
ar
X

iv
:s

ub
m

it/
64

68
36

4 
 [

m
at

h.
C

O
] 

 2
2 

M
ay

 2
02

5

BOUNDEDNESS CRITERIA FOR REAL QUIVERS OF RANK 3

ROGER CASALS AND KENTON KE

Abstract. We study the boundedness of a mutation class for quivers with real weights. The main

result is a characterization of bounded mutation classes for real quivers of rank 3.

1. Introduction

The object of this note is to introduce and study the notion of boundedness for mutation classes
of quivers with real weights. In short, a quiver mutation class is said to be bounded if the coefficients
of any of its quivers are uniformly bounded. This is a subtler notion for quivers with real weights,
as opposed to quivers with integer weights, as we show that there exists bounded mutation classes
with infinitely many quivers in them. Our main contribution is a characterization of rank 3 quivers
with bounded mutation class, leading to the classification of such quivers with a criterion that can be
readily verified.

1.1. Scientific context. Quivers and their mutations have acquired a prominent role in mathematics,
especially since the introduction of cluster algebras by S. Fomin and A. Zelevinsky, cf. [10, 11, 12]. For
a reference focused on the combinatorics of mutation, S. Fomin presented a number of known results
and open problems on quiver mutations in his talk at OPAC 2022, cf. [6]. As witnessed by the number
of basic questions that remain open, it might be fair to state that the combinatorics governing quiver
mutations remain rather mysterious. Some recent efforts to understand the combinatorics of quiver
mutations have been fruitful, e.g. studying long mutation cycles, cf. [3, 7], or constructing invariants
of quiver mutation, cf. [2, 8, 14, 15].

Figure 1. Depiction of the pp, q, rq P R3 coordinates for three quivers Q and a
random sequence of mutations applied to them. In these cases, all three mutation
classes rQs are bounded. The mutation sequences have been generated at random
and are provided in the appendix.

Thinking of mutations of a quiver as a discrete group action, it is rather reasonable to wonder
about the dynamical properties of quiver mutation. In turn, it is often productive to study discrete
dynamical systems in relation to real continuous dynamical systems. From that perspective, we are
naturally lead to study quivers with real weights and their orbits under mutations. We use the
notation Q “ pp, q, rq for a quiver Q with real weights p, q, r P R. Here |p| is the weight of the edge
between vertices 1 to 2 and the sign of p indicates whether the arrow goes from vertex 1 to vertex 2,
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2 ROGER CASALS AND KENTON KE

if p positive, or from vertex 2 to vertex 1, if p negative. Similarly, the weight q is for vertices 2 and 3
and r for 1 and 3. Visually, a quiver Q “ pp, q, rq with p, q, r P Rą0 and its exchange matrix BQ are:

2

1 3

q

r

p

, BQ “

¨

˝

0 p r
´p 0 q
´r ´q 0

˛

‚.

To get a first sense, Figure 1 depicts the quivers obtained by applying three randommutation sequences
pµiℓ ˝ . . . ˝µi1qpQq to three randomly chosen quivers Q “ pp, q, rq with real weights.1 Figure 2 depicts
three different random sequences of mutations applied to the same quiver Q. Note that, independently,
the study of quivers with real weights has also gained recent attention due to their connection to the
metric geometry of surfaces, cf. e.g. [4, 5, 13] and references therein. In particular, mutation-finite
quiver with real weights were beautifully classified in [5, Theorem A].

Figure 2. Depiction of the pp, q, rq P R3 coordinates for quivers obtain by applying
three different sequences to Q “ p´0.6,´0.43, 0.567q. The mutation class rQs is
bounded. The mutation sequences have been generated at random, cf. Section 3.

For quiver with real weights, the combinatorics of quiver mutation gains certain dynamical and
geometric aspects that are not present for quivers with integer weights. The focus of this note is to
begin the study of one such property: the notion of a mutation class being bounded. Namely, un-
derstanding whether the coefficients of a given quiver remain uniformly bounded under an arbitrarily
long sequence of mutations. For instance, we shall prove that the quivers Q in Figure 1 and 2 have
bounded mutation classes. For a quiver with integer weights, a quiver mutation class is bounded if
and only if it is finite. For a quiver with real weights such simple characterization fails: there are
mutation classes that are infinite, i.e. they contain infinitely many different quivers, and yet all quivers
have their coefficients uniformly bounded.

A specific goal when studying a property of a quiver mutation class is to have a usable criterion
to decide whether the mutation class of a given quiver possesses such property. In our case, the aim
would be to be able to tell whether a given quiver with real weights has a bounded or unbounded
mutation class. Since a mutation-finite quiver tautologically has a bounded mutation class, the focus
is on deciding whether a mutation-infinite quiver has a bounded or unbounded mutation class. Our
main result achieves this goal for quivers of rank 3.

1.2. Main result. Let Q be a quiver with real weights and rQs its mutation class. We refer to [9,
Chapter 2] for background on quiver mutations and [13, Section 4] for the case of real weights. The
classification of finite-mutation type quivers with real weights is established in [4, Thm. 5.9] for rank
3 and in [5, Theorem A] for arbitrary rank.

1The specific mutation sequences pi1, . . . , iℓq for each of these three quivers are written in Section 3.2. We provide

a code to generate such images in Section 3.1, with input the quiver Q and the desired length of a mutation sequence.
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Given a quiver Q, we denote by }Q} :“ maxt|w| P R : w weight of Qu the maximum of the absolute
values of the weights of Q. By definition, the norm of a quiver mutation class rQs is

}rQs} :“ sup
QPrQs

}Q}.

