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Abstract. We develop the theory of spectral networks in real contact and symplectic topology.
First, we establish the existence and pseudoholomorphic characterization of spectral networks for
Lagrangian fillings in the cotangent bundle of a smooth surface. These are proven via analytic
results on the adiabatic degeneration of Floer trajectories and the explicit computation of contin-
uation strips. Second, we construct a Family Floer functor for Lagrangian fillings endowed with
a spectral network and prove its equivalence to the non-abelianization functor. In particular, this
implies that both the framed 2d-4d BPS states and the Gaiotto-Moore-Neitzke non-abelianized
parallel transport are realized as part of the A∞-operations of the associated 4d partially wrapped
Fukaya categories. To conclude, we present a new construction relating spectral networks and La-
grangian fillings using Demazure weaves, and show the precise relation between spectral networks
and augmentations of the Legendrian contact dg-algebra.
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1. Introduction

The object of this article is to develop the theory of spectral networks within the context of
real contact and symplectic topology. First, we provide foundational results on the existence and
characterization of spectral networks for Lagrangian fillings in the cotangent bundle of a smooth
surface. In particular, we characterize the walls of spectral networks in terms of pseudoholomorphic
strips. These are proven via new results on the adiabatic degeneration of Floer trajectories, the
behavior of the associated flowlines, and explicit computations of continuation strips. Second, we
construct a Family Floer functor for Betti Lagrangians endowed with a spectral network and show
that the non-abelian parallel transport in Gaiotto-Moore-Neitzke’s supersymmetric N = 4 context
is both generalized and made rigorous by this Floer-theoretic parallel transport. Third, the article
brings forth new constructions and applications relating spectral networks and Lagrangian fillings,
including the study of spectral networks from Demazure weaves, their relation to the Legendrian
contact dg-algebra, and an interpretation of framed 2d-4d BPS states and the non-abelianization
maps as part of the A∞-operations and module categories of partially wrapped Fukaya categories.
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A central theme of this work is that spectral networks can be studied and characterized in terms
of the Floer theory of real Lagrangians in the real cotangent bundle of a smooth surface. This
allows for a key generalization of the standard physical theory of spectral networks, which itself
focuses on meromorphic spectral curves in the holomorphic cotangent bundle of a Riemann sur-
face. This generalization is needed to define and study the Betti moduli space in the wild case for
smooth asymptotic data, not necessarily meromorphic Stokes data. In particular, it allows us to
tackle asymptotics associated to any positive braid, including and generalizing all braid varieties,
and perform computations on their associated cluster structures, BPS monodromy and Donaldson-
Thomas theory. Indeed, the Floer-theoretic framework and results we establish provide a precise
bridge to apply the new developments on cluster algebras in 4-dimensional symplectic topology to
the study of spectral networks.

The introduction of spectral networks in mathematical physics has lead to an outstanding num-
ber of breakthroughs in string theory. The present work also serves the purpose of establishing a
rigorous mathematical foundation for many beautiful insights and claims from the physics com-
munity, in our case within the context of contact and symplectic topology. A number of such
conjectured properties and examples are discussed and proven throughout this manuscript, includ-
ing the characterization of spectral networks in terms of pseudo-holomorphic disks and the study
of higher-order Stokes phenomena, including the Berk-Nevins-Roberts example and beyond.

1.1. Scientific context. In 2012, within the context of supersymmetric gauge theories in mathe-
matical physics, D. Gaiotto, G. Moore and A. Neitzke introduced and developed the study of spec-
tral networks in [GMN13a; GMN13b; GMN14]. These contributions to physical theories of class S
allowed for the computation of different BPS degeneracies in the associated 4-dimensional N = 2
theories (e.g. coupling to surface defects) and a better understanding of how the wall-crossing phe-
nomenon in coupled 2d-4d systems [GMN12; GMN13c] related to the BPS spectrum. Since then,
an abundance of exciting work illustrates that spectral networks are part of a fertile and produc-
tive ground for mathematical physics. To wit, further explorations of different types of BPS states
were achieved in [Gab+17; GLM15; LP16; LP17; Lon18] and [DMN20; Erg+21; HN17; HHN20],
non-abelianization and quantum holonomies were studied in [Gab17; HN16; HN20; KLS23; NY20]
and see also the surveys [Nei14; Nei21].

In pure mathematics, spectral networks have started to be used in a variety of areas, including ex-
act WKB analysis [Ale+24; GHN23; IK22; IK23] (see also the preceding works [AKT01; HLOD04]),
the study of moduli of Higgs bundles and their Hitchin fibrations [Dum+21; FN21; Kat+15; Wil16],
and that of spaces of stability conditions [BS15; HKS24; Smi15]; see also [FN24; Kuw24; Nho24;
Sue24]. Throughout these contributions, there is a focus towards the case G = SL2(C), where the
spectral curve is a 2-fold branch cover of the base. This case is rather well-understood by now,
in part due to its direct relation to the theory of quadratic differentials on Riemann surfaces and
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the combinatorics of their associated foliations. The higher rank case, for G = SLn(C), remains
an interesting subject of exploration, cf. [Kat+15; Smi21], and a main focus of this article.

In the SL2(C) case, a first connection between the Floer theory of real Lagrangian surfaces
and framed 2d-4d BPS states was hinted by the first author in [CM18], being further developed
in [Nho24] by the second author. Subsequently, the introduction of Legendrian weaves [CZ22]
has provided key insights to establish the general connection between Floer theory and spectral
networks in all higher ranks, significantly beyond the theory of quadratic differentials. Equipped
with new tools in symplectic topology [CL22; CZ22; GPS20; GPS24b], the present manuscript
now greatly generalizes the results in [CM18; Nho24] to arbitrary rank, and crystallizes a number
of further insights relating spectral networks to both partially wrapped Fukaya categories [GPS20;
GPS24b; Syl19] and the construction of cluster structures on braid varieties [Cas+24; Cas+25;
CW24]. From the Betti perspective on wild character varieties, a key difference between rank
n = 2 and higher rank spectral networks is that, in the latter case, asymptotics are not con-
strained to be meromorphic. Namely, the putative spectral curves can have asymptotics dictated
by non-algebraic links, and thus they are not necessarily associated to meromorphic curves. Thus
far, all higher rank explorations in the literature focus on the algebraic case, on the so-called
WKB spectral networks, where the spectral curve is a holomorphic subvariety of the holomorphic
cotangent bundle of a Riemann surface. The results we present go much beyond such algebraic
constraints.

A key conceptual advance of this article is that the technique of spectral networks also works for
real Lagrangian fillings of Legendrian links, regardless of whether the Lagrangian surface and their
asymptotic Legendrian links have algebraic origin or not. For this, we introduce a more general
definition of spectral network than [GMN13b], where only an almost complex structure is used
and the necessary analytical properties of pseudo-holomorphic strips and their adiabatic limits can
be proven. An advantage of intertwining spectral networks with some of the current tools from
real contact and symplectic topology is that structural results known within the latter translate
into theorems for spectral networks. An instance of this is the invariance of BPS soliton classes
under real Hamiltonian isotopies, and not just holomorphic deformations. Another example is the
functorial behavior of Floer-theoretic invariants for Legendrian links under Lagrangian cobordisms,
which readily explains how to glue and compute spectral networks associated to Demazure weaves.
These new classes of spectral networks, built from Demazure weaves, include and generalize many
guiding examples in the literature and allow for direct computations of the BPS monodromy
generator by using explicit reddening sequences from their associated cluster algebras.

1.2. Main results. Let S be a smooth closed oriented surface and m ⊂ S a finite collection
of marked points. A triple (S,m;Λ) is said to be a Betti surface of rank n if Λ is a collection
of Legendrian links in the ideal contact boundary (T∞S, ξst), each of which is associated to an
n-stranded positive braid over the Legendrian fiber of a marked point in m. Let us denote by
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S := S \m the complement of the marked points. By depicting the wavefronts of the links in Λ
onto S ⊂ S, a Betti surface is pictorially drawn as in Figure 1.

Figure 1. A Betti surface S of genus 3 and rank 3, with 9 marked points m =
{m1, . . . ,m9}, in orange, and their associated Legendrian links in Λ, in blue. The
Legendrian links associated to marked points m1,m5,m8 have concentric circles as
their fronts, which corresponds to a regular singularity. A non-concentric Legendrian
isotopy class corresponds to an irregular singularity.

The Legendrian links in Λ are the contact topological incarnation of the Stokes data from the
theory of irregular singularities of meromorphic connections, cf. [KKP08, Remark 2.17]. In partic-
ular, any meromorphic spectral curve in the sense of [GMN13b] yields a well-defined Betti surface
of the corresponding rank, where the fronts of the Legendrians in Λ are the associated Stokes
diagrams. Details are provided in Section 2, cf. also [Boa21; She+19] and [Su25, Appendix B].
At core, a Betti Lagrangian L ⊂ (T ∗S, ωst) is a Lagrangian submanifold whose projection onto
S is an n-fold branched cover and whose asymptotics are dictated by the Legendrian links in Λ;
this is detailed in Definition 2.6. There are two important classes of such Betti Lagrangians, both
discussed in Section 2.3:

(i) Exact Betti Lagrangians, where the restriction of the Liouville form λst to L is an exact
1-form, i.e. all real periods of λst on L vanish. This class is defined with S a smooth punc-
tured surface and it yields Lagrangian fillings L ⊂ (T ∗S, λst) of the Legendrian link given
by the union of all Legendrian links Λ, after cylindrization near the contact boundary;
cf. Section 6.3 and [CG22; CG24; CZ22; EHK16].

(ii) If S is endowed with a Riemann surface structure S, we can consider meromorphic Betti
Lagrangians. These are the Betti Lagrangians that appear as the real part of a holomor-
phic Lagrangian curve Σ ⊂ (T∗S, ωC) in the holomorphic cotangent bundle (T∗S, ωC) with
asymptotics dictated by the irregular classes at m. These are the spectral curves studied
in the literature, including those in [GMN13a; GMN13b; GMN14] and those featuring in
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the irregular Riemann-Hilbert correspondence, see e.g. [BB04; Boa21].

The theory of spectral networks in [GMN13a; GMN13b; GMN14] is devoted to Betti Lagrangians
of type (ii), in Riemann surfaces S. The resulting spectral networks satisfy a number of addi-
tional properties, implied by the underlying holomorphicity: we refer to those spectral networks
in [GMN13a; GMN13b; GMN14] as WKB spectral networks. In order to develop the theory of
spectral networks in the real setting of (T ∗S, λst), so as to include the important class (i) above,
Section 3 introduces a generalization of those WKB spectral networks, which we refer to as a
Morse spectral networks. In a nutshell, a Morse spectral network W ⊂ S compatible with L is a
set of gradient flow trajectories in S given by the difference functions of the sheets of L ⊂ T ∗S
above S satisfying a set of non-trivial interaction and asymptotic constraints. These constraints
exclude a number of pathological behaviors. For instance, it is proven in Section 3 that Morse
spectral networks do not allow for ill-behaved asymptotics at infinity, such as trajectories reaching
m in finite time, nor trajectories getting arbitrarily close to m and then steering away from m.
In fact, trajectories should converge to Reeb chords of Λ, which generalize the points of maximal
decay in Stokes diagrams. In the interior, Morse spectral networks also disallow for high-valence
vertex interactions and tangencies between trajectories and sink points inside of S, among others.
In general, these are all possible behaviors for such difference-function gradient trajectories that
occur without a priori constraints on the geometry of L. In addition, a Morse spectral network
must have a compatible counting function µ on such trajectories, generalizing the count of framed
2d-4d BPS states.1 These interaction constraints and the necessary properties of µ, both crucial
to the concept of a Morse spectral network, are specified in Section 3.2: a depiction of the key
allowed local models for a Morse spectral network W is in Figure 2.

A. The first natural question that arises is the existence of such Morse spectral networks com-
patible with an exact Betti Lagrangian L ⊂ (T ∗S, ωst). A main difficulty is that the gradient
flow trajectories given by the sheets of L over S might not satisfy the necessary asymptotic and
interaction constraints. Also, it might not be clear how to generally assign the counting function
on trajectories given an arbitrary such Lagrangian L ⊂ (T ∗S, ωst). Similarly, in the holomorphic
setting, it has not been established that a finite-energy WKB spectral network compatible with a
given a meromorphic Betti Lagrangian Σ ⊂ (T∗S, ωC) actually does exist. In practice, it is also
important to guarantee that there are finitely many trajectories in a spectral network, given an
energy cut-off (or equivalently, a mass cut-off in physics literature). In fact, due to its concep-
tual importance, we include this condition into the definition of the WKB spectral network. The
first result in this manuscript resolves the matter of existence, including the (energy)-finiteness
constraint:

1This is in line with the 4d BPS invariants of [Bri19, Definition 2.1]. Nevertheless, we do not consider a central
charge in this general real setting; that might be the focus of future work.
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Figure 2. The local models for vertices in spectral networks: initial, interaction
and non-interaction. There are two types of interaction vertices: creation and 6-
valent type. The inconsistent vertex type is allowed for pre-spectral networks, but
is not allowed for spectral networks.

