1
2 . Thanks

to Lemma 4.1 we can find a unique element z1 ∈ C`1 such that F = FB−1
β1

(z1). Now we claim that

there exists a unique element z2 ∈ C`2 such that (z1, z2) ∈ X(β1β2;w0). Indeed, since F ∈
◦
X w0w

−1
2 ,

Lemma 4.2 implies that there exists a unique z2 ∈ C`2 such that F = FBβ2 (z2)w0 . The result is
concluded. �

The intersections of Schubert cells considered above have a particular classical terminology. Namely,
consider two permutations u,w ∈ Sn. Then the open Richardson variety associated to u,w is defined
to be the intersection

R◦(u,w) :=
◦
Xw ∩

◦
X u.

It can be verified that this intersection is nonempty if and only if u ≤ w in Bruhat order; note
that R◦(u,w) consists of a single point if u = w. In these terms, Theorem 4.3 states that all open
Richardson varieties are braid varieties. We record this fact in the following

Corollary 4.4. Let u,w ∈ Sn be such that u ≤ w in Bruhat order, and β(w), β(u−1w0) ∈ Brn positive
lifts of w, u−1w0. Then we have an isomorphism of affine algebraic varities

X(β(w)β(u−1w0);w0) ∼= R◦(u,w).

Remark 4.5. Note that we can use Corollary 4.4 together with Theorem 1.5 to give isomorphisms
between Richardson varieties. For example, assume that u,w are permutations such that u ≤ w in
Bruhat order, and let si be a simple transposition satisfying u < siu and w < siw (resp. u < usi and
w < wsi). Then, we have an isomorphism R◦(u,w) ∼= R◦(siu, siw) (resp. R◦(u,w) ∼= R◦(usi, wsi)).
Indeed, it follows from Corollary 4.4 and Theorem 1.5(i) that we have R◦(u,w) ∼= X(Rn(u,w)∆n)/V
and R◦(siu, siw) ∼= X(Rn(siw, siu)∆n)/V ′ (resp. R◦(usi, wsi) ∼= X(Rn(wsi, usi)∆n/V

′). But the
braid words Rn(u,w)∆n and Rn(siw, siu)∆n are ∆-conjugate (resp. Rn(u,w)∆n and Rn(wsi, usi)∆n

are related by a Reidemeister II move) so we can use Theorem 1.5(i) again to obtain the desired
isomorphism.
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A. Mellit [62] used braid varieties to prove the curious Lefschetz property, defined by T. Hausel
and F. Rodriguez-Villegas [46], for cohomology rings of character varieties. Namely, he stratified a
vector bundle over any given character variety by vector bundles over braid varieties and proved the
curious Lefschetz property for each braid variety by using further stratifications. Corollary 4.4 then
immediately implies the following.

Corollary 4.6. Open Richardson varieties for SLn satisfy the curious Lefschetz property.

This result was first conjectured by T. Lam and D. Speyer [56, Section 1.5.1], see also further discussion
in a recent paper by P. Galashin and T. Lam [33].

4.2. Proof of Theorem 1.7. We are now in position to prove Theorem 1.7 from the introduction.
Recall that a positroid pair (u,w) yields the open positroid variety Πu,w ⊆ Gr(k, n) in the Grassman-
nian. Combining [53, Theorem 5.9] with Corollary 4.4, we obtain

Πu,w
∼= R◦(u,w) ∼= X(β(w)β(u−1w0,n)),

where, as usual, β(w), β(u−1w0,n) are positive braid lifts of their corresponding arguments.

Now, the Richardson braid Rn(u,w) is β(w)β(u)−1, which has negative crossings whenever u 6= 1.
Nevertheless, since we can always find a reduced expression for w0,n with u as a prefix, the braid
Rn(u,w)∆n is equivalent to the positive braid β(w)β(u−1w0,n). Thus, we are in position to apply
our Theorem 1.5.(i) and obtain an expression for the positroid variety in terms of the braid variety
X(Rn(u,w)∆n). Namely, we obtain an isomorphism of affine varieties

Πu,w
∼= X(Rn(u,w)∆n)/V,

where V is a collection of vector fields on the variety X(Rn(u,w)∆n) that integrate to a free algebraic
action of an additive group, as in Section 2. Moreover, since the passage from Rn(u,w) to the Le-braid
Dk( L) involves only destabilizations but not stabilizations, we can use Theorem 1.5 (ii) together with
Theorem 1.3(i) to, up to a trivial torus factor, express the positroid variety Πu,w in terms of the braid
variety of a positive braid with k strands:

Πu,w
∼= X(Jk(f);w0,k)× (C∗)d

for some d ∈ N ∪ {0}, where f = u−1tkw is the k-bounded affine permutation corresponding to the
pair (u,w). It remains to show that d = n− s− k, where s is the number of fixed points of f in the
interval [1, n]; this follows from a dimension count. Indeed, by Lemma 3.10 and [11, Corollary 5.22]
we have

dim
(
X(Jk(f);w0,k)× (C∗)d

)
= `(w)− `(u)− n+ k + s+ d.