By definition, rQs is said to be bounded if and only if }rQs} is finite. If rQs is mutation-finite, then
}rQs} is finite and thus rQs is bounded. The converse holds if Q has integer weights. In particular,
there exist unbounded mutation-infinite classes rQs. Interestingly, for quivers with real weights, we
shall see that there are mutation-infinite classes rQs that are bounded.

Our exploration of boundedness focuses on the study of quivers of rank 3. As above, we write
Q “ pp, q, rq to indicate that the quiver Q has weights p, q, r P R. The Markov constant CpQq P R
of Q, as introduced in [1, Section 1], is a mutation invariant of rank 3 quivers whose value governs
important aspects of the behavior of Q under mutation. To wit, [4, Section 4] illustrates how the
threshold CpQq “ 4 marks a transition for the type of geometric realization of such mutation classes.
The constant CpQq is defined as

CpQq :“

#

p2 ` q2 ` r2 ´ |pqr| if Q “ pp, q, rq is cyclic,

p2 ` q2 ` r2 ` |pqr| if Q “ pp, q, rq is acyclic.

In addition to the notation Q “ pp, q, rq, it is also convenient to refer to a quiver Q with real weights
p, q, r P Rě0, where here the quiver Q is given simply as a directed graph (with no weighted edges, so
not a multi-graph), and |p|, |q|, |r| denote the weights of those already oriented edges. In this sense, we
can and do assume the weights p, q, r P Rě0 are always non-negative by also specifying the underlying
directed graph Q itself as part of the input.

The main result of this article is the following characterization:

Theorem 1.1. Let Q be a quiver with real weights of rank 3 and rQs its mutation class. Then rQs is
bounded if and only if one of the following holds:

(1) rQs is of finite type.

(2) rQs is mutation acyclic and CpQq ď 4.

Theorem 1.1, as presented, might not appear to be an optimal characterization. Indeed, given a quiver
Q it still requires being able to decide whether rQs is mutation acyclic. That said, we can conclude
from Theorem 1.1 the following optimal characterization, complete and quickly verifiable:

Corollary 1.2. Let Q be a quiver with real weights pp, q, rq with p ě q ě r ě 0. Then

rQs is bounded ðñ p ď 2 and CpQq ď 4.

The strength of Corollary 1.2 is that it allows us to determine boundedness of a mutation class rQs for
any given quiver Q by just using the given quiver itself, and not its mutations. Part of the non-trivial
content of Theorem 1.1 is the assertion that a mutation-infinite quiver Q with CpQq ą 4 has an
unbounded mutation class rQs. Correspondingly, from the viewpoint of Corollary 1.2, that a quiver
Q with CpQq ą 4 and real weights p, q, r ď 2 has an unbounded mutation class rQs. Namely, we
show that it does not matter how small the given weights p, q, r P Rě0 are: if CpQq ą 4 then rQs is
unbounded. We prove these facts by exhibiting explicit mutation sequences that, under the hypothesis
CpQq ą 4, result in quiver weights arbitrarily increasing, see e.g. the inequality in Equation (4).

Acknowledgments. We thank Melissa Sherman-Bennett for helpful comments on a first draft of the
manuscript and Scott Neville for useful discussions. R.C. is supported by the NSF CAREER DMS-
1942363, a Sloan Research Fellowship of the Alfred P. Sloan Foundation and a UC Davis College of
L&S Dean’s Fellowship.

2. Proof of main result

The proof of Theorem 1.1 and Corollary 1.2 are structured as follows. Section 2.1 establishes in
Proposition 2.2 a first characterization of bounded mutation classes. Such characterization depends
on the (non)existence of a cyclic quiver with particular weights: Section 2.2 proves two lemmas on
the possible weights of rank 3 quiver depending on cyclicity and the Markov constant. Section 2.3
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then uses the results from Section 2.1 and Section 2.2 to prove Theorem 1.1. Section 2.4 then proves
Corollary 1.2 from Theorem 1.1. Throughout this section, Q is a rank 3 quiver with real weights.

2.1. A preliminary characterization. The goal of this subsection is to prove Proposition 2.2. The
argument uses the following assertion:

Lemma 2.1. Let rQs be an infinite mutation class. Then rQs contains a cyclic quiver.

Proof. Since rQs is infinite, it must not contain any quiver with only one nonzero weight. Thus any
quiver in rQs has at least two non-zero weights. Suppose that a quiver Q P rQs is given with exactly
two non-zero weights: if Q is cyclic we are done, and else we have an acyclic quiver Q with exactly
two nonzero weights. Since the following three quivers are mutation equivalent, via the mutations µ1

then µ3 from left to right,

2

1 3

2

1 3

2

1 3

we can assume without loss of generality that the acyclic quiver Q is the middle quiver. In that case,
mutation at vertex 2 yields the cyclic quiver:

2

1 3

qp

µ2
ÐÝÝÝÝÝÑ

2

1 3

p

pq

q

If Q had been an acyclic quiver with three nonzero weights then, up to relabeling vertices and reversing
orientation, Q is mutation equivalent to

2

1 3

q

r

p

which is itself mutation equivalent, via µ2, to the following cyclic quiver:

2

1 3

p

pq`r

q

Either case, we obtain a cyclic quiver in rQs, as required. □

Here follows a preliminary classification of bounded mutation classes in rank 3:

Proposition 2.2. Let Q be a rank 3 quiver with real weights. Then

rQs is unbounded ðñ DQ1 P rQs with Q1 cyclic and one weight larger than 2.
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Proof. For pùñq we proceed as follows. Since rQs is unbounded, there exists a quiver Q1 P rQs with
one weight greater than 2. If Q1 is cyclic, then we are done. Suppose thus that Q1 is acyclic. Since
rQs is unbounded, Q1 is mutation-infinite and the same proof of Lemma 2.1 implies that there must
be a cyclic quiver Q2 with one weight greater than 2. Indeed, the two following two cases cover all
such possibilities. If Q1 is the following quiver on the left

Q1 2

1 3

qpą2

µ2
ÐÝÝÝÝÝÑ

Q2 2

1 3

pą2

pq

q

then Q2 is chosen to be the quiver on its right. If Q1 is instead the left quiver in
Q1 2

1 3

qpą2

r

µ2
ÐÝÝÝÝÝÑ

Q2 2

1 3

pą2

pq`r

q

then Q2 is chosen to be the corresponding quiver to its right. This concludes pùñq.

Let us prove pðùq. For that, we assume that Q1 “ pp0, q0, r0q P rQs is the given cyclic quiver with
weights satisfying 0 ă r0 ď q0 ď p0 and p0 ą 2. Without loss of generality, we can assume that Q1 is
of the following form:

Q1 2

1 3

q0p0

r0

The goal is to show that rQs is unbounded. We prove that by iteratively mutating at vertices 1 and 2,
which we momentarily show forces the weights of the quivers in the sequence to arbitrarily increase.
Specifically, let us define the numbers qi, ri P Rě0 recursively by

qi :“ p0ri ´ qi´1, ri :“ p0qi´1 ´ ri´1, i ą 0.

We claim that these numbers are the weights of the quivers appearing in the mutation sequence
starting at Q1 and alternately mutating at vertices 2 and 1. The beginning of the sequence is:

Q1 2

1 3

q0p0

r0

µ2
ÐÝÝÝÝÝÑ

2

1 3

p0

r1“p0q0´r0

q0 µ1
ÐÝÝÝÝÝÑ

2

1 3

q1“p0r1´q0p0

r1

To verify this claim, we need to check that the arrows qi, ri are indeed going in the direction that retains
cyclicity, i.e. qi, ri ą 0 for all i ą 0. In addition, we also assert that the inequalities qi ą ri ą qi´1

hold for all i ą 0. We prove such inequalities

(1) qi ą ri ą qi´1 ą 0
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by induction on i P N. The base case is i “ 1: since r0 ď q0 and p0 ą 2, we must have

r1 “ p0q0 ´ r0 ą 2q0 ´ q0 “ q0 ą 0, and q1 “ p0r1 ´ q0 ą 2r1 ´ r1 “ r1 ą 0.

For the inductive step, we assume that qk ą rk ą qk´1 ą 0 for some k P N. Then it follows that

rk`1 “ p0qk ´ rk ą 2qk ´ qk “ qk ą 0, and qk`1 “ p0rk`1 ´ qk ą 2rk`1 ´ rk`1 “ rk`1 ą 0,

which proves Equation (1). To conclude that rQs is unbounded, it suffices to show that these weights
qi, ri increase as we iterate the mutations at 2 and 1, i.e. as i Ñ 8. This a consequence of the
following:

Claim 1. lim
iÑ8

qi “ 8.

Proof. Consider the quantity p :“ p20 ´ p0 ´ 1. The hypothesis p0 ą 2 implies p ą 1 and thus
lim
iÑ8

pi “ 8. We claim that the sequence of weights pqiq satisfies

(2) qi ě piq0, for all i ą 0.

Equation (2) can be established by induction on i, as follows. The base case is i “ 1, and since
r0 ď q0, we have

q1 “ p0r1 ´ q0 “ p20q0 ´ p0r0 ´ q0 ě p20q0 ´ p0q0 ´ q0 “ pp20 ´ p0 ´ 1qq0 “ p1q0.

For the inductive step, we assume that qk ě pkq0 for some k P N. Given that we have shown previously
that rk ă qk, it follows that

qk`1 “ p0rk`1 ´ qk “ p20qk ´ p0rk ´ qk ą p20qk ´ p0qk ´ qk “ pp20 ´ p0 ´ 1qqk ě p ¨ pkq0 “ pk`1q0,

which implies Equation (2). Since lim
iÑ8

pi “ 8, it follows that

lim
iÑ8

qi ą q0 ¨ lim
iÑ8

pi “ q0 ¨ 8 “ 8,

as required. □

The fact that rQs is unbounded now follows from Claim 1, as we constructed a sequence of quivers in
rQs whose coefficients increase arbitrarily as we iteratively mutate at the vertices 2 and 1. □

2.2. Two quick lemmas. A caveat of Proposition 2.2 is that it is in generally challenging to de-
termine the existence or non-existence of a cyclic quiver with one weight larger than 2 in a given
mutation class rQs. This makes Proposition 2.2 difficult to use in practice. Hence, we are motivated
to further explore the behavior of weights of rank 3 quivers, which will lead to Theorem 1.1, improving
Proposition 2.2. The two necessary lemmas that we shall use in the proof Theorem 1.1 read as follows:

Lemma 2.3. Let Q “ pp, q, rq be a cyclic quiver with real weights 0 ă r ď q ď p.
If Cpp, q, rq ą 4, then p ą

?
2.