Theorem 1 (Existence of Spectral Networks). Let S be a Betti surface.

(i) Let L ⊂ (T ∗S, λst) be an exact Betti Lagrangian and (S, g) a metric adapted to L.
Then there exists a finite Morse spectral network compatible with L and (S, g).

(ii) Let S a Riemann surface structure for S, (T∗S, ωC) its holomorphic cotangent bundle,
and Σ ⊂ (T∗S, ωC) a meromorphic spectral curve with O(−1) ends. Then, for dense
subset of phases θ ∈ S1, there exists a generic WKB spectral network compatible with
the real Lagrangian eiθΣ ⊂ (T ∗S, λst).

In the statement of Theorem 1, the dense set of phases in S1 is a countable intersection of open
dense sets. The notation eiθΣ stands for the real part of the holomorphic subvariety Σ after being
acted by a rotation of phase θ, see Section 2 for details. In the real case (i), our proof of Theorem
1 actually yields a compatible Morse spectral network whose only interaction vertices are creation
vertices, which is in itself an interesting difference with the WKB case. For the proof of Theorem
1, presented in Section 3, both the trapping lemma in Section 2.5 and the preliminary transver-
sality established in Section 3.3.1 are important technical aspects, controlling the behavior of flow
trajectories and ensuring necessary asymptotics and interaction constraints. The proof of Theorem
1 in the WKB case (ii) nicely intertwines with the heuristic construction proposed in [GMN13b]:
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indeed, we prove that their proposed procedure gives an algorithm that both terminates and out-
puts an object which is indeed a WKB spectral network, satisfying the energy-finiteness condition,
or rather, a stronger condition that we call gapped (c.f Definition 3.12). In this latter WKB case,
see also [Kuw24, Theorem 1.2], which discusses the construction of certain WKB spectral networks
via sheaf quantization. Note that in the WKB case (ii), the real Lagrangian eiθΣ ⊂ (T ∗S, λst)
is typically not an exact Lagrangian, as the periods of Σ might not all have the same phase θ+π/2.

B. Floer theory, broadly understood as the study of symplectic topology through pseudo-
holomorphic methods, infinite-dimensional variational analysis on path spaces and their homolog-
ical incarnations, is a pillar of contact and symplectic topology. See for instance [AS19; EGH00;
Flo88; Flo89a; Gro85; PSS96; Vit99] and the monographs [Fuk+09a; Fuk+09b; MS04; Sei08b],
to name some key references. The context for Theorem 1 certainly belongs to real symplectic
topology: a real Lagrangian submanifold L inside the cotangent bundle (T ∗S, ωst). Yet, spectral
networks W ⊂ S are defined in terms of gradient trajectories on S: even if they are trajectories of
functions describing L, there are no immediate Floer-theoretic aspects to the notion of a spectral
network. Based on examples, e.g. when certain 4d BPS states correspond to holomorphic disks
[GMN13b, Section 6.2], it has been hoped by the mathematical physics community that spectral
networksW ⊂ S can in fact be given a characterization entirely in Floer-theoretic terms. Given the
effectiveness of Floer theory and all its known functorial properties, establishing a rigorous connec-
tion between Floer theory and spectral networks seems particularly desirable from the viewpoint
of pure mathematics as well. Our second result proves such characterization:

Theorem 2 (Floer-theoretic characterization of Spectral Networks). Let S be a Betti surface,
Σ ⊂ (T ∗S, λst) a Betti Lagrangian and W ⊂ S a spectral network compatible with Σ. Then
the following characterization holds:

A point p ∈ S belongs to an active wall of W ⇐⇒ ∃ broken pseudo-holomorphic strip in (T ∗S, λst)

between the fiber T ∗
pS and Σ in the adiabatic limit.

Furthermore, the following two properties are satisfied:

(i) If p ∈ W, then the relative homology class in Σ associated any such pseudo-holomorphic
strip is uniquely determined by W, and such strip must adiabatically degenerate to a
subset of W.

(ii) For Σ an exact Betti Lagrangian, the characterization holds for (genuine) pseudoholo-
morphic strips, without being potentially broken.

When Σ is non-exact, we demand Σ to be meromorphic outside some compact subset of T ∗S, for
some technical reasons. All known interesting examples of non-exact Betti Lagrangians fall into
such a category. A first important aspect of Theorem 2 is the presence of an adiabatic limit: it
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refers to the limit ε→ 0 when the Betti Lagrangian Σ ⊂ (T ∗S, λst) is rescaled by a factor of ε ∈ R+

under the fiberwise radial scaling action of the cotangent bundle.2 Since even in the simplest cases
pseudo-holomorphic strips are in bijective correspondence with flow-trees only in the adiabatic
limit, the adiabatic hypothesis in Theorem 2 is needed in any such characterization. A second
relevant fact is that, for exact Betti Lagrangians, all the walls of the spectral networks produced
in Theorem 1 are active. Therefore Theorem 2 gives a complete characterization of points in a
spectral network, without even considering framed 2d-4d BPS indices.

Appropriately understood, Theorem 2 generalizes the analysis relating flow-trees and pseudo-
holomorphic strips from [Ekh07]. The result in ibid. are nevertheless far from concluding The-
orem 2: a key new ingredient is establishing the convergence from pseudo-holomorphic strips to
trees while satisfying the initial edge constraints, which is crucial to control the behavior of D−

4 -
trees near branch points. This convergence result is proven in Section 4. In addition, the flowtree
results in the literature do not apply to non-exact Lagrangians (and so would not be able to deal
with any of [GMN13b; GMN13a; GMN14]) and also require generic swallowtails front singularities.
Since D−

4 -singularities are necessarily present in a branch cover and the study of spectral curves,
we also further develop the machinery of Morse flowtrees for this context.

Theorem 2 is proven at the end of Section 5, after developing the necessary analytical results in
the bulk of Sections 4 and 5. At core, it is the combination of two different of results. First, we
establish no-go theorems in Section 4, cf. Theorem 4.2, using adiabatic degeneration. We are able
to use the adiabatic limit to show that certain pseudoholomorphic strips do not exist, as stated in
Theorem 2: it allows us to prove that points in the complement of the spectral networks cannot
support such a pseudoholomorphic strip and that, for any point in the spectral network W, the
only possible homology class for a potential pseudoholomorphic strip through that point must be
the soliton class determined by W and the point. Second, we prove that there exist such pseudo-
holomorphic strips for points in W, as stated in Theorem 2, through the explicit computations
established in Section 5.

C. In Theorems 1 and 2, the more foundational aspects of existence and characterizations are
addressed. A central aspect of spectral networks in the supersymmetric theories of [GMN13b] is
the non-abelianization functor, cf. [GMN12, Section 10] and [GMN14, Section 5]. In the super-
symmetric N = 4 context, it is a construction from the infrared to the ultraviolet that carries
GL1(C)-local systems on the Seiberg-Witten curve to GLn(C)-local system on the space of ultra-
violet parameters. In topological terms, each spectral network W ⊂ S partially defines a functor

2In the literature in geometric analysis, adiabatic limit refers to the process of degenerating a Riemannian metric
in certain directions. In symplectic topology, one typically starts with the symplectic 2-form and a compatible
almost complex structure, from which a Riemannian metric is produced. The fiberwise rescaling action can be seen
as a rescaling of the almost complex structure, which itself is then seen as rescaling the metric. In this case, the
limit metrics when ε → 0 degenerate to be supported in the zero section of T ∗S.
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ΦW : Loc†(L) 99K Loc†(S) from rank-n twisted local systems on L to rank-1 twisted local sys-
tems in S, i.e. from a Betti Lagrangian L ⊂ (T ∗S, λst) to the zero section S. The functor ΦW

is constructed combinatorially from W, introducing detour paths that act as instanton correc-
tions and abide by formulas similar to the Hori-Vafa wall-crossing formulas. Technically, given
V ∈ Loc†(L), the physics framework is such that ΦW(V ) has parallel transport only defined for
paths transverse to W and endpoints in the complement Wc, thus our use of the dashed arrows in
ΦW : Loc†(L) 99K Loc†(S), cf. Section 5.1.

In this paper we develop Floer theory for exact Betti Lagrangians in the presence of a spectral
network W, in Section 5, constructing Floer-type cochain complexes with differentials recording
certain counts of (actual non-adiabatic) pseudo-holomorphic disks. As a consequence, we are able
to construct an actual functor F : Loc†(L) −→ Loc†(S) using Family Floer techniques. The func-
tor F is defined for all paths and built as a direct limit of functors Fε depending on the adiabatic
parameter. This is presented in Section 5.2; here F stands both for Family and for Floer. Then we
establish the comparison between these two functors in Section 5.3. The results can be summarized
as follows:

Theorem 3 (Family Floer and Non-abelianization). Let S be a Betti surface, L ⊂ (T ∗S, λst)
an exact Betti Lagrangian and W ⊂ S a spectral network compatible with Σ. Then:

(1) Family Floer with respect to L can be defined and yields a functor

F : Loc†(L) −→ Loc†(S),

invariant under compactly supported Hamiltonian isotopies of L. Specifically, it is built
from a type of Floer complexes CF ∗(T ∗

z S, L) between cotangent fibers and L, which
can be constructed and shown to be well-defined.

(2) In the adiabatic limit ε→ 0, the two functors

F,ΦW : Loc†(εL) −→ Loc†(S),

are equivalent.

As said above, the Floer-theoretic functor F in Theorem 3.(1) is defined as a direct limit of Family
Floer functors Fε that depends on the adiabatic parameter ε: at core, F uses the spectral network
W in order to correct the technical issues that often obstruct when applying Family Floer methods,
including caustics. The comparison in Theorem 3.(2) does require scaling the Betti Lagrangian
and thus the comparison F = ΦW only makes sense in the adiabatic limit. Theorem 3 is proven
in Section 5.2 for Part (1) and Section 5.3 for Part (2). Note that the case of quadratic differen-
tials, with GL2(C), can be argued from [Nho24], whereas Theorem 3 works for any higher rank
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exact Betti Lagrangians. We emphasize that the functor F is well-defined whereas, technically, ΦW

cannot parallel transport starting at W: Theorem 3.(2) is thus an equality where ΦW is defined.
More conceptually, it shows how the framework of Floer theory not only captures but generalizes
that of spectral networks: the former being able to be used to define and extend the latter. An
interesting question is whether Theorem 3 could be extended to general Betti Lagrangians. For
such Lagrangians, we are currently only able to explicitly compute parallel transport maps for very
short line segments. Such a computation is the key component behind the proof of Theorem 2.
We leave this question for the future research.

A corollary of Theorem 3 is that we can extract a symplectic invariant of the exact Betti La-
grangians L ⊂ T ∗S from W, up to compactly supported Hamiltonian isotopies. Indeed, Theorem 3
implies that the set of soliton classes in W associated to Reeb chords of ∂∞L is an invariant of
L. This is proven in Theorem 5.8.3 Note that the cluster algebra structures built in [Cas+25],
corresponding to a Betti surface S = S2 with one irregular singularity, have cluster variables de-
fined by Floer parallel transport along relative cycles. In combination with that work, Theorem 3
then formalizes the cluster-like coordinates sketched in the supersymmetric context in [GMN13b,
Section 10] and [Nei14].

D. Fukaya A∞-categories, in their many forms, are a central object in Floer theory and the study
of symplectic topology via pseudo-holomorphic methods, see e.g. [Fuk+09a; GPS20; Sei08b]. The
Floer complexes we constructed for Theorem 3 and the results developed in Sections 4 and 5 can
be enhanced to an A∞-categorical level. This is achieved in Section 6, as follows:

(i) First, due to its asymptotic ends, an exact Betti Lagrangian L ⊂ T ∗S does not define an
object of W(T ∗S) or any partially wrapped version thereof. That said, we construct in
Section 6.1 an A∞-module Y(L,V ) of W(T ∗S) that behaves as if it was the Yoneda module
for such an object. More crucially, we then prove in Section 6.2 that its µ1|1 A∞-operation
precisely captures the non-abelian parallel transport.

(ii) Second, in Section 6.3 we geometrically modify L via cylindrization so as to obtain a La-
grangian L◦ which defines an object in the partially wrapped Fukaya category W(T ∗S,Λ).
We also establish that its associated µ2 A∞-map recovers non-abelian parallel transport,
now in the partially wrapped case.

(iii) Third, we compare the A∞-modules presented in (i) and (ii) above under the inclusion
functor i∗ : W(T ∗S) → W(T ∗S,Λ) and completely describe the Yoneda A∞-module of

3It is an effective invariant, as it at least matches the information contained in the augmentation induced by L
for the Legendrian contact dg-algebra of ∂∞L, when the latter is defined. Thus it already distinguishes Lagrangians
before and after a surgery.
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L◦. This description of this A∞-module of W(T ∗S,Λ) associated to the cylindrized Betti
Lagrangian L◦ is achieved in Section 6.4 by proving a generation result for W(T ∗S,Λ),
cf. Proposition 6.19, showing that its generated by internal and infinity fibers, without
linking disks being in the generating set.