In addition, see e.g. [53], we have that dim(Πu,w) = `(w)− `(u) and thus d = n− k − s. �

4.3. Braid varieties and brick manifolds. Let β = σi1 · · ·σi` ∈ B+
n be a positive braid word, and

let us define the brick manifold brick(β) associated to β, following the work of L. Escobar [20]. These
brick varieties brick(β) will provide natural smooth compactifications of our braid varieties X(β).

By definition, the Bott-Samelson variety BS(β) associated to β is the moduli space of collections
of flags (F 0, . . . ,F `) ∈ F `n such that F 0 is the standard flag and either F j = F j+1, or the
two contiguous flags F j ,F j+1 differ precisely in the ij+1-subspace. This projective variety BS(β)
contains a natural subvariety, which we called the open Bott-Samelson variety OBS(β) in [11], defined
by the additional condition that two contiguous flags must be different, i.e. F j 6= F j+1 for every
j ∈ [0, `− 1].

The Bott-Samelson variety BS(β) admits a natural projection map

mβ : BS(β) −→ F `n, mβ(F 0, . . . ,F `) := F `,

onto the last, rightmost, flag.

Definition 4.7. Let β ∈ B+
n be a positive braid word. By definition, the brick variety brick(β)

associated to β is
brick(β) := m−1

β (δ(β)F st),

where δ(β) ∈ Sn denotes the Demazure product of β. The associated open brick variety is defined as

brick◦(β) := m−1
β (δ(β)F st) ∩OBS(β).

�
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As a reminder, the Demazure product δ(β) ∈ Sn is the (unique) maximal permutation with respect
to the Bruhat order such that β contains its positive braid lift. It is important to note that the brick
manifold brick(β), unlike the braid variety X(β), significantly depends on the braid word β ∈ B, and
not only on the braid [β] ∈ Br.

Given β = σi1 · · ·σi` ∈ Bn, denote its opposite braid word by β:= σi` · · ·σi1 . Braid varieties directly
relate, up to this mirroring, to brick varieties, as follows:

Theorem 4.8. Let β = σi1 · · ·σi` ∈ Bn be a positive braid word, and consider the truncations
βj := σi1 · · ·σij , j ∈ [1, `]. The following holds:

(i) The algebraic map

Θ : C` −→ F ``+1
n , (z1, . . . , z`) 7→ (F st,F 1, . . . ,F `),

where F j is the flag associated to the matrix B−1
βj

(z`−j+1, . . . , z`), restricts to an isomorphism

Θ : X( β; δ(β))
∼=−→ brick◦(β),

of affine varieties. In particular, the braid variety X( β; δ(β)) is smooth.

(ii) The complement to X( β; δ(β)) in brick(β) is a normal crossing divisor. Its components cor-
respond to all possible ways to remove a letter from β while preserving its Demazure product.

Proof. For Part (i), we first verify Θ(X( β; δ(β))) ⊆ brick◦(β). For that, note that

B−1
βj+1

(z`−j , . . . , z`) = B−1
βj

(z`−j+1, . . . , z`)B
−1
ij+1

(z`−j),

and thus the two flags F j and F j+1 are indeed in position ij+1, as required. In order to check that

FB−1
β (z1,...,z`) = δ(β)F st,

we observe that we have B β(z1, . . . , z`)δ(β) = U , where U is an upper triangular matrix, and hence

B−1
β (z1, . . . , z`) = δ(β)U−1; from which this conclusion follows. The fact that the map Θ restricts to

an isomorphism follows from Lemma 4.9 below, which is well-known. The smoothness claim follows
immediately from [20, Theorem 3.3].

For Part (ii), we proceed as follows. For a subset I ⊆ [1, `], let brick(β)◦I ⊆ brick(β) be defined by
the conditions that F i−1 6= F i if and only if i ∈ I, where F 0 = F st. For example, brick(β)◦[1,`] =

brick(β)◦. Now let brick(β)I := brick(β)◦I , which is similarly defined by the condition that F i−1 = F i

if i 6∈ I. Note that brick(β)I ⊆ brick(β)J if I ⊆ J , and that brick(β)◦I is nonempty if and only if
δ(βI) = δ(β), where βI is the subword of β indexed by I. Moreover, in this case we have natural
isomorphisms

brick(βI)
◦ → brick(β)◦I , brick(βI)→ brick(β)I .

Now, it is clear that we have

brick(β) = brick(β)◦ t
⋃

I([1,`]

brick(β)I = X( β; δ(β)) t
⋃

I([1,`]
δ(βI)=δ(β)

brick(βI).