Proof. Let us argue by contradiction, assuming that p ď
?
2. Since Q is cyclic, CpQq reads

Cpp, q, rq “ p2 ` q2 ` r2 ´ pqr.

Considered as a real smooth function of p, q, r, we have BpC “ 2p ´ qr ą 0 since q, r ď p and we are

assuming p ď
?
2. Thus, Cpp, q, rq is a strictly increasing function of p and it attains its maximum

when p is maximized, that is, when p “
?
2. If we write fpq, rq :“ Cp

?
2, q, rq “ 2 ` q2 ` r2 ´

?
2qr,

this implies

Cpp, q, rq ď fpq, rq.

Note that Bqf “ 2q ´
?
2r ą 0 because 2 ą

?
2 and q ě r. Thus fpq, rq is a strictly increasing

function of q and it attains its maximum when q is maximized. Since we have q ď p ď
?
2, we can

write gprq :“ Cp
?
2,

?
2, rq “ 2 ` 2 ` r2 ´ 2r “ 4 ` r2 ´ 2r and the following inequality will hold

Cpp, q, rq ď fpq, rq ď gprq.

Then gprq is maximize in the same way: Brg “ 2r ´ 2 ą 0 if r ą 1, and Brg ă 0 if r ă 1. Hence, gprq

is increasing for r ą 1 and decreasing for r ă 1. Since 0 ă r ď q ď p ď
?
2, in the interval r0,

?
2s the
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function gprq attains its global maximum at the boundary, i.e. either at r “
?
2 or r “ 0. Note that

gp
?
2q “ 4 ` 2 ´ 2

?
2 ă 4 “ gp0q, thus we have that gprq ă gp0q “ 4 in the interval p0,

?
2s. Hence,

Cpp, q, rq ď fpq, rq ď gprq ă 4.

This contradicts the hypothesis CpQq ą 4, and thus we must have had that p ą
?
2, as required. □

Lemma 2.3 gives a lower bound for p whenever Cpp, q, rq ą 4: this has an important role in the
proof of the upcoming Lemma 2.4, and ultimately Theorem 1.1. Appropriately used, this next lemma
will provide a way to construct a sequence of mutations with strictly increasing weights:

Lemma 2.4. Let Q “ pp, q, rq be a cyclic quiver with weights 0 ă r ď q ď p. If Cpp, q, rq ą 4, then

pq ´ r ą
CpQq

4
q.

Proof. Consider the smooth function

f : R3
ě0 ÝÑ R, fpp, q, rq :“ ppq ´ rq ´

CpQq

4
q,

which we need to show is positive. Let gpp, q, rq :“ Bpf “ q ´ q ¨ 1
4 p2p ´ qrq. Since p ă 2, we have

2p ´ qr ă 4 ´ qr ă 4 and hence gpp, q, rq ą 0 is positive and f is increasing as a function of p. By
Lemma 2.3, the hypothesis Cpp, q, rq ą 4 implies the inequality

?
2 ă p ă 2. Altogether, for any

p P p
?
2, 2q, fpp, q, rq ą fp

?
2, q, rq and so it suffices to show fp

?
2, q, rq ą 0. By Lemma 2.3 again, if

p “
?
2 then Cpp, q, rq ď 4, and thus we inspect this extremal case of fp

?
2, q, rq, for q, r satisfying

0 ď r ď q ď
?
2, and Cp

?
2, q, rq “ 4. Since Cp

?
2, q, rq “ 2 ` q2 ` r2 ´

?
2qr, we have that

BqCp
?
2, q, rq “ 2q ´

?
2r ą 0.

Thus, Cp
?
2, q, rq is increasing as a function of q, hence it attains its maximum at q “

?
2 with

value Cp
?
2,

?
2, rq “ 4 ` r2 ´ 2r “ 4 ` rpr ´ 2q. Since r P p0,

?
2s, rpr ´ 2q ă 0 and so Cpp, q, rq ă

Cp
?
2,

?
2, 0q “ 4. In particular, the only remaining extremal point p

?
2, q, rq satisfying Cp

?
2, q, rq “ 4

is p
?
2,

?
2, 0q, and the value of f is

fp
?
2,

?
2, 0q “ 2 ´

?
2 ¨

4

4
“ 2 ´

?
2 ą 0.

In conclusion, under the hypothesis Cpp, q, rq ą 4, we indeed have fpp, q, rq ą fp
?
2,

?
2, 0q ą 0. □

2.3. Proof of Theorem 1.1. Let us first prove the implication pðùq. If rQs is of finite mutation
type, then rQs is tautologically bounded. Therefore, we assume rQs is infinite, mutation acyclic, and

CpQq ď 4. We will now show that rQs is bounded by
a

CpQq.

Let pα, β, γq P rQs be an acyclic quiver. Then α2 ` β2 ` γ2 ` αβγ “ Cpα, β, γq “ CpQq, and

it follows that α2, β2, γ2 ď CpQq, hence α, β, γ ď
a

CpQq. Thus the upper bound
a

CpQq holds
for acyclic quivers. Let Q “ pp, q, rq P rQs be cyclic, and let dpp, q, rq be the minimum number of
mutations required to transform Q “ pp, q, rq into an acyclic quiver. Such d is finite because of the

hypothesis that rQs is mutation acyclic. We show that
a

CpQq is an upper bound by induction on d.

The base case is d “ 1, i.e. Q “ pp, q, rq is one mutation away from an acyclic quiver Q1 “ pα, β, γq.