These are all established in detail in Section 6. See Proposition 6.1, Theorem 6.3 and Corollary 6.4
for (i), Section 6.3.1 and Theorem 6.12 for (ii), and Corollary 6.13 and Proposition 6.19 for (iii).
We summarize some of the key outcomes in the following result:

Theorem 4 (Spectral curves and 4d Partially Wrapped Fukaya Categories). Let L ⊂ (T ∗S, λst)
be an exact Betti Lagrangian endowed with a local system V ∈ Loc(L) andW ⊂ S a compatible
Morse spectral network. Then:

(i) There exists an A∞-module Y(L,V ) : W(T ∗S) −→ modk with cohomologies

H∗(Y(L,V )(P )) ∼= HF ∗(P, (L, V )),

where P ⊂ T ∗S is any exact cylindrical Lagrangian with compact horizontal support.
Furthermore, the minimal geodesic generator [αzw] ∈ HomW(T ∗S)(T

∗
z S, T

∗
wS) of an W-

adapted pair z, w ∈ S satisfies

µ1|1([αzw], ·) = ΦW(V )(αzw).

In particular, there exists an A∞-quasi-equivalence W(T ∗S)-mod ∼= C−∗(ΩzS)-mod,

Y(L,V ) ≃ ΦW(V ),

as A∞-modules over W(T ∗S).

(ii) Consider the Yoneda A∞-module Y(L◦,V ) : W(T ∗S,Λ) −→ modk of the cylindrized Betti
Lagrangian L◦ ⊂ T ∗S and its µ2 A∞-operation. Then the minimal geodesic αzw ∈ Ωz,w

satisfies
µ2(i∗[αzw], ·) = ΦW(V )(αzw)

and there is a homotopy
Y(L◦,V ) ◦ i∗ ≃ Y(L,V )

of A∞-modules over W(T ∗S).

At core, Theorem 4 establishes that the non-abelian parallel transport of Gaiotto-Moore-Neitzke
studied in [GMN12; GMN13b; GMN14], and the associated counts of framed 2d-4d BPS states,
can be realized as parts of the A∞-operations in either wrapped or partially wrapped 4-dimensional
Fukaya categories. Theorem 4.(i) does so in the wrapped category W(T ∗S) and Theorem 4.(ii)
in the partially wrapped category W(T ∗S,Λ), also establishing the comparison. At a technical
level, we use in Section 6 the modern construction of partially wrapped categories in [GPS20]
and establish our results by indeed using their definitions in terms of homotopy colimits, carefully
defining the class associated to a minimal geodesic αzw by studying the necessary continuation
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maps, cf. Sections 6.2 and 6.3.2.

E. Theorems 1 and 2 establish existence and characterizations of spectral networks, and The-
orems 3 and 4 develop the Floer-theoretic results needed to rigorously define and establish non-
abelianization in spectral networks, first analytically and then categorically, respectively. The last
result we present is a new construction of spectral networks, providing both novel examples and
crystallizing connections to cluster algebras.

The input of the construction is a Legendrian weave w ⊂ S, as introduced in [CZ22], specifically
a Demazure weave, cf. Section 7.1, [Cas+24, Section 4.1] or [Cas+25, Section 4.1]. Such a weave
w ⊂ S defines an exact Betti Lagrangian Lw ⊂ (T ∗S, λst) with asymptotics determined by a
Legendrian Λ∂w ⊂ (T∞S, ξst), depending only on the boundary ∂w of the weave. In Section 7.2
we define a certain object Ww ⊂ S, associated to a weave w, entirely in combinatorial terms: we
refer to it as the augmentation forest of w. These Ww ⊂ R2 are built combinatorially from w,
in contrast to the intrinsically analytic nature of any spectral network associated to Lw and its
associated augmentation εw : A(Λ∂w) −→ k[H1(Lw)] of the Legendrian contact dg-algebra A(Λ∂w).
Figure 3 illustrates two examples of weaves and their associated spectral networks.

For simplicity, we focus on S = R2 and their Ww ⊂ R2, as this already yields many interesting
new examples; see [CN22] for specifics on the Legendrian dg-algebra A(Λ∂w). In Section 7, after
providing the construction of the augmentation forest Θw, we conclude the following result and
use it to explicitly compute several examples, cf. Section 7.3:

Theorem 5 (Augmentations, weaves and Spectral Networks). Let w ⊂ R2 be a Demazure
weave and Lw ⊂ (T ∗R2, λst) its associated exact Betti Lagrangian. Then:

(1) The augmentation forest Ww ⊂ R2 is a Morse spectral network compatible with Lw.
In addition, it is a finite and creative spectral network.

(2) The flowlines of the spectral network Ww are exactly given by the union of D−
4 -trees

obtained by adiabatically degenerating the rigid pseudoholomorphic strips contributing
to the augmentation εw induced by Lw.

Theorem 5 has two advantages. First, there are many weaves with the same boundary ∂w,
e.g. [CG22, Section 2] and [CZ22, Section 7.1], and thus Theorem 5 provides many examples of
spectral networks with the same asymptotic conditions: the spectral curves Lw for different such
weaves w are typically not Hamiltonian isotopic, but they are all exact Lagrangian fillings of the
same Λ∂w. The associated spectral networks Θw are themselves also different: in fact, the notion
of (Lagrangian disk) mutation for Betti Lagrangians aligns with the notion of mutation of spec-
tral networks, corresponding to the appearance of a 4d BPS state in a degenerate spectral curve,
cf. Section 7.3.2. Second, since the construction of Θw is combinatorial, not requiring to solve
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Figure 3. (1) A weave w and the spectral network Ww constructed in Section 7.2.
(2) The spectral network Ww in (1), drawn on its own, without the weave w. (3) An-
other weave with its associated spectral network. In this case, the spectral network
recovers precisely the Berk-Nevins-Roberts network from [BNR82] by adiabatically
degenerating the rigid pseudoholomorphic strips contributing to the augmentation
associated to the Lagrangian filling of the weave.

any differential equation, Theorem 5 is an effective tool for understanding which spectral networks
are associated to irregular data. In particular, given a higher-order linear differential equation –
e.g. with new Stokes curves as in [BNR82] – one can qualitatively draw spectral networks associ-
ated to it once the Legendrian associated to the Stokes data is computed, which only requires the
asymptotic range. Section 7.3 gives several such examples and computations.

Acknowledgements: We thank Merlin Christ, Ian Le, Andrew Neitzke and Daping Weng for
useful discussions. Specifically, the construction in Section 7.2 was first discussed by R.C. with
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2. Betti Lagrangians and Flowline Trajectories

This section introduces Betti surfaces in Section 2.2 and Betti Lagrangians in 2.3, where exact
Betti Lagrangians and meromorphic spectral curves are also discussed. Real and holomorphic
flowlines are discussed in Sections 2.4 and 2.6 respectively. Accordingly, the trapping lemma is
proved in Section 2.5 and the asymptotics of WKB trajectories are studied in Section 2.7. We
start with a brief discussion on real and holomorphic cotangent bundles in Section 2.1.

2.1. Real and holomorphic cotangent bundles. Let S be a smooth real surface, we denote by
(T ∗S, λst) its real cotangent bundle endowed with the canonical Liouville 1-form λst ∈ Ω1(T ∗S).
It is the unique 1-form such that η∗λst = η for any η ∈ Ω1(S), and its differential is denoted
by ωst = dλst. The ideal contact boundary [Gir20, Prop. 2] of this Liouville domain is denoted
(T∞S, ξst). In this article, we focus on real Lagrangian surfaces L ⊂ (T ∗S, λst) with boundary on
a specified Legendrian Λ ⊂ (T∞S, ξst). The Legendrian boundary Λ will always be smooth, and
L will typically be embedded, though we also consider immersed, and more singular, Lagrangian
subsets in certain parts. We refer to [AG01; Arn90] or [Gei08; MS98] for initiating matters on
contact and symplectic topology.

Let S be endowed with a Riemann surface structure S, so that S is a complex 1-dimensional man-
ifold and JS : TS −→ TS is its defining (almost) complex structure. The holomorphic cotangent
bundle will be denoted by (T∗S, ωC), and its canonical (complex-valued) holomorphic symplectic
form by ωC ∈ Ω2

C(T∗S) = Ω2,0(T ∗S, JS). Here the splitting of Ω•(T ∗S) into its Ωi,j(T ∗S, JS) parts is
determined by the eigenspaces of JS. As in the real case, this 2-form can be written as dωC = λC,
where the primitive λC ∈ Ω1

C(T∗S) = Ω1,0(T ∗S, JS) is the canonical holomorphic Liouville form. In
this holomorphic context, holomorphic Lagrangian submanifolds will be denoted by Σ ⊂ (T∗S, ωC).
Given (T∗S, ωC), we can consider its underlying real rank-2 bundle T ∗S and the real-valued smooth
symplectic 2-form Re(eiθωC), for a choice of θ ∈ S1. We refer to this pair (T ∗S,Re(eiθωC)) over S
as the θ-part (T∗S, ωC); when θ = 0, this is also said to be the real part of (T∗S, ωC).

Remark 2.1. (i). Let θ ∈ S1 and Σ ⊂ (T∗S, ωC) be a holomorphic Lagrangian submanifold.
Then, then underlying real submanifold L ⊂ T ∗S of Σ is a real Lagrangian submanifold of
(T ∗S,Re(eiθωC)), where we can identify TL and TΣ as real rank-2 bundles. Indeed, ωC|TΣ ≡ 0 if
and only if eiθωC|TΣ ≡ 0, which implies that Re(eiθωC|TΣ) ≡ 0.
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(ii) Studying the real Lagrangian L in (i) in the θ-part (T ∗S,Re(eiθωC)) is equivalent to studying
the real Lagrangian underlying eiθΣ for (T ∗S, ωst), where e

iθΣ is the result of applying fiberwise
multiplication to Σ by the scalar eiθ. We thus denote such real Lagrangians as L = eiθΣ.

(iii) For a generic θ ∈ S1, the real Lagrangian eiθΣ submanifold of (T ∗S, ωst) is not exact, i.e.
λst defines a closed but non-exact real 1-form when restricted to eiθΣ. For instance, the real part
of Σ is exact if and only if all the complex periods of Σ are purely imaginary. Nevertheless, note
also that for generic θ ∈ S1, eiθΣ ⊂ (T ∗S, ωst) does not bound any holomorphic disks either (in an
appropriate adiabatic limit) and, in many aspects, behaves similarly to an exact Lagrangian. □

Figure 4. A smooth surface S of genus 3 with 9 marked points m = {m1, . . . ,m9},
in orange, and fronts for their associated Legendrian links in Λ = {Λ1, . . . ,Λ9}, in
blue. The annular neighborhoods Ai ⊂ S for each marked point are shaded in pink.
The positive braid words β1, β5, β8 are the empty braid words in 3-strands and, for
instance, we can choose β6 = σ2

2σ1σ2σ
2
1 and β9 = σ1σ2.

2.2. Betti surfaces. The asymptotics of Betti Lagrangians will be constrained by Legendrian
links. Given a marked oriented closed surface (S,m), denote S = S \ m and consider a set
{A1, . . . , A|m|} of small annular neighborhoods Ai ⊂ S, each obtained by considering a small
disk neighborhood of the ith marked point in S and removing such marked point. The required
asymptotics of L ⊂ (T ∗S, λst) will be prescribed by a set Λ = {Λ1, . . . ,Λ|m|} of Legendrians, each
in the ideal contact boundary Λi ⊂ (T∞Ai, ξst). Since projection of the ideal contact boundary
onto the zero section is a Legendrian fibration, the front for Λi can (and will) be drawn in Ai ⊂ S.
See Figure 4 for a depiction of this setup. Given a collection β = {β1, . . . , β|m|} of positive braid
words βi ∈ Br+n in n-strands, i ∈ [1, |m|], consider the Legendrian link Λβ ⊂ (T∞S, ξst) whose
front is given by drawing the braid word βi circularly around Ai, according to the orientation of S;
cf. [CN22, Section 2.2] and see again Figure 4. The Legendrian isotopy class of Λβ is independent
of the braid word representative of its associated braid element in the braid group.
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Remark 2.2. The braids in β need not be algebraic braids, i.e. they are not constrained to be
certain iterated cables of the unknot. See the proof of [CG22, Corollary 1.6] for infinitely many
examples of non-cable satellite knots and hyperbolic knots that are associated to positive braids
(and necessarily not algebraic). In the meromorphic setting, as in the literature on spectral curves
[GMN13a; GMN13b; GMN14], the braids are necessarily algebraic. □

Formalizing this, a marked oriented closed surface (S,m) with such Legendrians links leads to the
following:

Definition 2.3 (Betti surfaces). A Betti surface of rank n is a triple (S,m;Λ) such that Λ is a
collection of Legendrian links in the ideal contact boundary (T∞S, ξst), each of which is associated
to an n-stranded positive braid circularly drawn around a marked point in m. □

See Figure 4 for an example of Definition 2.3. For each Λβi
⊂ (T∞Ai, ξst), a Reeb chord is said

to be positive if, when seen as a crossing in the Lagrangian projection, the upper strand travels
from northwest to southeast with respect to the given orientations on the strands; else, we say it
is negative. For notation purposes, Λβ is said to be Reeb-positive if all the Reeb chords of all Λi

are positive. After a C∞-small Legendrian isotopy, we can and do assume that each of the Reeb
chords and transverse double points (of the fronts in Ai) are at different angles. The angles in the
core S1 ⊂ Ai where there is a Reeb chord for Λβi

are said to be crossing points for that core circle.