If δ(βI) = δ(β), then brick(βI) is a smooth variety of dimension |I| − `(δ(β)), [20, Theorem 3.3].
Therefore, in this case

brick(βI) = brick(β)I =
⋂
j 6∈I

brick(β)[1,`]\{j} =
⋂
j 6∈I

brick(β[1,`]\{j}),

so brick(βI) is a complete intersection, and the divisors brick(β[1,`]\{j}) ⊆ brick(β) intersect transver-
sally, if the intersection is nonempty. �

The proof of the following lemma is straightforward.

Lemma 4.9. Let us consider an invertible matrix A ∈ GLn and i ∈ [1, n− 1]. Then, the map

C −→ F `, z 7−→ FAB−1
i (z),

yields an isomorphism from C to the set of all flags that are in position i with respect to FA.
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Remark 4.10. In fact, Corollary 4.4 follows from Proposition 4.8 by results of [20], since an open
Richardson variety is a special case of an open brick variety (for the word considered in Corollary
4.4). Such resolutions of Richardson varieties via fibers of the Bott-Samelson map first appeared in a
work of M. Balan [5] who reformulated constructions of M. Brion [7]; the latter were also studied in
detail in [54]. �

Since the brick manifold brick(β) depends on the braid word β ∈ B, and the braid variety X(β) does
not, Theorem 4.8.(ii) allows us to construct many different compactifications for a given braid variety,
see Remark 4.14.

Example 4.11. Let us consider the equivalent braid words

β1 = σ1σ2σ1σ2σ1, β2 = σ1σ2σ2σ1σ2.

In both cases, the braid varieties are algebraic tori

X( β1;w0) ∼= X( β2;w0) ∼= (C∗)2.

The variety brick(β1) has X(β1;w0) as an open stratum, and additional five codimension-1 strata –
isomorphic to C∗ – and five more codimension-2 strata, which are points. In fact, brick(β1) is a toric
degree 5 del Pezzo surface, i.e. the toric variety associated to the pentagon, and these various strata
correspond to toric orbits. In contrast, X(σ1σ

3
2 ;w0) is empty, so there can only be four codimension-1

strata – see below – and four codimension-2 strata. In fact, brick(β2) ∼= P1 × P1, which is a different
toric variety. �

Theorem 4.8.(ii) also allows us to compute the (equivariant) homology of braid varieties. Note
that the equivariant cohomology of a (closed) Bott-Samelson variety is given by the Bott-Samelson
bimodule. The brick manifold is the intersection of the Bott-Samelson variety with the graph of δ(β),
and its equivariant cohomology can be computed similarly to [79].

Now, by Theorem 4.8.(ii), we can express the weight filtration on homology of the braid variety
X( β;w0) in terms of homologies of brick manifolds brick(βI) as follows. Consider the big complex

C• =
⊕
I

H∗(brick(βI))

where the summation is over the subsets I such that δ(βI) = δ(β), and the differential is given by
inclusions brick(βI) ↪→ brick(βJ) for I ⊂ J, |J | = |I|+1. The homology of this complex is the E2-page
of the spectral sequence computing the homology of X( β;w0). Since all brick manifolds are smooth
and projective, the weight filtrations in their homology agree with the homological gradings. Since
higher differentials preserve weights [16, 17], the spectral sequence collapses at the E2 page and we
obtain

H∗(C•) = grWH∗(X( β;w0)).

Remark 4.12. By elaborating this argument further, one can compare the torus-equivariant ho-
mology grWHT (X( β;w0)) to the Khovanov-Rozansky homology HHHa=n( β∆) of top a-degree11, see
[51, 52]. By the main result of [40] (see also [6]) we have

HHHa=n( β∆) = HHHa=0( β∆−1).

In particular, one can relate the torus-equivariant homology of the Richardson variety, corresponding
to β = Rn(u,w)∆, to the Khovanov-Rozansky homology of Rn(u,w) of bottom a-degree, in agreement
with [33]. �

Finally, the open brick variety brick◦(β) is the higher-dimensional stratum in the stratification of
the brick variety brick(β) given in [20, Theorem 24], and we claim that all other strata of these
stratification can also be realized as braid varieties, as follows. Let β′ be a subword of β such that
the Demazure product of β′ coincides with that of β. Then, X( β′; δ(β)) is a strata of brick(β), given
by the conditions that F j = F j+1 whenever ij+1 6∈ β′. This stratification is dual to the subword
complex (β, δ(β)), as defined by Knutson and Miller [55]. Subword complexes are defined for arbitrary
pairs (β, π), where π is an element of a finite Coxeter group and β is a word in simple generators; the
latter can also be seen as a positive braid word in the corresponding braid group. Knutson and Miller
[55] proved that a subword complex is a sphere (or spherical) if and only if δ(β) = π, and a ball,

11We thank Anton Mellit and Minh-Tam Trinh for explaining this to us and sharing the results of [78].
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otherwise. Thus, brick manifolds bijectively correspond to spherical subword complexes, and they are
stratified by braid varieties, with the adjacency of strata described by the dual complexes.