Since Q1 is acyclic, we have already shown α, β, γ ď
a

CpQq and note that a single mutation to pp, q, rq

preserves at least two weights. So, without loss of generality, we assume that q, r ď
a

CpQq and we

need to show p ď
a

CpQq. We argue by contradiction, so we assume that p ą
a

CpQq. We have
CpQq “ p2 ` q2 ` r2 ´ pqr: we now want to get a lower bound for Cpp, q, rq, and ultimately for p. Let
fppq :“ p2 ` q2 ` r2 ´ pqr be considered as a smooth real function of p, then

(3) f 1ppq “ 2p ´ qr ą 0 ðñ p ą
qr

2
.

By assumption, CpQq ď 4 and thus
a

CpQq ď 2. Since we also have q, r ď
a

CpQq, we obtain

qr

2
ď

CpQq

2
ď

CpQq
a

CpQq
“

a

CpQq ă p.
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This implies 3, that is, fppq is strictly increasing and thus fppq is minimized when p is minimized.

We are assuming that p ą
a

CpQq and therefore we have the sequence of implications:

fppq “ p2 ` q2 ` r2 ´ pqr ą CpQq ` q2 ` r2 ´
a

CpQqqr

ùñ 0 ą q2 ` r2 ´ 2qr ` 2qr ´
a

CpQqqr

ùñ 0 ą pq ´ rq2 `

´

2 ´
a

CpQq

¯

qr.

Since pq ´ rq2 ě 0, and
a

CpQq ď 2 implies
´

2 ´
a

CpQq

¯

qr ě 0, the last inequality implies

0 ą pq ´ rq2 `

´

2 ´
a

CpQq

¯

qr ě 0

which is a contradiction. Hence, p ď
a

CpQq as required, concluding the base case.

For the induction step, we assume the statement to be true for any d with 1 ď d ď n P N, and let
Q1 “ pp1, q1, r1q P rQs be a cyclic quiver with dpp1, q1, r1q “ n ` 1. Let pα, β, γq P rQs be a cyclic
quiver with dpα, β, γq “ n that is one mutation from pp1, q1, r1q. By the induction hypothesis, we

have α, β, γ ď
a

CpQq. Since one mutation preserves at least two weights, we assume without loss of

generality that q1, r1 ď
a

CpQq. Then, applying the same argument as in the base case, we readily

conclude p1 ď
a

CpQq.

To summarize, we have shown that all acyclic and cyclic quivers in rQs are bounded by
a

CpQq. This
concludes the proof of the implication pðùq.

Let us prove the implication pùñq, which we show by contradiction. For that, we consider two
cases, the most interesting being the second case:

Case 1. Suppose that rQs is bounded, infinite, and mutation cyclic. Since rQs is bounded and
mutation cyclic, Proposition 2.2 implies that any quiver Q1 “ pp, q, rq P rQs with 0 ă r ď q ď p must
have p, q, r ď 2. If p “ q “ r “ 2, then Q1 is the Markov quiver, which is of finite mutation type. Thus,
rQs being infinite, we must have r ă 2. By [4, Lemma 3.3], it follows that rQs is mutation acyclic,
which is a contradiction. Therefore, we conclude that rQs bounded and infinite implies mutation
acyclic, establishing the mutation acyclic part of Theorem 1.1.(2) in this case.

Case 2. Suppose that rQs is bounded, infinite, and CpQq ą 4. The intuitive idea is that given any
cyclic quiver Q P rQs, we will manage to use the inequality CpQq ą 4 to produce an arbitrarily long
sequence of mutations such that the weights increase arbitrarily. Such mutation sequence depends on
the starting quiver Q P rQs to which we apply the procedure, which makes this argument finer than
that in the proof of Proposition 2.2. This is done as follows.

Let Q “ pp0, q0, r0q P rQs be a cyclic quiver with 0 ă r0 ď q0 ď p0 ď 2, and we can assume Q is

Q 2

1 3

q0p0

r0

By mutating Q at vertex 2 we obtain the following quiver on the right:
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Q 2

1 3

q0p0

r0

µ2
ÐÝÝÝÝÝÑ

µ2pQq 2

1 3

p0

p0q0´r0

q0

For the new weights p0q0 ´ r0, we must have either

p0 ě p0q0 ´ r0 ě q0 or p0q0 ´ r0 ě p0 ě q0.

To describe the mutation sequence, we define µ1pQq “ pp1, q1, r1q :“ µ2pp0, q0, r0q so that 0 ă r1 ď

q1 ď p1 ď 2. In this notation we have p1 ě p0q0 ´ r0 ą
CpQq

4 q0. Now, recursively define

µipQq “ ppi, qi, riq :“ µi´1pµ1pQqq

with the same properties that 0 ă ri ď qi ď pi ď 2, and pi ě pi´1qi´1 ´ ri´1. In words, at any step
of this mutation sequence, we always choose to mutate at the vertex opposite to the arrow with the
smallest weight. The quivers µipQq “ ppi, qi, riq exactly record the quivers appearing in such mutation
sequence. It suffices to show that at least one of such coefficients increases arbitrarily. Specifically, we
will now show that lim

iÑ8
maxpµipQqq “ 8. To prove this, it suffices to show lim

iÑ8
piqi ´ ri “ 8. This

limit itself is a consequence of the following fact:

Claim. For all i ě 0, the following inequality holds:

(4) piqi ´ ri ą

ˆ

CpQq

4

˙t i`2
2 u

q0.