Remark 2.4. By [CN22, Section 2.2], if βi contains a half-twist w0 as a subword, then the braid
for its front can be drawn such that Reeb chords are in bijection with the crossings of β. Specifically,
the front can be drawn so that there is exactly one Reeb chord (arbitrarily close and) preceding each
crossing, and these are all the Reeb chords. □

For Floer-theoretic purposes, it is useful to regard the marked points m as giving the horizontal
infinity of S, e.g. as opposed to a 1-point compactification of S. In detail, for each mi ∈ m, we
identify the associated annular neighborhood Ai ⊂ S with Ai

∼= S1 × (1,∞) with coordinates
(eiθ, r) ∈ S1 × (1,∞), so that any point converges to the point mi in S as r → ∞. For a Reeb
chord with a given crossing point θ0, we call the ray (eiθ0 , r) ⊂ Ai its Reeb chord ray.

Example 2.5 (Betti surfaces from Stokes data). As hinted in [KKP08, Remark 2.17], the data of
the irregular singularities of a meromorphic connection on a Riemann surface S leads to a Betti
surface. This is beautifully crystallized in [Boa21], specifically in the notion of an irregular curve
(S,m,Θ), as defined in [Boa14, Definition 8.1] or [Boa21, Definition 5.5]; cf. also [Sab13, Part I],
[She+19, Section 3.3], [Su25, Appendix B]. In a nutshell, an irregular curve is a marked Riemann
surface (S,m) with the data Θ of an irregular class at each marked point: the irregular class codifies
the formal type of the pole of a meromorphic connection, up to formal gauge transformation. In
practice, this can be written as a finite Puiseux series Q, representing an orbit of the Galois action
of the profinite group Ẑ on C((z1/∞))/z−1C[[z1/∞]] :=

⋃
N∈NC((z1/N))/z−1C[[z1/N ]]. Here we will
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work with representatives Q of the form

Q =
∑

kj∈Q>0

ckjz
−kj , ckj ∈ treg ⊂ gln,

modulo the action of ckj → ckje
2πin/ram(Q), n ∈ [1, ram(Q)], where ram(Q) is the smallest number

such that Q ∈ C((z1/ram(Q))). The irregular part of the formal type of the meromorphic connection
is then given by d−dQ. Since Q is a finite Puiseux series with pole orders strictly greater than 0, it
can be seen as a multivalued function on C∗. The Stokes diagram associated to such irregular data
is given by the graphs of the multivalued functions Re(Q(reiθ)) on S1

θ , for fixed r large enough.
For each marked point mi, the Stokes diagram in Ai is precisely the circular closure of a positive
braid, and thus can be interpreted as a front for a Legendrian of the type Λβi

above.
In summary, the Betti surface associated to an irregular curve (S,m,Θ) is precisely the under-
lying smooth surface (S,m,ΛΘ), where ΛΘ is the Legendrian link in (T∞S, ξst) defined by the
Stokes diagrams of the irregular data Θ, understood as fronts in S. In these examples, the points
of maximal decay for the Stokes diagram of an irregular type give the Reeb rays for the associ-
ated Legendrian link; these are also referred to as singular directions or anti-Stokes directions of
the Stokes diagram. By construction, the Stokes directions (a.k.a. oscillatory directions) of the
Stokes diagram are precisely the directions where there is a crossing in the front of the associated
Legendrian link, i.e. the angles at which we draw the crossings of the associated braid word. □

2.3. Betti Lagrangians. Given a Betti surface (S,m,Λ), we introduce Betti Lagrangians: the
Lagrangian surfaces in (T ∗S, λst) for which we construct and study spectral networks. These La-
grangians are our main object of study. There are two important classes, exact Betti Lagrangians
and meromorphic spectral curves, discussed respectively in Subsections 2.3.1 and 2.3.2. Many of
the Lagrangian fillings of Legendrian links studied in the literature, e.g. [CG22; CW24; CZ22;
EHK16], provide plenty of examples of this first class of exact Betti Lagrangians. The irregular
curves studied in the context of wild character varieties and the irregular Riemann-Hilbert or non-
Abelian Hodge correspondences give many examples of the second class, e.g. cf. [BB04; Boa14;
Boa14; FN21; GMN12; GMN13b; GMN14; Kat+15; Sab13].

To define Betti Lagrangians, we first discuss the notion of Lagrangian multigraphs on a smooth
manifold M , as follows. By definition, a properly embedded Lagrangian submanifold L ⊂ T ∗M is
said to be a Lagrangian multi-graph if outside a codimension-1 properly closed subset KL ⊂ L, the
projection π : L −→ M is a smooth immersion outside KL and it is a covering over M − π(KL).
Given a point m ∈M − π(KL), a neighborhood of the preimage π−1(m)∩ (L−KL) in M consists
of n disjoint Lagrangian disks, the smooth sheets of L over m. Each such smooth sheet can be
realized as the Lagrangian graph of the differential of a smooth function fi :−→ R, i ∈ [1, n], with
each fi well-defined up to constant.

Definition 2.6 (Betti Lagrangians). Let (S,m,Λ) be a Betti surface. A Betti Lagrangian L ⊂
T ∗S is a weakly bounded Lagrangian multigraph L ⊂ T ∗S such that the restriction of the projection



SPECTRAL NETWORKS AND BETTI LAGRANGIANS 19

π : L→ S onto the zero section S is a degree-n simple branched cover with finitely many branched
points. □

In Definition 2.6 we have used the notation weakly bounded, which we use to encode a number
of Riemannian properties of the Lagrangian multigraph L. Its precise meaning is as follows:

Definition 2.7. A Lagrangian multigraph L ⊂ T ∗M is said to be weakly bounded if there exists a
Riemannian metric (M, g), constants inj(g), ρ ∈ R+ and a precompact subset K ⊂ M containing
π(KL) such that:

(i) The Riemannian metric g is complete, the C∞-norm of all the derivatives of the curvature
tensor are uniformly bounded (a.k.a. geometrically bounded), and the minimal injectivity
radius of g is bounded below by inj(g) > 0.

(ii) Given a point m ∈ M − N2inj(g)(K), at distance at least 2r from K, and the functions

fi :M −→ R describing the sheets of L over Binj(g)(m) as gr(dfi), then we must have

inf
Binj(g)(m)

∣∣dfi − dfj
∣∣ > ρ, ∀q ∈ Binj(g)(m).

By definition, a weakly bounded Lagrangian multigraph L is said to be uniformly bounded if L lies
in the R-disk bundle DRT

∗S ⊂ T ∗S for some R ∈ R+ and for the smooth sheets of its fiberwise
ε-scaled image εL ⊂ T ∗S over Binj(g)(m), m ∈ M − N2inj(g)(K), there exist uniform bounds Ck

such that ∥∇kfi∥g ≤ Ck for all i ∈ [1, n], where ∇ is Levi-Civita connection of (M, g) and there is
no dependence on ε. □

Intuitively, the second condition for a uniformly bounded Lagrangian multigraph in Definition 2.7
is that away from the preimage of the locus K, the sheets of the rescaled Lagrangian εL ⊂ T ∗S
uniformly C∞-converge with respect to g to the zero section as ε→ 0.

It is worth providing a local description of the Betti Lagrangian near its branch point. The
germ {w2−z = 0} in C2 = T ∗C is called the holomorphic cusp singularity, and we call its real part
the D−

4 -singularity. Near its branch points, L is always locally equivalent to the D−
4 -singularity

germ. For the rest of the paper, We will assume that given a branch point b, there exists some
local conformal coordinate z near b, and some constant holomorphic covector c such that near the
ramification locus π−1(b), L is equal to the real part of {(λC − c)2 = zdz2} ⊂ T ∗

CC near z = 0. We
will furthermore assume that the smooth sheets of L are all holomorphic.

2.3.1. Exact Betti Lagrangians. For exact Betti Lagrangians, the analysis uses the conical ends,
as with the framework of Lagrangian fillings from [EHK16, Section 2.2]. Consider the Legendrian
fiber in (T∞S, ξst) above a marked point mi ∈ m and identify a neighborhood of it with (J1S1, ξst),
where the fiber is mapped to the zero section. Suppose that the Legendrian link Λi ⊂ (T∞S, ξst)
is parametrically given by (x(θ), y(θ), z(θ)) where x(θ) = θ and the contact 1-form is dz − ydx,
(x, y) ∈ T ∗S1 and z ∈ R. Then a conical end is defined as follows:
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Definition 2.8 (Conical ends). Let L ⊂ (T ∗D2, λst) be the germ of a Lagrangian surface and
Λ ⊂ (J1S1

θ , ξst) be parametrized by (x(θ), y(θ), z(θ)), where S1 is identified with the Legendrian
fiber T∞

0 D2 of (T∞D2, ξst) above 0. By definition, L has a conical end of type Λ if L admits a
parametrization of the form

(r, θ) 7−→ (x(θ), f(r)y(θ), r, f ′(r)z(θ)) ∈ T ∗D2,(1)

for some strictly increasing positive real function f(r) : [1,∞) −→ R which is linear at infinity. In
other words, L is the multigraph associated to the multi-valued function z(θ)f(r) : S1× [1,∞) −→
R. □

The conical ends in Definition 2.8 allow us to introduce the following:

Definition 2.9 (Exact Betti Lagrangians). Let (S,m,Λ) be a Betti surface. An exact Betti
Lagrangian L ⊂ (T ∗S, λst) of rank n is an exact Lagrangian submanifold L ⊂ (T ∗S, λst) such that

(i) The restriction π : L → S of the projection T ∗S −→ S onto the zero section is a degree-n
simple branched cover, with finitely many branch points.

(ii) L has conical ends near each of the marked points in m. □

Let (S, g) be a Riemannian metric such that g can be written as g = dr2 + r2dθ2 near each of the
horizontal infinities of the Betti surface S. Then the conical condition in Definition 2.9.(ii) implies
that exact Betti Lagrangians are uniformly bounded with respect to such Riemannian metric g.
Therefore, exact Betti Lagrangians are Betti Lagrangians, according to Definition 2.6.

2.3.2. Meromorphic spectral curves. Let us introduce a second important class of Betti Lagrangians,
meromorphic spectral curves, associated to an irregular curve (S,m,Θ); see [Boa21, Definition 5.5]
and Example 2.5 above for irregular curves. Intuitively, these spectral curves are given by mero-
morphic multi-graphs on S with their behavior at a pole in m specified by the irregular data Θ.
Locally, the behavior at poles can be described as follows.

Consider a germ of a holomorphic Lagrangian multi-graph Σ ⊂ T ∗C∗ over C∗ without singular-
ities. Since the projection of Σ to the base C∗ defines an n-sheeted covering, we can consider
the elementary symmetric polynomial ci, i ∈ [1, n], over the distinct sheets λ1, . . . , λn of Σ and
obtain holomorphic functions ci(λ1, . . . , λn) on C∗, i ∈ [1, n]. By definition, Σ is said to extend
to a meromorphic multi-graph over C if the elementary symmetric polynomials extend over C as
meromorphic functions with poles over the origin. After possibly passing to a ramified cover, under
z → zr for some r ∈ N, we regard the sheets λ1, . . . , λn of Σ as giving holomorphic functions on C∗.

By Lagrange’s upper bound max{1,
n∑

i=1

∣∣∣∣ cicn
∣∣∣∣} on the norm of complex roots, cf. [Lag73, Chapter

IV], there exists N ∈ N large enough such that the norm of zNλi(z
r) is uniformly bounded for all

i ∈ [1, n]. Therefore, the functions λi(z
r) : C∗ −→ C all extend to germs of meromorphic functions

on C near the origin and we can regard the sheets of Σ as the Lagrangian graphs of Puiseux series
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with finite polar parts.

Given a meromorphic multi-graph over C, as above, we consider the differential operator

∂nz −
n∑

i=1

ci(λ1, . . . , λn)∂
n−i
z , z ∈ C.