By directly translating a result of C. Ceballos, J. P. Labbé, and C. Stump [14] and its proof from the
setting of spherical subword complexes to that of (open) brick manifolds, we can show the following.

Proposition 4.13. (cf. [14, Theorem 3.7]) Given a positive braid β, let µ be a reduced expression of
δ(β)−1w0. Then we have isomorphisms

brick(β) ∼= brick(βµ);

X( β; δ(β)) ∼= X( βµ);w0),

compatible with the inclusions X( β; δ(β)) ↪→ brick(β), X( βµ;w0) ↪→ brick(βµ).

Remark 4.14. Three brief comments might be in order. First, Proposition 4.13 explains why we can
restrict ourselves to braids with the Demazure product w0 without loss of generality, at least when
considering smooth braid varieties. Contractible subword complexes might be related to other fibers
of the projection mβ . To our knowledge, the geometry of such fibers is not well-understood; even
their dimensions are, in general, not known.

Second, assume that β and β′ are related by a Reidemeister III move and w is a permutation. Then,
the relation between the subword complexes for (β,w) and (β′, w) is described in the manuscript
[44]. For the corresponding brick varieties – assuming w = δ(β) = δ(β′) – we heuristically foresee
that brick(β) and brick(β′) are related by at most one blow-up, followed by at most one blow-down.
We will hopefully address this in more generality in future work. In fact, the main result of [43]
essentially implies that each brick variety of the form brick(cw0), for any reduced expression c of
a Coxeter element c and any reduced expression w0 of w0 in Sn, can be obtained by a sequence of
blow-ups from (P1)n−1, and by a sequence of blow-downs from the toric variety of the c-associahedron.
The precise geometric statements and their interpretations via quiver representations and g-vector
fans will appear in the forthcoming work of the third author, which will be an extended translation
of parts of his Ph.D. thesis [42].

Third, Bott-Samelson varieties are Hamiltonian symplectic manifolds with respect to the natural
action of (C∗)n−1. Escobar [20] proved that the image of a brick manifold brick(β) under the cor-
responding moment map is a brick polytope of β, as introduced by V. Pilaud and C. Stump [70].
Notably, brick(β) is a toric variety of this polytope with respect to this torus action if and only if the
word β is root independent, in the sense of [70]. Pilaud and Stump proved that the brick polytope
of a root independent word β realizes its spherical subword complex; this is not true for an arbitrary
braid word β. �

Now, suppose that we have w = δ(β). In order to further stratify each stratum X( β′;w), we can
use the algebraic weaves introduced in [11]. In short, if β0 is a reduced lift of w, it follows from [11]
that any simplifying weave w : β−→ β0 gives a stratum of the form (C∗)a×Cb, where a is the number
of trivalent vertices and b is the number of cups in w. Note that such weaves are in correspondence
with weaves between β −→ β0, and such correspondence preserves the number of trivalent vertices
and cups. If w : β −→ β0 is a Demazure weave, as defined in [11], then it must have `(β) − `(β0)
trivalent vertices, and we find that the dimension of the brick manifold is precisely `(β)− `(β0); this
dimension result goes back to [20]. In addition, by induction on `(β) − `(β0), we can show that the
complement to the toric chart in X( β;w) given by this weave can itself be further stratified by weaves.
Let us conclude this section with an example of such a stratification.

Example 4.15. Let us choose n = 2 and β = σ3
1. The braid variety X(σ3

1 ; s1) is a smooth surface in
C3 defined by the equation

X(σ3
1 ; s1) = {(z1, z2, z3) ∈ C3 : z1 + z3(1 + z1z2) = 0}.

If 1 + z1z2 = 0, we get z1 = 0, and thus come to a contradiction. Therefore, 1 + z1z2 6= 0. Then
z3 = − z1

1+z1z2
, and so X(σ3

1 ; s1) is isomorphic to the complement

Y = {(z1, z2) ∈ C2 : 1 + z1z2 6= 0}
of a smooth hyperbola in C2. The braid variety X(σ2

1 ; s1) is isomorphic to C∗ and X(σ1; s1) is a point.
The corresponding brick manifold is brick(σ3

1) ∼= P1 × P1, and these different braid varieties stratify
it as follows. Consider the homogeneous coordinates (x, y) ∈ P1 × P1, and denote [0 : 1] by 0 and
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[1 : 0] by ∞. Note that the homogenized hyperbola C̄ contains the two points (0,∞) and (∞, 0). The
stratification of the brick variety P1 × P1 given by the braid varieties has the following seven strata

- One top-dimensional stratum Y , which is the complement of the smooth hyperbola in C2.