Proof. Let us prove this inequality by induction on i. For the base case, consider i “ 0 and i “ 1.
For i “ 0, Lemma 2.4 implies that

p0q0 ´ r0 ą
CpQq

4
¨ q0 “

ˆ

CpQq

4

˙t 0`2
2 u

q0.

For i “ 1, there are two cases to consider:

(1) If µ1pQq “ pp0, p0q0 ´ r0, q0q “ pp1, q1, r1q, then Lemma 2.4 implies

p1q1 ´ r1 ą
CpQq

4
q1 “

CpQq

4
pp0q0 ´ r0q ą

ˆ

CpQq

4

˙2

q0 ą

ˆ

CpQq

4

˙t 1`2
2 u

q0.

(2) If µ1pQq “ pp0q0 ´ r0, p0, q0q “ pp1, q1, r1q, then we directly have

p1q1 ´ r1 ą
CpQq

4
p0 ą

CpQq

4
q0 “

ˆ

CpQq

4

˙t 1`2
2 u

q0.

This concludes the base cases i “ 0, 1. For the induction step, we assume that

piqi ´ ri ą

ˆ

CpQq

4

˙t i`2
2 u

q0

holds for all 0 ď i ď n and want to show it holds for i “ n ` 1. The induction hypothesis for i “ n is

pnqn ´ rn ą

ˆ

CpQq

4

˙tn`2
2 u

q0

with the inequalities pn ě pn´1qn´1 ´rn´1 ą

´

CpQq

4

¯tn`1
2 u

q0. There are two cases for the next quiver

µn`1pQq in the mutation sequence:
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(1) If µn`1pQq “ ppn, pnqn ´ rn, qnq “ ppn`1, qn`1, rn`1q, then Lemma 2.4 applies to give

pn`1qn`1 ´ rn`1 ą
CpQq

4
qn`1 “

CpQq

4
ppnqn ´ rnq ą

ˆ

CpQq

4

˙tn`2
2 u`1

q0 “

“

ˆ

CpQq

4

˙tn`4
2 u

q0 ě

ˆ

CpQq

4

˙t
pn`1q`2

2 u

q0

(2) If µn`1pQq “ ppnqn ´ rn, pn, qnq “ ppn`1, qn`1, rn`1q, then we use Lemma 2.4 as follows:

pn`1qn`1 ´ rn`1 ą
CpQq

4
qn`1

“
CpQq

4
pn

ě
CpQq

4
ppn´1qn´1 ´ rn´1q

ą

ˆ

CpQq

4

˙tn`1
2 u`1

q0

ě

ˆ

CpQq

4

˙t
pn`1q`2

2 u

q0,

which is indeed yields Equation (4) for i “ n ` 1. This concludes the claim. □

The claim implies that the desired limit satisfies

lim
iÑ8

maxpµipQqq ě lim
iÑ8

piqi ´ ri ą lim
iÑ8

ˆ

CpQq

4

˙t i`2
2 u

q0 “ 8,

where we used the hypothesis CpQq ą 4 to conclude the last equality. Hence, rQs is unbounded, which
is a contradiction. Therefore, it must have been that CpQq ă 4 if Q were bounded and infinite. l

2.4. Proof of Corollary 1.2. Let us prove pùñq by establishing the contrapositive. First, let us
assume p ą 2 and we want to conclude rQs is unbounded. If Q is cyclic, then Theorem 2.2 implies
rQs is unbounded. We thus assume the given quiver Q is acyclic. Following the proof of Lemma 2.1,
there exists a mutation sequence µ so that µpQq is cyclic and MaxpµpQqq ě MaxpQq. Therefore µpQq

is a cyclic quiver with p ą 2 and Theorem 2.2 implies rQs “ rµpQqs is unbounded.

Second, let us assume CpQq ą 4 and we want to conclude rQs is unbounded. By contradiction,
suppose rQs is bounded. By Theorem 1.1, it suffices to show that if rQs is of finite type, then CpQq ď 4.
By [4, Theorem 6.11], Q must be mutation equivalent to one of the following quivers:

p2, 2, 2q, p2, 2 cospπ{nq, 2 cospπ{nqq for n P Z`, p1, 1, 0q, p1,
?
2, 0q,

p1, 2 cospπ{5q, 0q, p2 cospπ{5q, 2 cosp2π{5q, 0q, p1, 2 cosp2π{5q, 0q.

It is then readily verified that all of these have Markov Constant CpQq ď 4. Hence rQs could not
have been finite type if CpQq ą 4, and thus not bounded.

Let us prove pðùq directly from Theorem 1.1. We are assuming p ď 2 and CpQq ď 4 and want to
conclude rQs is bounded. First, we consider the case where the inequality p ă 2 is strict. By [4,
Lemma 3.3], such mutation class rQs must be mutation acyclic: since we already have CpQq ď 4,
Theorem 1.1 implies that rQs is bounded. Second, consider the case of equality p “ 2. If Q is acyclic,
then rQs is mutation acyclic and Theorem 1.1 again proves rQs is bounded. Therefore, we assume Q
is cyclic. In this case, if p “ q “ r “ 2, then Q is the Markov quiver, and hence rQs is bounded. So
it remains to check the cases where r ă 2. By [4, Corollary 4.8], rQs must then be mutation acyclic
and Theorem 1.1 implies that rQs is bounded. l