By reducing this operator to a system of order 1 differential operators, it defines a meromorphic
connection on the rank-n trivial bundle over C with a single pole at the origin. The irregular data
is then given by considering the irregular class of such meromorphic connection. Intuitively, these
Galois orbits are given by a local primitive of the holomorphic Liouville form λst over the distinct
components of the multi-graph Σ, after dropping the o(log(z)) terms.

Definition 2.10 (Meromorphic Spectral Curves). Let
(
S,m,Θ

)
be an irregular curve. A holo-

morphic submanifold Σ ⊂ T ∗S is said to be a meromorphic spectral curve if

(i) the germ of Σ is a meromorphic multi-graph with poles on m,
(ii) the corresponding formal Puiseux series has the same orbits as Θ, with the same multiplic-

ities.

In addition, a meromorphic spectral curve is said to have O(−1)-ends if the sheets λ1, . . . , λn and
their difference functions have growth bounded below by z−1, locally in z ∈ C∗ with a pole at
z = 0. □

For the purposes of our results, including Theorems 1, 2, 5 and 4, we always consider mero-
morphic spectral curve with O(−1)-ends. First, O(−1)-ends are necessary because, without such
hypothesis, one could add a holomorphic perturbation to force the difference between the sheets
to blow-up slower than z−1 as z → 0. Second, having O(−1)-ends implies that the θ-real part
of a meromorphic spectral curve is a Betti Lagrangian as in Definition 2.6, as it implies that the
underlying multi-graph is weakly bounded. In practice, here and in all situations we shall choose
a Kähler metric on S which coincides with |z|−2dz ⊗ dz near the marked points.

Remark 2.11. (i) If an irregular class in the irregular data Θ has multiplicity, the associated com-
ponents of this same type coincide in C((z1/∞))/z−1C[[z1/∞]] and thus differ by a finite Puiseux
series in z−1C[[z1/∞]]. In contact topological terms, the Legendrian link associated to an irregular
class with multiplicity m ∈ N corresponds to the m-copy Reeb push-off of the Legendrian link asso-
ciated to the irregular class (without multiplicity). This choice guarantees that the O(−1)-condition
can be satisfied.

(ii) It follows from the construction of Stokes diagrams, see Example 2.5, that the condition that
the difference of the sheets grows faster or equal than z−1 is equivalent to requiring that the order
of the poles of the multi-valued 1-form dQi − dQj, i, j ∈ [1, n], are all greater or equal than 1.
That is, the (difference of the) polar terms of Q themselves are of degree greater than 0, e.g. no
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holomorphic parts.

(iii) An alternative viewpoint of meromorphic multi-graph is as follows, cf. [IM21; Kuw24].
Given a rank n meromorphic multi-graph, its cameral cover is given by taking all the possible per-
mutations of the sheets. Then, each pair i, j ∈ [1, n], i < j, induces a covering of C∗ over which
the germ of the cameral cover is realized as the germ of a rank 2 quadratic differential near its
pole. Then the condition that the difference of the sheets grow faster or equal than z−1 is equivalent
to requiring that the order of the poles of this quadratic differential are all greater or equal than 2.□

Example 2.12. (1) Airy Equation. As an explicit instance of Example 2.5, consider the trivial C2-
bundle over the Riemann surface S = C associated to the Airy differential equation f ′′(x) = xf(x),
x ∈ C. It has an irregular singularity at x = ∞, which we take to be the unique marked point of
the associated irregular curve CP1 = S∪ {∞}; this is the equation originally studied by G. Stokes
[Sto09]. In the x-coordinate, the associated meromorphic connection can be written as

∇m := d−
[
0 1
x 0

]
dx = d− dQ, Q =

[
0 x

x2/2 0

]
, x ∈ C.

The formal irregular type of ∇m at x = ∞ is given by ⟨x3/2⟩, as the eigenvalues of Q are e±x3/2/
√
2.

Thus we have the irregular curve (S,m,Θ) = (CP1,∞, ⟨x3/2⟩). Its associated Stokes diagram at
x = ∞ is described by the braid word β = σ3

1, so the Betti surface is (S,m,Λ) = (S2,∞,Λσ3
1
).

After satelliting the Legendrian zero section of (J1S1, ξst) to the max-tb Legendrian unknot in
(R3, ξst), where S

1 is the Legendrian fiber of T∞S2 −→ S2 at infinity, the Legendrian knot Λσ3
1

satellites to the max-tb unknot itself, presented in the front as the (−1)-closure of β = σ3
1. Any

θ-part of the associated meromorphic spectral curve Σ = {(x, η) ∈ T ∗C : η2 = x} ⊂ T ∗C, Σ ∼= C,
thus gives a Betti Lagrangian disk filling of the max-tb unknot. In terms of weaves, giving the
front of the Legendrian lift of the θ-part of Σ, this particular meromorphic spectral curve gives a
2-weave with a unique trivalent vertex.

For coherence with previous notation, we can rewrite the above in terms of the coordinate
z = x−1, locally around the pole, as the coordinate z is the one used in Example 2.5 and previ-
ously in this subsection. Then the Airy equation transforms to z4f ′′(z) + 2z3f ′(z) = f(z)z−1: at
z ̸= 0, this is equivalent to f ′′(z)+2z−1f ′(z) = f(z)z−5, which has an irregular singularity at z = 0
because the coefficient z−5 of f(z) has a pole greater than 2 at z = 0. Its analysis of the irregular
type at z = 0 coincides with that of the Airy equation at z−1 = x = ∞.

(2) Irreducible isolated plane curve singularities. The discussion in (1) readily generalizes for
differential operators P (x, ∂x) on CP1 \ {∞}, x ∈ C whose spectral curve Σ = {(x, η) ∈ T ∗C :
P (x, η) = 0} has an irreducible isolated singularity at the origin (x, η) = 0. In these cases, the
irregular curve (S,m,Θ) = (CP1,∞,ΘP ) has as irregular data ΘP a Stokes diagram given by
a braid β(P ) that represents – upon satelliting along the unknot – the link of the singularity
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P : C2 −→ C. The Betti surface is thus of the form (S,m,Λ) = (S2,∞,Λβ(P )), where the
smooth type of Λβ(P ), as a link in S3 = ∂(T ∗C), is that of the link of the singularity. The theory
of algebraic links allows to readily compute such smooth type using a Puiseux series for P (via
Newton exponents), expressing this link as an iterated cable link with positive enough (pi, qi)-
coefficients; see e.g. [EN85, Chapter I & II] or [Ghy17, Chapters 17 & 18]. By [Cas22, Prop. 2.2],
algebraic links have a unique max-tb Legendrian representative, and thus the Legendrian isotopy
type of Λβ(P ) is uniquely determined by the irregular data ΘP .
This construction leads to a large class of Betti Lagrangians in (R4, ωst) which are Lagrangian

fillings of max-tb Legendrian representatives of algebraic links.4 At the same time, their associated
meromorphic connections are also important objects of study: these include the differential equa-
tions of Airy, Bessel, Clifford, Weber, Whittaker and general differential operators of Airy type
(cf. [HJ22; Kat87]), among others.5 By construction, these spectral curves are singular. In order to
obtain smooth (embedded) Lagrangian fillings for such links Λβ(P ) one must morsify the singularity
P : as explained in [Cas22], any real morsification will give rise to an exact embedded Lagrangian
filling. Furthermore, since the front singularities of holomorphic Legendrians are real codimension-
2, these Lagrangian fillings can all be described by weaves [CZ22]. Building on (1) above, a simple
instance is that, for generic θ, the θ-part of the meromorphic spectral curve associated to a morsifi-
cation of f ′′(x) = x3f(x) gives Betti Lagrangians for the Betti surface (S,m,Λ) = (S2,∞,Λσ5

1
): as

we vary θ ∈ S1, this actually recovers the 5 known Lagrangian fillings of the max-tb trefoil. In the
general case, there is a moduli for the space of meromorphic connections on C with such fixed ir-
regular data at x = ∞, including such morsifications, and it is isomorphic to the moduli of sheaves
with singular support on these Legendrian links. See e.g. [CW24; Su25]. The θ-parts of different
such meromorphic spectral curves give rise to different Lagrangian fillings: both varying θ and
varying the meromorphic connection typically changes the Hamiltonian isotopy type of the Betti
Lagrangian, see e.g. [Hug23] for how varying θ ∈ S1 for a fixed morsification of f ′′(x) = xmf(x)
leads to different orbits of Lagrangian fillings for (2,m)-torus links.

(3) BNR Equation. Consider the Berk-Nevins-Roberts differential equation, cf. [BNR82]. This is
the order 3 differential equation

∂3xf(x)− 3∂xf(x) + xf(x) = 0, x ∈ C,

known for being one of the first studied examples with higher rank Stokes phenomenon. In the
coordinate z = x−1, the equation is transformed to

z6∂3zf(z) + 6z5∂2zf(z) + (6z4 − 3z2)∂zf(z)− z−1f(z) = 0, z ∈ C

4Technically, as given, they are asymptotically Lagrangian fillings, but this can be corrected as in [Cha10, Section
5.1].

5See 48min in P. Boalch’s talk “First Steps in Global Lie Theory” at the Simons Center during the program “The
Stokes Phenomenon and its applications in Mathematics and Physics” as well as his spirograph Stokes diagrams
applet in his website.
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which has an irregular singularity at z = 0, e.g. because the coefficient of f(z) has a pole of order
7. A direct computation of the irregular data gives that the irregular curve is

(S,m,Θ) = (CP1,m, ⟨x4/3⟩).

The positive 3-stranded braid word associated to this irregular data is β = (σ1σ2)
2 and thus the

Betti surface is (S,m,Λ) = (S2,∞,Λ(σ1σ2)2). The Betti Lagrangian L ⊂ (T ∗R2, λst) associated to
this meromorphic spectral curve Σ ⊂ T ∗C consists of a unique embedded Lagrangian disk, as it is
graphical in x ∈ C. Indeed, it is a 3-weave that can be parametrized by taking the real part of the
holomorphic Legendrian lift of

Σ = {(x, η) ∈ T ∗C : η3 − 3η + x = 0} ⊂ T ∗C,

understood as a holomorphic Lagrangian. Such Σ is a morsification of the function x(η) = η3,
so it fits within the description of (2) above, for a smooth germ in this case. In real coordinates
x = u+ iv, u, v ∈ R2, the front for this real Legendrian lift is parametrized by

σ : R2 −→ R3, σ(u, v) =
(
u3 − 3uv2, 3u2v − v3, 3(u3v − uv3 − uv)

)
,

which readily exhibits the boundary braid β = (σ1σ2)
2 and the embedded Lagrangian disk, as

there are no Reeb chords in this front. The contact topological proof that the Berk-Nevins-Roberts
equation has no moduli is then simply the observation that Λ(σ1σ2)2 , understood as a Legendrian
link in (S3, ξst) after satelliting the Legendrian (unit) cotangent fiber along the max-tb Legendrian
unknot, is actually Legendrian isotopic to the max-tb Legendrian unknot. Note that, in accordance
to this, taking different θ-parts leads to a rotation of the 3-weave and the Hamiltonian isotopy
type of the Betti Lagrangian remains the same. □

2.4. Real Morse flowlines. Let (M, g) be a Riemannian manifold and L ⊂ T ∗M a Betti La-
grangian. Consider m ∈ M − π(KL) and let {f1, . . . , fn} define the smooth sheets of L over m,
via the graphs of dfi.

Definition 2.13. A smooth map γ : (−ϵ, ϵ) −→ M −KL is said to be an ij-gradient flowline for
L if it satisfies

(2) γ′(s) +∇g(fi − fj)(γ(s)) = 0, γ(0) = m, s ∈ (−ϵ, ϵ),

for the two local sheets fi, fj of L along γ, i, j ∈ [1, n]. The domain of definition of a flowline
can be extended as long as it does not converge to a point in π(KL): a flowlines obtained by
extending the domain of definition are called continuations. Maximal continuations of solutions of
the gradient flowline equation (2) are said to be trajectories. □

Given an ij-gradient flowline γ : (−ϵ, ϵ) −→M −KL, consider the lift

γ̄i : (−ϵ, ϵ) −→ L, γ̄i(s) = (γ(s), d(fi ◦ γ)(s))

of γ to the ith sheet of L, and note the following energy inequality:
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Lemma 2.14. Let (M, g) be a Riemannian manifold, L ⊂ (T ∗M,dλ) a Betti Lagrangian with λ
the Liouville form, and γ : (a, b) −→M an ij-flowline for L. Then∫

γ̄i−γ̄j

λ = −
∫ b

a

∣∣∇(fi − fj)
∣∣2 = (fi − fj)(γ(b))− (fi − fj)(γ(a))

Proof. This follows from (γ̄i − γ̄j)∗λ = d(fi − fj)(γ
′(s)) = ∂sf and Equation (2). □

Lemma 2.14 implies that the relative homology class [γ̄j − γ̄i] ∈ H1(L, t) has positive λ-length,
where t is the appropriate set of points in L giving the boundaries of the lifts γ̄i. This relative
homology class γ̄i − γ̄j is said to be the cotangent ij-lift of γ, and its λ-length above is said to
be its flow-energy, a.k.a. its symplectic area. Note that, by Definition 2.13, the difference fi − fj
strictly decreases along the flowline. There are two important classes of flowlines in our context:

(1) The flowline equation in (S1, gflat) for an immersed Betti Lagrangian L = LΛ ⊂ T ∗S1 given
by the Lagrangian projection of a Legendrian link Λ := {(θ, y(θ), z(θ)} ⊂ J1S1 whose front
in S1 × R has no cusps.