- Three one-dimensional strata, each isomorphic to C∗. Two such strata are given by

{(x, y) ∈ P1 × P1 : x =∞, y 6= 0,∞}, {(x, y) ∈ P1 × P1 : x 6= 0,∞, y =∞},
and the third one is the affine hyperbola itself.

- Three zero-dimensional strata, each isomorphic to a point. These three points are (∞, 0), (0,∞)
and (∞,∞).

Finally, the braid variety X(σ3
1 ; s1) ∼= Y admits two stratifications obtained by using algebraic weaves,

as defined in [11]. Each of them is a decomposition of Y of the form ({0} × C) t (C∗ × C∗) :

Y = {(z1, z2) ∈ C2 : z1 = 0} t {(z1, z2) ∈ C2 : z1 6= 0, z2 6= −
1

z1
}

= {(z1, z2) ∈ C2 : z2 = 0} t {(z1, z2) ∈ C2 : z2 6= 0, z1 6= −
1

z2
}.

The reader is invited to explore these stratifications for the general 2-stranded case β = σ`1 ∈ B2. �

5. Final Remarks and Conjectures on cluster A-structures

Let us conclude this article with a few comments and conjectures on cluster A-structures, also
known as cluster K2-structures, on braid varieties. The reader is referred to [26, 27] and [24, 23] for
the necessary preliminaries on cluster structures, and see also [25, 45, 56, 64, 65, 66, 72, 29].

We introduce the following notation: we let β be a positive braid word with Demazure product
δ(β) = w0 and w0(β) be the rightmost subword of β which is a (reduced and positive) braid lift of
w0. Let jump(β) := β\w0(β) be the subword of β, given by all letters not appearing in w0(β); the
subword jump(β) will be referred to as jump set of β, in line with the article [58]. In the setting
of subword complexes [69], V. Pilaud and C. Stump refer to such a subword as the positive greedy
facet of the subword complex of (β,w0).12 Let us now state precisely our conjectural understanding
of braid varieties in relation to cluster structures:

Conjecture 5.1. Let η ∈ Bn be a braid word which is equivalent to a positive braid word η+ ∈ B+
n by a

sequence of Reidemeister II and III moves, and ∆-conjugations, and A(η∆) its associated DG-algebra.

(i) There exists a quiver Q̃, with exchange matrix of full rank, such that Q̃ has (l(η)−
(
n
2

)
−(n−1))

mutable vertices, (n − 1) frozen vertices and the 0-th cohomology H0(A(η∆)) is isomorphic

to the upper cluster algebra U(Q̃) over C.

(ii) The mutable part Q of the quiver Q̃ has a green-to-red (or reddening) sequence.

(iii) Q satisfies the strong version of the Louise property, as considered in [66, Remark 4.7]. In

particular, U(Q̃) is locally acyclic, Q has a unique non-degenerate potential up to weak equiv-
alence, and H∗(Spec(H0(A(η∆)))) is of mixed Tate type and split over Q.

(iv) The 2-form on Spec(H0(A(η∆))) defined by A. Mellit [62], which yields the curious Lefschetz
property for this affine variety, is a Gekhtman-Shapiro–Vainshtein form compatible with this
cluster structure.

(v) Each cluster chart in H0(A(η∆)) corresponds to an embedded exact Lagrangian filling of the
Legendrian link Λ(η∆) associated to the Lagrangian Pigtail closure of η∆.

12Note that the subword w0(β) generalizes the notion of the positive distinguished subexpression of v in a reduced
expression of w, for a pair of permutations u ≤ w, as introduced by B. Marsh and K. Rietsch [61], following V. Deodhar

[18].
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(vi) The Lagrangian filling defined by the pinching sequence given opening the crossings in jump(η+)
from left to right is an initial cluster chart.

(vii) The exchange type of the mutable part of Q for such choice of the initial chart is preserved
under Reidemeister II moves, Reidemeister III moves and ∆-conjugations of the braid word
η. Each such move gives rise to a quasi-cluster transformation of Spec(H0(A(η∆))). In par-
ticular, it preserves the set of cluster monomials and the totally positive part of the variety.

(viii) Each positive stabilization adds one frozen vertex to the quiver Q̃, and each positive destabi-
lization specializes one frozen variable to 1.

In particular, H0(A(η∆)) equals the cluster algebra A(Q̃) and admits a theta basis and a generic
basis, both parametrized by tropical points of the corresponding cluster X−variety. �

In fact, for each subword of η+ which is a braid lift of w0, we may choose a pinching ordering for the
crossings in the complement of such a word. We expect that any exact Lagrangian filling obtained in
this manner yields a cluster seed in H0(A(η∆)). In general, this will not be a 1-to-1 correspondence:
many pinching sequences often give rise to the same cluster chart. In [11], we described all toric
charts appearing in such a way in terms of Demazure weaves, following [13], and gave a precise notion
of equivalence and mutations of such weaves. We do expect that one can associate a quiver to each
Demazure weave, and each mutation of such a quiver can be realized via a mutation of the weave.
This is straightforward to check for 2-stranded braids, see [11]. J. Hughes [47] proved this statement
for weaves for 3-stranded braids whose corresponding cluster algebras are of type D, and B. H. An,
Y. Bae, and E. Lee [1] independently proved that the images under iterated Coxeter transformations
of quivers of cluster type ADE can be realized via weaves for 3-stranded braids. Therefore, for such
braids, all clusters correspond to certain Lagrangian fillings of the appropriate Legendrian links.