2.5. Final remarks and questions. A few comments on the results above:

(1) On the hypotheses of Corollary 1.2, it is not true in general that CpQq ď 4 implies rQs is bounded.
For example, the cyclic quiver Q “ p3, 3, 3q has Markov constant Cp3, 3, 3q “ 0 ď 4 and it is mutation
cyclic and unbounded. Hence, the additional requirement p ď 2 is necessary.
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(2) The simpler part of the proof of Theorem 1.1 established that
a

CpQq is an actual bound, but for
the statement it suffices to argue there exists a bound, without giving a particularly sharp one. Here
is a more intuitive argument that a mutation acyclic class rQs with CpQq ă 4 must necessarily be
bounded, which does nevertheless not provide such a sharp upper bound. We consider the weights of
a quiver Q “ pp, q, rq as a point in R3 and think of mutations as a continuous action of G “ Z2˚Z2˚Z2

on R3. Here G “ Z2 ˚ Z2 ˚ Z2 is the quotient of the free group F3 “ xµ1, µ2, µ3y by the relations
µ2
i “ 1.2 The constraint CpQq ă 4 implies that the real weights of Q must be in the subset

X :“ tpx, y, zq|x2 ` y2 ` z2 ` |xyz| ď 4u Ă R3, if Q is acyclic,

Y :“ tpx, y, zq|x2 ` y2 ` z2 ´ |xyz| ď 4u Ă R3, if Q is cyclic.

Note that X is bounded as a subset of R3. Thus, all acyclic quivers in rQs will remain in X, which
is bounded. For the cyclic quivers, we note that Y contains 8 singular points S “ tp˘2,˘2,˘2qu

such that Y zS has a unique bounded component. Thus, the fact that any acyclic quiver lies in such
bounded connected component and continuity of the mutation G-action imply that any cyclic quiver
must actually remain in that bounded component. This implies that rQs is bounded under these
hypothesis.

(3) As obvious as it is, we record this goal: Find a complete and verifiable characterization of bounded
mutation classes for quivers of higher rank. That is, prove a result such as Theorem 1.1 and Corol-
lary 1.2 (or better) for quivers of rank 4 and above.

(4) It would be interesting to understand the dynamical properties of quiver mutations for real weights

in rank 3 and beyond. That is, understanding the weights of quivers as points in Rpn
2q, to characterize

the distribution of points of a given orbit, either quantitatively or qualitatively. For instance, if the
orbit is bounded, understanding what are the possible limit sets, e.g. whether they are dense in some

positive-dimensional subset of Rpn
2q. If the orbit is unbounded, it would be interesting to establish

quantitative growth estimates, and study whether there are directions or cones of divergence.

Note that already in rank 3, it would be interesting to understand properties of mutation orbits
beyond boundedness, e.g. density in the given two level sets (cyclic and acyclic) for a fixed value of
the Markov constant, ergodicity, or any other type of measure-related properties, see e.g. Figures 1
and 2 above. The code in Section 3.1 can maybe be helpful to develop intuition.

3. Appendix: SageMath Code and details for figures

The following two subsections contain some of the experimental data displayed in the introduction
and SageMath code that produces many such examples. These examples and the code are not logically
needed for the mathematical results of the article. That said, we found running this code helpful to
gain intuition on the dynamics of real quiver mutation, in particular towards guessing the statement
of what ended up being Theorem 1.1 and the key inequality in Equation 4.

3.1. SageMath code to generate and plot random mutation sequences of a quiver. The
main line of commands to produce a random sequence of mutations and their plot uses the following
series of functions. The first function inputs a skew-symmetric matrix B P M3pQq and an index
k P t1, 2, 3u and outputs the mutated exchange matrix µkpBq, as follows:

1 def mutate_matrix_rational_mpl(B, k):

2

3 if B.dimensions () != (3, 3):

4 raise ValueError("Input matrix B must be a 3x3 matrix.")

5 if not B ==-B.transpose ():

6 raise ValueError("Input matrix B must be skew -symmetric.")

7 if k not in [1, 2, 3]:

8 raise ValueError("Mutation index k must be 1, 2, or 3.")

9 B_prime = matrix(QQ, 3, 3)

10 for i in range (3):

11 for j in range (3):

12 if i == k- 1 or j == k- 1:

13 B_prime[i, j] =-B[i, j]

14 else:

2We are admittedly not allowing relabeling of vertices here, but that is irrelevant for the argument.
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15 bik = B[i, k- 1]

16 kj = B[k- 1, j]

17 if bik > 0 and kj > 0:

18 B_prime[i, j] = B[i, j] + bik * kj

19 elif bik < 0 and kj < 0:

20 B_prime[i, j] = B[i, j]- bik * kj

21 else:

22 B_prime[i, j] = B[i, j]

23 return B_prime

This next function inputs a skew-symmetric matrix B P M3pQq and a sequence of indices pi1, . . . , iℓq
with ij P t1, 2, 3u. It applies this sequence of mutations to B and plots the resulting entries p1, 2q,
p2, 3q and p1, 3q of the mutated exchange matrices pµij ˝ . . . ˝ µi1qpBq. The output is the list of such
coordinate entries for the mutate matrices and the plot:

1 def apply_mutation_sequence_plot_mpl(B_initial , mutation_sequence):

2

3 mutated_data = []

4 B_current = B_initial

5 mutated_data.append ((float(B_current[0, 1]), float(B_current[1, 2]),float(

B_current[0, 2])))

6

7 for k in mutation_sequence:

8 B_current = mutate_matrix_rational_mpl(B_current , k)

9 mutated_data.append ((float(B_current[0, 1]), float(B_current[1, 2]),$\sqcup\
xhookrightarrow$float(B_current [0, 2])))