(2) The flowline equation in a disk R2 for a Betti Lagrangian L ⊂ T ∗R2 near a D−
4 -singularity.

That is, near a branch point of the projection L → R2 that, in the spatial wavefront in
R2 × R of the Legendrian lift of L, is a non-generic D−

4 singularity.

For case (1), we choose a base coordinate θ ∈ S1 and the ij-flowline equation for γ : (−ϵ, ϵ) −→ S1

reads

(3) γ′(s) +
[
(yi(θ)− yj(θ))∂θ

]
|γ(s)

= 0.

Here we denoted γ′(s) = γ∗(∂s), so writing γ′(s) = θ′(s)∂θ expresses (3) as θ′(s) + (yi(θ(s)) −
yj(θ(s))) = 0. Near a Reeb chord of the Legendrian link Λ, i.e. an immersed point of LΛ, the local
configuration of sheets reduces to that of the two Lagrangian strands

L1 := (x,−x) ∈ T ∗(−1, 1) and L2 := (x, x) ∈ T ∗(−1, 1) meeting at x = 0.

In these local coordinates, the difference y1(x)−y2(x) = 2x of the sheets y1, y2 gives the 12-flowline
equation x′(s) − 2x(s) = 0 and the 21-flowline equation, which is x′(s) + 2x(s) = 0. These have
solutions e2s and e−2s, respectively, and it follows that the 12-flowline equation has x = 0 as its
unstable manifold, and the 21-flowline equation has x = 0 as its stable manifold. Assuming that
L1 and L2 are all oriented in the direction ∂x, the Reeb chord is positive if L1 is above L2, and
negative otherwise. This settles the local behavoir near a Reeb chord. Globally on LΛ ⊂ T ∗S1, the
trajectories must begin and end at some Reeb chord: Lemma 2.14 then implies that the difference
function zi(θ)−zj(θ) decreases along the trajectory. Here the sign of the difference function cannot
be both negative at s = −∞ and positive at s = +∞. This describes the qualitative behavior of
flowlines for case (1), which we summarize in the following:
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Lemma 2.15. Let L ⊂ T ∗S1 be an immersed Betti Lagrangian LΛ ⊂ T ∗S1 given by the Lagrangian
projection of a Legendrian link Λ := {(θ, y(θ), z(θ)} ⊂ J1S1 whose front in S1

θ × Rz has no cusps.
Consider a pair of points c, c′ ∈ S1 above each of which lies one crossing of LΛ. Then:

(1) There exist finitely many gradient trajectories beginning at c and terminating at c′, up to
translation.

(2) Suppose each such ij-gradient trajectory is maximally well-defined an open interval (a, b) =
(a(c, c′), b(c, c′)) ⊂ R in the universal cover R −→ S1, up to Z-translation. Then ∃ϵ =
ϵ(c, c′) ∈ R+ such that

zi − zj ̸= 0 if θ ∈ (a, a+ ϵ) ∪ (b− ϵ, b).

(3) ∃T = T (ϵ) ∈ R+ a minimal escape time such that for any point u ∈ (a + ϵ
2
, b − ϵ

2
), an

ij-trajectory γ with γ(0) = u maps

γ((−∞,−T )) = (a, a+ ϵ), γ((T,∞)) = (b− ϵ, b),

if its orientation coincides with that of S1. Else, the same holds exchanging the two target
intervals above. Here the constants ϵ, T ∈ R+ do not depend on the choice of the lift of the
trajectory. □

For case (2) above, studying flowlines near a D−
4 -singularity, we proceed as follows. The base

surface is S = C with coordinate z ∈ C and the Betti Lagrangian is Σ = Re{w2 − z = 0} ⊂ T ∗C.
Note that this is the real part of the Lagrangian projection of the holomorphic Legendrian disk

Λ = {(z, w; v) ∈ T ∗C× C : z = w2, v = 2w3/3} ⊂ (J1C, ξhol).

Here Λ is the Legendrian lift of the holomorphic simple cusp front {(w2, 2w3/3) : w ∈ C} ∈ Cz×Cv,
where ξhol = ker{dv − wdz}. The projection L −→ Cz is a 2-fold branched cover, branched at
z = 0, and thus there are only two sheets and 12 or 21 flowlines. For such Σ, there are three
gradient flowlines converging to z = 0, given by the three rays R≥0, e

2π
3 R≥0 and e−

2π
3 R≥0. For |z|

large, these are respectively (rays over) the three Reeb chords at the Legendrian boundary, which
is given by β = σ3

1, cyclically understood. These three rays near a D4
− singularity are said to be

the initial trivalent rays. In general, given be a Betti Lagrangian L ⊂ T ∗S and b ∈ S a branched
point of the projection L −→ S, L decomposes into its germ near the ramification point over b and
the smooth sheets. Since the former germ comes from the real part of the holomorphic cusp, we
refer to that connected component as the cusp component. We also refer to the gradient flowlines
between the two sheets of the cusp component as cusp-cusp flowlines, and if the gradient flowlines
are between the cusp component and a smooth sheet, we call them smooth-cusp flowlines. Thus,
near a ramification point, only a cusp-cusp flowline in S is allowed to terminate at the associated
branched point.

2.5. Asymptotics for conical ends (trapping lemma). Let us now explain how conical ends,
as introduced in Definition 2.8, allow us to control the asymptotic behavior of flowlines as the
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marked points m ⊂ S. Specifically, given the germ of a Lagrangian conical end, we prove a trap-
ping property in Lemma 2.18 below: there exists a neighborhood of marked points such that the
gradient trajectories in S cannot leave once inside. Technically, we first derive the trapping lemma
for the conical metric g = dθ2+dr2 near the marked points, instead of the polar metric dr2+r2dθ2

used for the exact Betti Lagrangians in Definition 2.9.(ii). We then argue via Lemma 2.20 that
there is a bijective correspondence between flowlines for the conical metric and those for the polar
metric.

Consider the germ of a Lagrangian conical end L = S1 × [1,∞) ⊂ T ∗D2 as in Definition 2.8,
where we use the same notation (θ, r) ∈ S1 × [1,∞) and (x(θ), y(θ), z(θ)) ∈ J1S1

θ for its conical
type; here the origin of D2 is given by r → ∞. Then the gradient flowline equation (2) takes the
form

(4) γ′(s) +

[
(yi(θ)− yj(θ))r

d

dθ
+ (zi(θ)− zj(θ))

d

dr

]
|γ(s)

= 0, (θ, r) ∈ S1 × [1,∞).

To analyze (4), we first observe that the projection of equation (4) to the S1
θ component becomes

γ′(s) +

[
(yi(θ)− yj(θ))r

d

dθ

]
|γ(s)

= 0, (θ, r) ∈ S1 × [1,∞),

which coincides with equation (3), up to the boosting r-coefficient: for a fixed r ∈ R, its solutions
behave as the gradient flowline equation for the Legendrian link Λ = (s, y(s), z(s)) ⊂ J1S1 studied
above. At an angle θ = θ(s) with a Reeb chord, i.e. yi(θ) = yj(θ), the corresponding solution of
(4) becomes stationary in this S1

θ -component, and thus gives us a Reeb chord ray, cf. Section 2.2.
This determines the behavior in terms of the yi-variables.

In particular, using Eq. (3) we can characterize the Reeb-positive cusp-free Legendrian links as
follows.

Lemma 2.16. Let Λ ⊂ (T∞S, ξst) be a Legendrian braid link. Then Λ is Reeb-positive if and only
if given any ij-trajectory, the difference function zi − zj is positive near s = −∞, and negative
near s = ∞.

Proof. By definition, the Lagrangian projection of Λ has a positive crossing at an ij-Reeb chord if
and only if the height difference function zi − zj has Morse index 1. For (⇒), suppose Λ is Reeb
positive. If an ij-trajectory begins at c, since the neighborhood around c must be the unstable
manifold of zi− zj, we must have zi > zj. Similarly, if an ij-trajectory terminates at a Reeb chord
c, as Λ is Reeb positive, the stable manifold of c must be a point, and so we have zi < zj at c.
For (⇐), by contradiction: assume that there exists a negative crossing at c with zi > zj. In that
case, the stable manifold of zj − zi near c is necessarily the point c. Therefore, there exists an
ji-trajectory terminating at c and with zj > zi. □
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To understand the effect of the difference factor (zi − zj) in equation (4), let us write γ(s) =
(θ(s), r(s)) ∈ S1 × [1,∞) and observe that the projection onto S1

θ can be maximally extended to
a solution of the ij-gradient flow-equation on S1

θ , after orientation-preserving reparametrization.
Denote by Pγ(θ) this projected ij-flowline on S1

θ , traveling from a Reeb chord c′ to a Reeb chord
c, both Reeb chords of Λ. The sign of the derivative r′(s) is equal to the sign of the difference
−(zi−zj)(γ(s)). In particular, since the difference function (zi−zj) decreases along the projected
trajectory Pγ(s), (z

i−zj) decreases along the trajectory γ(s) as well. Figure 5 provides a schematic
picture on the behavior of the flowlines γ(s).

Figure 5. The asymptotics of an ij-flowline γ(s) = (r(s), θ(s)) based on the sign
of (zi− zj) at the Reeb chords. The case depicted in (1) occurs if (zi− zj) goes from
negative to negative. Case (2) occurs if (zi−zj) goes from positive to negative. Case
(3) if (zi − zj) goes from positive to positive. Case (4) never occurs, which would
correspond to (zi − zj) going from negative to positive. The fact that the fourth
case is excluded is the key ingredient behind the proof of Lemma 2.26 (the Trapping
Lemma).

This leads to the following useful observation:

Lemma 2.17. Let γ(s) = (r(s), θ(s)), s ∈ [0,∞) be an ij-flowline on S1 × [1,∞) solving equation
(4) and suppose that r′(0) > 0. Then r(s) strictly increases and it asymptotes to a Reeb chord ray.

Proof. Since γ(s) solves (4), the component θ(s) solves the r(s)-boosted gradient flowline equation
for the Legendrian link Λ. Therefore, the difference (zi − zj) strictly decreases along γ(s). By
equation (4), we have r′(0) > 0 if and only if (zi − zj)(0) < 0. Therefore, the hypothesis r′(0) > 0
implies that r′(s) > 0 for all s ∈ R+, since (zi − zj)(s) is negative at s = 0 and strictly decreases
as a function of s ∈ R+. □

Visually, Lemma 2.17 implies that, near a small enough neighborhood of a marked point, once a
flowline start traveling up towards the marked point then it will not reverse course. The following
trapping lemma builds on Lemma 2.17 to provide the more complete description that we need:
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Lemma 2.18 (Trapping Lemma). Let L ⊂ T ∗D2 be the germ of a Lagrangian conical end over
a generic cusp-free Legendrian link Λ ⊂ (J1S1, ξst), where the zero-section of the 1-jet space is
identified with T∞

0 S1. Then there exist positive constants T,R ∈ R+ such that:

(1) For the annular neighborhood S1 × (R, 4R) ⊂ D2 of the origin, any trajectory γ(s) passing
through S1 × [2R, 3R] at s = 0 must stay inside S1 × [R, 4R] after time ±T .

(2) The domain of definition of either γ(s) or γ(−s) can be extended to [0,∞).

(3) In the former case, r(s) strictly increases on [T,∞) and asymptotes to a Reeb chord ray.
In the latter case, r(s) strictly decreases on [−∞, T ).

That is, any trajectory γ passing through S1 × [2R, 3R] must stay inside S1 × [R,∞) in at least
one direction.

Proof. Consider the constants ϵ(c, c′) ∈ R+ for all the pairs c, c′ ∈ S1 associated to Reeb chords
of the end Legendrian link Λ, as in Lemma 2.15. Let ϵ ∈ R+ be their minimum and we choose
T to be the corresponding minimal escape time. Choose some radii R0, R1 ∈ R+, R1 > R0 ≫ 1
such that for any gradient trajectory passing through S1 × [R1,∞), the time ±T image of the
trajectory remains inside S1 × [R0,∞). Such radii exist as there is a finite uniform upper bound
on

∣∣zi − zj
∣∣ and trajectories satisfy equation (4). Now given an ij-trajectory γ passing through

S1 × [R1,∞) at time s = 0, we consider Pγ(θ) the trajectory on S1
θ obtained by reparametrizing

the S1
θ -component of γ and consider c ∈ S1 be the (angle associated to the) limiting Reeb chord

at s = −∞, while c′ is the limiting Reeb chord at s = +∞. This establishes (1), as the required
R can be chosen from R1, and also shows (2).