Remark 5.2. Despite its success so far, e.g. see [1, 11, 13, 47], the approach via weaves also presents
certain challenges; mostly in the dissonance between algebraic and geometric intersection numbers. In
[11], we adapted results of Y. Pan [68] for the case of 2-stranded braids and presented some calculations
in a larger generality where this strategy can be successfully implemented. We hope to address the
general case in future work. �

Let us focus on Conjecture 5.1, providing evidence for it and precisely setting up the larger context in
which it lies. For certain classes of braids β as in its statement, there are known cluster A-structures
on their braid varieties. Let us succinctly describe known cases and the relations between them.

Positroid strata. For positroid varieties Πu,w – which, as we proved, are isomorphic to H0(A(η∆)),
for η = Rn(u,w)∆n – Conjecture 5.1.(i) was proved by P. Galashin and T. Lam [32], based on works of
J. Scott [74], G. Muller and D. Speyer [66], B. Leclerc [57], and K. Serhiyenko, M. Sherman-Bennett,

and L. Williams [75]. Explicitly, they proved that Q̃ can be taken as the quiver associated to the

Le-diagram of (u,w). The same Q̃ was associated by G. Muller and D. Speyer [66] to a plabic graph
corresponding to (u,w), who further proved that Q satisfies the strong version of the Louise property.
N. Ford and K. Serhiyenko [28] proved that such Q admit green-to-red sequences. To summarize, for
η = Rn(u,w)∆n and η+ = β(w)β(u−1w0), parts (i), (ii), and (iii) of Conjecture 5.1 are known.

Note that one has cluster structures on coordinate rings both of a positroid variety and of its affine
cone, and some of the references above actually deal with the latter. The former can be obtained from
the latter by specializing one frozen variable to 1; see [67] for a detailed discussion. We expect part (vii)
to be related to recent results of C. Fraser and M. Sherman-Bennett on quasi-cluster transformations
of cluster structures on coordinate rings of (affine cones over) positroid varieties, formulated in terms
of relabeled plabic graphs [30].

In terms of Le-diagrams, the Le-diagram associated to (u,w) corresponds to a choice of a pair
(v,w), where w is a certain reduced expression of w, which we can identify with an explicit braid lift
β(w), and v is the leftmost reduced expression of v in w. The braid word β(w)β(u−1w0), which is
equivalent to the braid word Rn(u,w)∆n, has the Demazure product w0, and the complement to v
in β(w) is a facet of the subword complex of (β,w0). Regarding the quivers and cluster coordinates,
we have:
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(a) β(w)β(u−1w0,6). Here w4 = (s4s3s2s1)(s5s4s3s2) is
the maximal 4 - Grassmannian permutation in S6; u = s2;
β(u−1w0,6) = σ1σ2(σ3σ2σ1)(σ4σ3σ2σ1)(σ5σ4σ3σ2σ1).

6 6

5 5

4 4

3 3

2 2

1 1

(b) The bridge diagram for
β(w)β(u−1w0,6).

Figure 20. The wiring diagram for w4 with the unique crossing in u = s2 being
removed and the bridge diagram associated to (u,w4). The quiver defines a cluster
structure on the coordinate ring of the open positroid Πu,w ∈ Gr(4, 6).

- For such words, the quiver can be drawn by a procedure essentially described by R. Karpman
[50], who related wiring diagrams to plabic graphs. In short, it goes as follows. We draw a
wiring diagram for w (we list the crossing of β(w) from left to right). We replace each crossing
in the complement to v by a dimer (which we can safely understand just as a vertical edge,
as in the brick diagram of β(w)). We then remove the tail of each strand to the left of the
leftmost dimer. The result is called a bridge diagram. In the case of positroids, Karpman
proved that such diagrams are planar. Thus, one has well-defined bounded and unbounded
regions in the complement to strands and dimers. In each region bounded on the left by
a dimer, we put a vertex of a quiver. Bounded regions correspond to mutable vertices and
unbounded ones correspond to frozen vertices.

Galashin and Lam [32] explained how to draw the arrows in such a diagram. In fact, they
used a Le-diagram to draw the arrows. A notable difference in the construction is that they
read the Le-diagrams in the opposite direction. In our terminology, this means that they take
the rightmost reduced expression of v−1 in a reduced word for w−1. The complement is then
precisely the jump set in β(w−1)β(uw0). The bridge diagram has to be reflected across the
vertical axis. The frozen vertices now correspond to the leftmost regions.