10

11 fig = plt.figure ()

12 ax = fig.add_subplot (111, projection=’3d’)

13 x = [data [0] for data in mutated_data]

14 y = [data [1] for data in mutated_data]

15 z = [data [2] for data in mutated_data]

16 ax.scatter(x, y, z, c=’blue’, marker=’o’)

17 ax.set_xlabel(’b12’)

18 ax.set_ylabel(’b23’)

19 ax.set_zlabel(’b13’)

20 ax.set_title(’Mutation Sequence in (b12 , b23 , b13) Space ’)

21 return mutated_data , plt

The following function inputs a length ℓ P N and outputs a randomly generated sequence of indices
pi1, . . . , iℓq with ij P t1, 2, 3u, of length ℓ with no two consecutive indices being equal, i.e. ij ‰ ij`1:

1 import random

2 def generate_alternating_sequence(length):

3

4 if length <= 0:

5 return []

6 sequence = []

7 first_number = random.choice ([1, 2, 3])

8 sequence.append(first_number)

9

10 for _ in range(length - 1):

11 possible_next = [num for num in [1, 2, 3] if num != sequence [-1]]

12 next_number = random.choice(possible_next)

13 sequence.append(next_number)

14 return sequence

This next function inputs a vector v “ px, y, zq P Q3 and outputs the skew-symmetric matrix Mpvq P

M3pQq with entries p1, 2q being x, p2, 3q being y and p1, 3q being z:

1 def skew_symmetric_matrix(v):

2

3 x, y, z = v

4 M = matrix(QQ, 3, 3)
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5 M[0, 1] = x

6 M[1, 0] =-x

7 M[1, 2] = y

8 M[2, 1] =-y

9 M[0, 2] = z

10 M[2, 0] =-z

11 return M

The main line of commands that the user can choose to execute is as follows:

1 vector = ( -0.6 , -0.43 ,0.567)

2 B_rational_mpl = skew_symmetric_matrix(vector)

3 print("Initial Exchange Matrix is:")

4 show(B_rational_mpl)

5 length1 = 100

6 mutation_seq_mpl = generate_alternating_sequence(length1)

7 print(f"Random alternating sequence of length {length1 }: {mutation_seq_mpl}")

8 mutation_history_mpl ,plot_mpl=apply_mutation_sequence_plot_mpl(B_rational_mpl ,

mutation_seq_mpl)

9 plot_mpl.savefig("FigurePlot3D.pdf")

In the line of commands above, the user chooses the quiver Q “ pp, q, rq by selecting the tuple “vector”.
The user also selects the length ℓ P N of the mutation sequence by choosing the value of “length1”.
The plot is then saved in the document named “FigurePlot3D.pdf”.

3.2. Mutation sequences for Figures 1 and 2. Figures 1 and 2 have been generated by the code
in Section 3.1. This subsection displays the precise mutation sequences pi1, . . . , iℓq used in each of
the examples. Here ℓ is the length of the mutation sequence and the indices are always chosen such
that ij ‰ ij`1 for all indices, to avoid involutive steps in the sequence. To start, for the quiver
Q “ p´0.02,´0.01, 0.03q in Figure 1 (left), the mutation sequence pi1, . . . , iℓq has ℓ “ 150 and reads

p2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 3, 2, 3, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2,

1, 3, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 3, 1, 3, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 2, 1,

3, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 1, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1q.

For the quiver Q “ p´0.9,´0.22, 0.7106q in Figure 1 (center), ℓ “ 100 and the sequence is

p2, 3, 1, 3, 1, 3, 2, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 2,

3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 3, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1q.

For the quiver Q “ p´0.84,´0.26, 0.11q in Figure 1 (right), ℓ “ 125 and the sequence is

p3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 1, 3, 2, 1, 2, 3, 2, 3, 1, 3, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 1,

2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 3, 2, 1, 2, 3, 1, 3, 1, 3, 2, 1, 2, 3, 1, 3, 1, 3, 2, 1, 3, 2, 1, 2,

3, 1, 3, 2, 3, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 3, 2, 1, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1q.

Figure 2 plots quivers in the mutation class of the quiver Q “ p´0.6,´0.43, 0.567q. Specifically, it plots
the images of Q after applying three different sequences of mutations. The sequence are described as
follows. For Figure 2 (left), the mutation sequence has length ℓ “ 100 and it is

p3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1,

3, 1, 2, 1, 3, 2, 1, 3, 1, 3, 2, 3, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 3, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 2, 1, 3, 2, 3, 2, 1, 2, 3, 1q.

For Figure 2 (center), ℓ “ 100 and the mutation sequence is

p1, 2, 1, 3, 2, 3, 2, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 3, 1,

2, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 2, 3, 1, 2, 3, 2, 3, 1, 3, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 2, 1, 3, 1, 3, 2, 3, 2, 1, 2, 1, 3, 2, 3, 2, 1, 3, 1, 2q.

For Figure 2 (right), ℓ “ 125 and the mutation sequence is

p2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 2, 1, 2, 3, 1, 3, 1, 3, 2, 1, 3, 2, 1, 2, 3, 1, 3,

2, 3, 2, 1, 3, 2, 1, 3, 2, 3, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 1, 3, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 1, 2,

3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 3, 1, 3, 1, 3, 2, 1, 2, 3, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3q.

The reader can generate many other such figures by running the code in the Subsection 3.1.
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