For (3), since zi−zj has to decrease along γ, it follows that both (zi−zj)(c) < 0 and (zi−zj)(c′) >
0 cannot happen. By the choice of R0, the gradient flow γ still remains in S1 × [R0,∞) after time
±T . If (zi − zj)(θ(T )) < 0, Lemma 2.17 implies that r(s) strictly increases, i.e. that γ never goes
back. If else (zi − zj)(θ(T )) > 0, it must be that (zi − zj) > 0 along Pγ : (−∞, T ] → S1

θ and then
the backward ji-gradient flow will have r′(γ(−s)) > 0. To analyze the cases in the other intervals,
we proceed similarly: e.g. if Pγ(0) ∈ (a+ ϵ, b− ϵ) then Lemma 2.15 implies that (zi−zj)(θ(T )) ̸= 0
and the same argument above applies. If Pγ(0) ∈ (a, a + ϵ], then there are two cases. Either
(zi − zj)(c

′) < 0 and then (zi − zj)(c
′) must stay negative, so γ(s) will travel up as s → +∞. Or

(zi − zj)(c
′) > 0, in which case the backward flow satisfies (zj − zi)(c) < 0 along it and so the

backward flow will always travel up. The cases with Pγ(0) ∈ (b− ϵ, b] are deduced in the same way
and (3) follows. □

The characterization of asymptotics of trajectories for exact Betti Lagrangians is thus:

Proposition 2.19. Let L ⊂ (T ∗S, λst) be an exact Betti Lagrangian and γ : (a, b) → S a gradient
trajectory for L, (a, b) ⊂ R the maximal domain of definition of γ. Then:

(1) The trajectory γ cannot be periodic.
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(2) If a is finite, then γ(a) ∈ S must be at a D−
4 -branch point of the projection L −→ S. If b

is finite, the same applies to γ(b) ∈ S.
(3) If a = −∞, then γ(s) asymptotes to a Reeb chord ray as s → −∞. Similarly, if b = ∞,

then γ(s) asymptotes to a Reeb chord ray as s→ ∞.

Proof. For (1), Lemma 2.14 implies that a closed trajectory would yield a smooth closed curve
τ ⊂ L such that integral of the Liouville form along τ does not vanish. Since L is exact, this is a
contradiction and thus there are no closed trajectories. For (2), showing that γ(a) is a D−

4 -branch
point if a is finite, we fix a large radius R ∈ R+ as in Lemma 2.18 and consider the complement
K ⊂ S of the union of all the cylinders S1 × (R,∞) near the marked points of S. We claim that
a trajectory must either terminate at a finite end or leave the compact set K.

Indeed, suppose that image of the trajectory γ stays contained in K as s→ a. If a is finite, the
flowline equation (2) and since L is embedded, it follows that lim γ(a) must be branch point of D−

4 -
singularity. The flowtime needed to approach the D−

4 -singularity is finite, and thus we have a finite
end, as required. If else a = −∞, we need to argue that the trajectory escapes K, and Lemma 2.18
then determines its asymptotics. By the flowline energy formula of Lemma 2.14, it must be that
γ(s) lies in a small neighborhood of a D−

4 -branched point for s ∈ R+ large enough. Indeed, by
energy quantization: the difference of the sheets have norm uniformly bounded below outside such
neighborhood, and there is a minimal flow-time needed to travel from one boundary to another,
but the flow-energy must be finite and so eventually the flowline cannot leave the neighborhood of
the branch points. This implies that γ(s) is a cusp-smooth flowline that either ends at the branch
point or coincides with one of the trivalent rays coming out of the D−

4 -singularity. The flowtimes
for either of these events are finite, and thus this is a contradiction with a = −∞ and staying
within K. Thus the trajectory must leave the compact set K if a = −∞, from which (3) follows
after applying Lemma 2.18. □

Finally, let us compare the behavior of trajectories for the polar metric g = r2dθ2 + dr2 and
the conical metric g = dθ2 + dr2 near the marked points m ⊂ S. By the flowline equation (4),
trajectories are directed by the vector field of the form ∇f∂θ + (f/r)∂r where f = zi − zj. We
then have:

Lemma 2.20. The diffeomorphism ϕ : S1 × [0,∞) → S1 × [1,∞) given by (θ, τ) = ϕ(θ, r) =

(θ, er
2/2) identifies the gradient flowlines for the metric dr2+dθ2 and the gradient flowlines for the

metric τ 2dθ2 + dτ 2.

Proof. The flowlines for the metric τ 2dθ2 + dτ are directed by (∇f, τf) = ∇f∂θ + τf∂τ . Since

ϕ∗(∂θ) = ∂θ and ϕ∗(∂r) = rer
2/2∂τ , it follows that ϕ∗(∇f, f/r) = (∇f, er2/2f) = (∇f, τf), as

claimed. □

For context, the conical metric g = dθ2+dr2 is better suited when cylindrizing the Betti Lagrangian
Σ to a cylindrical Lagrangian filling, cf. Definition 2.9. This is, arguably, more natural from a
geometric viewpoint and it fits better with the study of augmentations of the Legendrian contact
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dg-algebra, but the analysis is a bit more elaborate. If L ⊂ T ∗S is an exact Betti Lagrangian,
with conical ends, then the polar metric is better suited as it makes L uniformly bounded nears
its asymptotic ends. Lemma 2.20 implies that we can switch between these two metrics when it
comes to describing the qualitative behavior of of asymptotics of flowlines.

2.6. Holomorphic Morse flowlines for meromorphic spectral curves. The analysis in Sec-
tion 2.5 applies to conical ends, and thus to the exact Betti Lagrangians in Section 2.3.1. For the
meromorphic spectral curves Σ ⊂ (T∗S, ωC) in Section 2.3.2, with O(−1)-ends, a modification of
the arguments in Section 2.5 is needed to study the Betti Lagrangians eiθΣ ⊂ (T ∗S, λst) given by
their θ-parts. Consider the following holomorphic version of the flowline equation:

Definition 2.21. Let (S, g) be Riemann surface endowed with a Kähler metric, θ ∈ S1, and write
λ1, . . . , λn for the holomorphic 1-forms on S whose graphs give the multigraph Σ ⊂ (T ∗S, ωC). By
definition, a smooth map γ : (−ϵ, ϵ) −→ S is said to be a holomorphic ij-gradient flowline for Σ if
it satisfies

(5) γ′(s) + e−iθg−1(λi − λj) = 0, i, j ∈ [1, n],

which is said to be the ij-holomorphic gradient flow equation at phase θ. □

The holomorphic flowline equation Eq. (5) is the real gradient flowline equation for the real
parts of holomorphic functions eiθq1, . . . , e

iθqn, for some choices of local holomorphic primitives qi
of the holomorphic 1-forms λi, i ∈ [1, n]. In relation to the flow-energy, as in Lemma 2.14, note
that eiθ times the flow-energy equals the integral of the holomorphic Liouville 1-form λC ∈ Ω1,0(S)
over the relative cycle [γ̄j − γ̄i] in Σ ⊂ T ∗S.

In contrast to trajectories solving the gradient flowline equation in Definition 2.13, solutions of
the ij-holomorphic flowline equations only depend on the conformal class of the metric g, not g
itself. Indeed, given γ : (−ϵ, ϵ) −→ S, consider the following alternative differential equation for γ:

(6) Im(e−iθ(λi − λj)(γ
′(s))) = 0, Re(e−iθ(λi − λj)(γ

′(s))) ≤ 0

Eq. (6) is said to be the ij-phase θWKB equation at phase θ. Solutions to its first part, the equality,
give rise to a line field on S whose integral curves are known as WKB lines in the literature. The
second condition, the inequality, specifies an orientation for its parametrization, so the line field
acquires a direction.

Remark 2.22. By replacing Σ with eiθΣ, the WKB lines at phase θ become WKB phase at phase
0; phase θ = 0 lines are known as horizontal WKB lines. Whenever we replace Θ with eiθΘ, the
scalar factor eiθ will rotate the anti-Stokes rays, for small enough θ. We implicitly assume onwards
that whenever there is a rotation of the phase θ, we also rotate the anti-Stokes rays of the irregular
class. □

Since the solutions of (5) solve (6), it follows that the image of the trajectories for the holomorphic
gradient flow equation do not depend on the choice of the Kähler metric but only on the conformal
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structure, i.e. conformally changing the Kähler metric only changes the reparametrization of the
solutions, not the integral curves themselves.

Example 2.23. (1) Solutions of Eq. (6) admit rather explicit forms in the local conformal coor-
dinates qij = qi − qj in a sectorial neighborhood of γ: in the qij-coordinate, λi − λj = dqij, and the
equation transforms to Im(e−iθγ′(s)) = 0, which is the straight line equation in the qij-plane.

(2) (D−
4 -singularity) Consider a neighborhood of a ramification point Σ −→ S, which we model

as Σ = {(z, w) ∈ T ∗C : w2 − z = 0} and locally there are only two indices i, j ∈ [1, 2], with
λ1 =

√
zdz and λ2 = −

√
zdz. Near the branch point z = 0 in C at phase θ = 0, the line field solv-

ing Eq. (6) must be in ker Im(
√
zdz). This line field coincides with that given by the real gradient

∇(Rez3/2), and thus the WKB line equation of phase 0 defines the same singular foliation as in
the case of real gradient flowlines, which we studied in Section 2.4. The leaves of the foliation are
spanned by the maximal geodesics of |z| dz2, and the critical locus of the foliation is given as before.

Varying the phase θ does not qualitatively affect this picture: the WKB singular line field is
given by ker I(eiθ

√
zdz), which coincides with the line field directed by ∇(e−iθRez3/2). Therefore,

changing the phase θ rotates the initial trivalent rays in the anti-clockwise direction until it goes
back to itself at θ = π. By convention, we order the indices along the rays so that the flowlines are
directed outward. Away from the branch point, as in (1), the analysis above can just be done by
considering the locally defined coordinate W =

∫ √
zdz, so that the 1-forms λi = ±

√
zdz reduce

to ±dW and the WKB lines are geodesics in the W -plane. □

2.7. Asymptotics for WKB trajectories. Let us study the asymptotics of the WKB trajecto-
ries, whose behavior is need to understand spectral networks for Betti Lagrangians associated to
meromorphic spectral curves. In the case of conical ends (Section 2.5), we had the Legendrian link
at infinity parametrized by (x(θ), y(θ), z(θ)). In the case of the θ-part of a meromorphic spectral
curve Σ ⊂ T ∗S, the Legendrian link near the O(−1)-ends is given by the Stokes diagram. We now
need to compare the holomorphic flowline equation near the poles to the Morse flowline equation
associated to the cone over the Legendrian given by the Stokes diagram.

Consider a small neighborhood of a marked point m ⊂ S parametrized by z ∈ U ⊂ C, U an
open disk near the origin, with the marked point given by z = 0. Let the associated irregular data
Θ (cf. Example 2.5) at that marked point be given by

Q =
∑

kj∈Q>0

ckj
kj
z−kj ∈ C((z1/∞))/z−1C[[z1/∞]], ckj ∈ treg ⊂ gln.

In general, given a Puiseux series Q with finite polar part and convergent holomorphic part, its
meromorphic multigraph ΓdQ ⊂ T ∗C is the union of the Lagrangian graphs of dq1, . . . , dqn, where
q1, . . . , qn are branches of Q. Near a pole z = 0 for Q as above, there are sectors θ ∈ (θ0, θ1) for
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the phase of z = reiθ, such that ΓQ equals:

ΓdQ =
(
θ,−

∑
kj∈Q

r−kj Im(ckje
iθkj), r,−

∑
kj∈Q

r−kj−1Re(ckje
iθkj)

)
⊂ T ∗C, (r, θ) ∈ R× (θ0, θ1).(7)

Note that (7) is a generalization of the conical ends condition (1), arising naturally in the setting
of asymptotics given by irregular classes.6

Example 2.24 (D4
−-multigraph). This example continues Example 2.23 and aligns with Exam-

ple 2.12 for the irregular class ⟨x3/2⟩, which is the Stokes data for the D4
−-singularity. For the

Puiseux series Q associated to Σ = {w2 − z = 0} ⊂ T ∗C, the meromorphic multi-graph is
parametrized as

(r, θ) −→
(
θ,±3

2
f(r) cos(

3θ

2
), r,±f ′(r) sin(

3θ

2
)

)
∈ T ∗R2

r,θ, where f(r) =
2

3
r3/2, (r, θ) ∈ R× S1.