- The cluster variables are defined via an explicit parametrization of the initial toric chart of this
positive distinguished subexpression, described by Marsh and Rietsch [61]. We expect that
this construction might be interpreted in Floer theoretic terms of exact Lagrangian fillings,
and such a translation would verify point (vi) of Conjecture 5.1 for the word β(w−1)β(uw0).

Note that if we translate these results to our initial word β(w)β(u−1w0), we would find that
the subword for w0 defining the initial cluster is neither rightmost, nor the leftmost. This
means that in this setting, we can assign vertices of the quiver to the crossings of a certain
non-greedy facet of a subword complex of (β(w)β(u−1w0), w0) and obtain a parametrization
of a toric chart via translating the parametrization of Marsh and Rietsch [61]. An example
of a such a quiver and the corresponding bridge diagram are given on Figure 20.(A) and (B),
respectively. For the sake of completeness, we drew all the crossings of β(u−1w0) to show
which subword of β(w)β(u−1w0) we use.

Open Richardson varieties. More generally, for open Richardson varieties, parts (i) and (iii) were
conjectured by T. Lam and D. Speyer [56]. By now, there are at least two known constructions of upper
cluster algebra structures on the coordinate rings C[R◦(u,w)]. B. Leclerc [57] proved that the upper
cluster algebra (and thus the honest cluster algebra) corresponding to a certain cluster-tilting object
in a certain category is a subalgebra in C[R◦(u,w)]. His approach actually covers open Richardson
varieties in types ADE, but we will concentrate on type A. His algebra is obtained by localizing the
image of the cluster character map at a certain explicit set of functions. Leclerc conjectured that
this upper cluster algebra is, in fact, the entire C[R◦(u,w)], and, moreover, it coincides with the
corresponding cluster algebra. The main issue is that the cluster seed corresponding to this object
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is not defined explicitly. Nonetheless, Leclerc proved his conjecture in two cases: when the cluster
algebra is of finite type and when w admits a factorization w = vu with l(w) = l(v)+l(u). In the second
case, the varieties are called skew Schubert varieties in [75]. Recently, Ménard [63] found an explicit
cluster seed in Leclerc’s cluster algebra for a certain cluster-tilting object (which is conjectured to
coincide with Leclerc’s cluster-tilting object). Moreover, he related its quiver to the one of a cluster-
tilting object considered by C. Geiss, B. Leclerc, and J. Schröer in [37] by an explicit sequence of
mutations, followed by freezing of some vertices, followed by deletions of frozen vertices. The quiver
of Geiss-Leclerc-Schröer is known to have a green-to-red sequence [37] (which is conjectured to be a
maximal green sequence), and the property of having such a sequence is preserved under all these
steps by results of G. Muller [65]. P. Cao and B. Keller [9] combined these results to deduce the
existence of a green-to-red sequence for Ménard’s quiver. They also announced a proof of Conjecture
5.1.(i) for Richardson varieties, based on this construction and on properties of cluster algebras whose
mutable quivers admit green-to-red sequences. The positive distinguished subexpression for v in β(w)
plays a role in Ménard’s construction; however, we do not have enough intuition yet to claim that
this approach should prove Conjecture 5.1.(vi).

Independently, G. Ingermanson [48] gave another construction of an upper cluster algebra structure
on C[R◦(u,w)] (only in type A), thus giving another proof of Conjecture 5.1.(i) in this generality. Her
construction uses bridge diagrams, which are again related to positive distinguished subexpression
for v in β(w), now for so-called unipeak reduced expressions β(w). This can be seen as a direct
generalization of the construction of Galashin and Lam [33]; thus, for this cluster structure, we expect
Conjecture 5.1.(vi) to hold. It is an interesting open question whether the constructions of Leclerc-
Ménard and of Ingermanson produce the same cluster A-structure on R◦(u,w).

Note that bridge diagrams in this general Richardson case (even in type A) are not necessarily planar.
Thus, the recipes of Karpman and Galashin-Lam to draw quivers cannot be applied directly. This
explains the difficulties involved.

A few more cases. For a braid word η+ of the form η̄+∆, parts (i), (ii) and (v) of Conjecture 5.1
were proved in [35, 76]. In this case, the jump set of η̄+∆ is η̄+, and Conjecture 5.1.(vi) also follows
from their works. Note that in [35] part (i) was proved only over a field of characteristic 2, but it
can be combined with [12] to define a cluster structure over C. By rotating the corresponding wiring
diagrams by 180◦ or by conjugating by ∆, we can translate results of [35] to the case of braids of the
form ∆η̄+. If we retain their parametrization of cluster charts, we obtain that parts (i), (ii) and (v) of
Conjecture 5.1 are satisfied for such braids, when one takes the crossings in η̄+ as the vertices of the
quiver. In other words, one takes the complement to the leftmost expression of w0 in ∆η̄+. Note that
the pinching sequence of the filling corresponding to such a cluster consists of crossings in η̄+ opened
from right to left.

Finally, assume that w = vu, l(w) = l(v) + l(u), and w is k-Grassmannian. Then the quiver cor-
responding to the Le-diagram can be constructed from the Young diagram for v by the same rule.
Indeed, we can take positive lifts of v and u to get a positive lift of w, and then β(w)β(u−1w0)
equals β(v)∆ (or is equivalent to it by a sequence of Reidemeister III moves). Thus, one can take the
wiring diagram of β(v) and construct a quiver from it by the same rules as in [32]. This was done
(in fact, before [32]) by K. Serhiyenko, M. Sherman-Bennett and L. Williams [75]. By comparing to
[35], we see that the quiver is, in fact, the same in both constructions. In other words, the cluster
structures on (open) skew Schubert varieties in Grassmannians can be interpreted in terms of the
pinching combinatorics for exact Lagrangian fillings.

Example 5.3. Let us give an example in the case of the big positroid cell in Gr(k, n). The Richardson
braid is the shuffle braid β(wk), so its crossings form a rectangle k×(n−k). The quiver of [32] reflected
across the vertical axis gives rise to a so-called rectangular seed, see [75]. In fact, this particular cluster
seed was first described in [38], and the wiring diagram and the bridge diagrams are just the usual
diagrams for wk; we draw the quiver as in [35]. The subword of β(wk)∆ that we use is the jump set,
and we open the crossings of β(wk) from left to right.

We can also draw the corresponding juggling braid: in this case it is ∆k(σk−1 . . . σ1)(n−k) ∈ Br+
k .

Since it begins by ∆k, the vertices of the natural quiver correspond to the complement to the leftmost
subword for ∆k, and we open the crossings of (σk−1 . . . σ1)(n−k) from right to left. The diagrams and
quivers for k = 4, n = 6 are drawn on Figure 21. Note that the quiver for J4(f) has 4− 1 = 3 frozen
vertices, while the quiver for β(wk)∆ has 6− 1 = 5 frozen vertices. �
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(a) R6(1, w4)∆6 for the shuffle braid
R6(1, w4) = β(w4) = (σ4σ3σ2σ1)(σ5σ4σ3σ2) ∈ Br+6 .
Here w4 is the maximal 4-Grassmannian permutation in S6.
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(b) J4(f) for the (4, 2) torus braid
(σ3σ2σ1)2 ∈ Br+4 .

Figure 21. Wiring diagrams and quivers for the positive braid words Rn(1, wk)∆n

and Jk(f) for (k, n) = (4, 6). The corresponding DG-algebras are A(R6(1, w4)∆2
6)

and A(J4(f)∆4). The braid varieties are the big positroid cell in Gr(4, 6) and its
quotient by (C∗)2, respectively. Each of them is a cluster A-variety of type A3.

Remark 5.4. P. Galashin and T. Lam [33] introduced the positroid configuration space as a quotient
of the positroid whose braids close up to a knot by (C∗)n−1. Such varieties appear in the particle
physics, see [2, 3]. In terms of cluster algebras, this quotient is obtained by specializing all frozen
variables to 1. A special case is the Catalan variety, which is obtained by such a quotient from the big
positroid cell in Gr(k, n) for gcd(k, n) = 1. The variety X(Jk(f)) considered in the previous example
sits between the big positroid cell and the Catalan variety: we specialize to 1 precisely (n− k) out of
(n− 1) frozen variables. �
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[41] Eugene Gorsky, Andrei Neguţ, and Jacob Rasmussen. Flag Hilbert schemes, colored projectors and Khovanov-
Rozansky homology. Advances in Mathematics, 378:107542, 2021.

[42] Mikhail Gorsky. Geometry and combinatorics of subword complexes and their dual polytopes. Ph.D. thesis (in

Russian), Steklov Mathematical Institute, 2014.
[43] Mikhail A Gorsky. Subword complexes and 2-truncated cubes. Russian Mathematical Surveys, 69(3):572–574, 2014.

[44] Mikhail A Gorsky. Subword complexes and edge subdivisions. Proceedings of the Steklov Institute of Mathematics,
286(1):114–127, 2014.

[45] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. Journal of the

American Mathematical Society, 31(2):497–608, 2018.
[46] Tamás Hausel and Fernando Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. Inventiones

mathematicae, 174(3):555–624, 2008.

[47] James Hughes. Weave Realizability for D–type. arXiv preprint arXiv:2101.10306, 2021.
[48] Grace Ingermanson. Cluster algerbras of open Richardson varieties. Ph.D. Thesis, University of Michigan, 2019.
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