(8)

In fact, the Hamiltonian isotopy class of this Lagrangian is independent of the specific choice of
function f(r), as long as it is positive and strictly increasing. Deforming f(r) to be linear at
infinity recovers the conical end form. □

Let us analyze the gradient equations near the O(−1) ends, i.e. a pole at z = 0. Consider the
inversion |z|−1 from C∗ ≃ S1 × (0,∞) to send +∞ to 0 and pushforward the conical metric |dz|2

to |z|−2|dz|2; the latter metric is dθ2 + r−2dr2 in polar coordinates. For the difference of the sheets
to have growth at least z−1, we need the following condition:

(dqi − dqj)−
C

z
=

cij
zkij

+ o(z−kij) + (holomorphic terms),(9)

for some constants C, cij where C ̸= 0 only when cij = 0. In the case C = 0, we require that
cij ̸= 0 and kij > 0. By using the parametrization Eq. (7), the ij-gradient flow equations for the
O(−1)-ends given by the irregular data Q read as follows:

dr

ds
+ rRe

(
C

z

)
− Re(cije

−ikijθ)r−kij+1 + o(r−kij+1) + o(r) = 0(10)

dθ

ds
− Im(C/z)− Im(cije

−ikijθ)r−kij + o(r−kij) = 0.(11)

For instance, in the case dQ(z) = z−1dz, we obtain straight rays going into the origin for Im(c) = 0,
periodic circles for Re(c) = 0, and logarithmic spirals otherwise. In general, for cij ̸= 0, the
dominating contribution as r → 0 comes from cije

−ikijθ only and θ varies slowly while r increases
fast as r is sufficiently small and the angle θ is close to the anti-Stokes rays. These are the
qualitative features that we have established for the conical ends. Thus, for O(−1)-ends, we can

6Note that in order to represent irregular data with multiplicity, we would need to introduce additional terms of
the form d log(z), for t ∈ treg, and some holomorphic terms.
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effectively repeat the previous arguments in Lemma 2.18 on minimal escape time and conclude that
the ij-flowlines satisfy the trapping property (cf. Lemma 2.26), and trajectories also asymptote to
the corresponding anti-Stokes rays, which coincide with the angles of Reeb chords.

Furthermore, the Stokes Legendrians without multiplicities further enjoy the following Reeb-
positivity property.

Proposition 2.25 (Stokes Legendrians are Reeb-positive). Let Θ be an irregular class without
multiplicity, and ΛΘ be the corresponding Stokes Legendrian. Then for r small enough, ΛΘ is
Reeb-positive.

Proof. Let Θ be an irregular class and let qi denote the branches of Θ. The difference function is
given by the real part of qi − qj =

1
kij
cijz

−kij + o(z−kij). For r small enough, the dominating term

comes from
cij
kij
z−kij and so the local gradient flow equation Eq. (4) reads

dθ

ds
− r−kij Im(cije

−iθkij) + o(r−kij+1) = 0.(12)

Near s = −∞, ∂2θRe(qi − qj) over the limiting anti-Stokes direction has to be negative, because
the limiting anti-Stokes direction has to be the unstable manifold of the difference function. How-
ever, the second derivative is computed to be equal to kijr

−kijRe(cije
−iθkij). So we see that the

second derivative is negative if and only if the difference function is positive. Near s = +∞, we
can argue the same by replacing θ(s) with θ(−s). So by Lemma 2.16, ΛΘ is Reeb positive. □

In this meromorphic case, there is also the following alternative approach to prove the necessary

trapping lemma, using the cameral cover construction from [IM21; Kuw24]. Given Σ → C̃ be a
meromorphic spectral curve, its cameral cover is defined to be the Riemann surface

Σcam := {(λσ(1)(z)dz, ..., λσ(n)(z)dz) : z ∈ C, σ ∈ Sn}.(13)

For 1 ≤ i < j ≤ n, its intermediate cover Σij is the quotient of Σcam by the relation

(λσ(1), . . . , λσ(i), . . . , λσ(j), . . . , λσ(n)) ∼ (λσ(1), . . . , λσ(j), . . . , λσ(i), . . . , λσ(n))(14)

over all permutations σ satisfying σ(i) < σ(j). Note that the quotient map Σcam → Σij can be
realized as the spectral cover of the quadratic differential defined by (λσ(i) − λσ(j))

⊗2, and that
ij-trajectories of phase θ lift to trajectories of phase θ for the rank 2 spectral curve Σcam → Σij.
Employing a cameral cover, we readily obtain the following:

Lemma 2.26. Let Σ ⊂ T ∗S be a meromorphic spectral curve with O(−1) ends. Then, for generic
θ, there exists a neighborhood of the marked points m ⊂ S such that any WKB θ-trajectory entering
this neighborhood cannot leave, and such trajectory asymptotes to an anti-Stokes ray.

Proof. From the O(−1) ends condition, it follows that the cover Σcam → Σij has poles of order
greater equal than 2. For quadratic differentials, the claimed statement follows from the literature,
cf. [HM79; Str84]. Alternatively, the arguments in the proof of Lemma 2.18 work for poles of order
ℓ ≥ 3 if one uses the Legendrian link defined by the function ± cos((ℓ− 2)πθ/2). The case of poles
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of order 2 follows from the standard classification of trajectories near it, as discussed after Eq. (10)
or see [Str84, Chapter 7]. □

In line with Proposition 2.19, the asymptotics of WKB trajectories are summarized by:

Proposition 2.27. Let L ⊂ (T ∗S, λst) be the θ-part of a meromorphic spectral curve eiθΣ ⊂ T ∗S
with O(−1) ends at the marked point m ⊂ S, and γ : (a, b) −→ S a WKB trajectory for eiθΣ.
Then, for generic θ, we have that:

(1) The trajectory γ cannot be periodic.
(2) If a is finite, then γ(a) ∈ S must be at a D−

4 -branch point of the projection L −→ S.
If b is finite, the same applies to γ(b) ∈ S.

(3) If a = −∞, then γ(s) asymptotes to an anti-Stokes ray of eiθΣ as s→ −∞. (Similarly for
b = ∞.)

Proof. Observe that any trajectory will lift to trajectory of some trajectory Σcam → Σij. For
(2) and (3), the argument is the same as for Proposition 2.19, applied to the cameral cover lift,
given that there are no recurrent trajectories ([Str84, Chapter 10.2]). To show that there are no
periodic trajectories, note that such a periodic trajectories would lift to periodic trajectories of
some Σcam → Σij. That said, for generic θ, complete quadratic differentials that are saddle-free
do not admit periodic or recurrent trajectories. This completes the statement. □

3. Morse spectral networks

This section introduces and develops first results on Morse spectral networks. The ingredients
needed on flowtrees are discussed in Section 3.1 and the definition of Morse spectral networks is
presented in Section 3.2. The proof of Theorem 1 is then established in Section 3.3, for the exact
case, and in Section 3.4 for the meromorphic case. The section concludes with a discussion on BPS
indices, in Section 3.5, and the local study of rigid flowtrees near a D−

4 -singularity, in Section 3.6.

3.1. Morse flowtrees and soliton classes. Flow trees arise in the study of gradient trajectories
of tuples of Morse functions, see e.g. [Fuk97; FO97], [Rua06, Section 6] and [Abo11b, Section 2].
In particular, [Rua06] shows that certain counts of rigid holomorphic discs agree with counts of
gradient flow trees in the context of Lagrangian Floer theory. In the framework of Legendrian
submanifolds, [Ekh07] established a correspondence between the counts of rigid flow trees and
boundary-punctured rigid pseudo-holomorphic disks governed by a Legendrian submanifold whose
front has cusp-edge singularities. In the context of Betti Lagrangians, we use Section 2 to define
and study Morse spectral networks in terms of flow trees. We also establish their existence, proving
Theorem 1. Note that the fronts for the Legendrian lifts of Betti Lagrangians haveD4

−-singularities,
which are non-generic, and the techniques of [Ekh07] need to be modified appropriately. From the
viewpoint of studying the BPS states in [GMN13b; GMN13a; GMN14], it will also be important
to study relative homology classes associated to flow trees.
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A tree will be a properly embedded planar graph Γ ⊂ R2 with possibly semi-infinite edges such
that any two vertices are connected by exactly one finite path. Vertices of valence one are allowed
and referred to as finite leaves. We consider trees endowed with a cyclic ordering of the edges at
each vertex, as surfaces will be naturally oriented, and an orientation for each edge. By definition,
a rooted tree will be an oriented tree with a choice of either a univalent vertex or a semi-infinite
edge (but not both) such that the all edges of the tree point outward from the root. Following
[Ekh07, Definition 2.10], we consider the following:

Definition 3.1. Let (M, g) be a Riemannian manifold, L ⊂ T ∗M a Lagrangian multigraph over
rank n over (M, g), and Γ ⊂ R2 a connected tree. By definition, for a Morse flowtree for L is a
continuous map F : Γ −→M such that:

(1) Flow-edge condition. The restriction F |e to each oriented edge e ∈ E(Γ) is an injectively
parametrized ℓ1ℓ2-flowline for L, for some ℓ1, ℓ2 ∈ [1, n]. If the domain of definition of such
trajectory is infinite, then we require e to be a semi-infinite edge.

We denote by γℓie its ℓi-cotangent lift, i = 1, 2, whose image lies in L, and write γℓie (v) for
the image of a vertex v ∈ ∂e as a limit point for γie(e).

(2) Balancing condition. Consider a vertex v ∈ Γ with cyclically ordered edges (e1, . . . , es) and
denote γℓ = γeℓ . Then we require

γℓ2ℓ (v) = γℓ1ℓ+1(v),

cyclically in ℓ ∈ [1, s], and γ2ℓ is oriented towards the point γℓ2ℓ (v) whereas γℓ1ℓ+1(v) is di-
rected away from it.

(3) Relative cycle condition. The relative cycles γℓ1e −γℓ2e , where e ∈ E(Γ) ranges over all edges,
piece together to give an oriented relative cycle with endpoints above the univalent vertices.

(4) Minimality. There are no 2-valent vertices v ∈ Γ with edges e1, e2 such that F (v) ̸∈ π(KL)
and both are ij-flowlines with same set {i, j}. Similarly, there are no 2-valent vertices v ∈ Γ
such that F (v) ∈ π(KL) and both the ith and jth sheets extend smoothly over v.7

(5) Special vertices. There is a chosen collection S(Γ) of univalent vertices. □

Definition 3.1.(5) is in line with partial flowtrees: the univalent vertices above are called special
punctured in [Ekh07, Section 2.2.C]. Special punctures are used in the proofs of our arguments, but
the type of trees relevant for the study of spectral networks, namely D−

4 -trees as in Definition 3.2,
do not have any special punctures. The integral of λ over the oriented relative homology class

72-valent vertices v ∈ Γ such that F (v) ∈ π(KL) are allowed, but we force them to be switch-vertices in the
terminology of [Ekh07].
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in Definition 3.1.(3) is called the flow-energy of F . In the case of exact Betti Lagrangians, it is
possible to discuss positive and negative punctures, as in [Ekh07]. That is, a vertex v ∈ Γ is a
positive puncture, resp. negative, if the height difference between the two Legendrian lifts of

γ
(ℓ+1)1
ℓ+1 (v) = γ

(ℓ)2
ℓ (v)

is positive, resp. negative. By Stokes’ theorem, the flow-energy of a tree is given by adding such
difference of heights for all punctures of the tree. Lemma 2.14 implies that such quantity is positive,
thus F contains at least one positive puncture, and the F travels from the positive puncture to
the negative punctures.

3.1.1. D−
4 flowtrees. The type of Morse flowtrees that appear in the study of spectral networks, as

related to Betti Lagrangians, are rather particular Morse flow trees. We now introduce this class
of flowtrees in Definition 3.2 below.

The branch points of the projection L −→ S from the Betti Lagrangian to the base will also
sometimes referred to asD−

4 -singularities in S. Technically, theD
−
4 -singularity is a front singularity

for the projection of the Legendrian lift of a neighborhood of the ramification point in L: so this
is a slight abuse of notation, but it is sometimes convenient. In the base surface (S, g), we assume
that in a (small enough) neighborhood of the branch points in S, (S, g) is endowed with a local
holomorphic coordinate, the metric g is locally Kähler, and the multigraph L above it is locally
holomorphic. In the case of exact Betti Lagrangians, we also assume that the metric is of the polar
form r2dθ2 + dr2 in a neighborhood of the marked points m.

Definition 3.2 (D−
4 -trees). Let (S,m;Λ) be a Betti surface, L a Betti Lagrangian over (S, g) for

some Riemannian metric g and z ∈ S a point. By definition, a D−
4 flowtree for L is a rooted Morse

flowtree F : Γ −→ S for L such that:

(1) If the root of Γ is a vertex, then it must map to either a branch point, corresponding to a
D−

4 -singularity, or to the fiber T ∗
z S above z. In the former case, the unique edge adjacent

to the root vertex is mapped out of one of the three initial ray flow-lines associated to the
D−

4 -singularity in the outward direction.

(2) If the root edge is a semi-infinite edge, then it must be asymptotic to a Reeb chord of a
Legendrian link in Λ (See Proposition 2.19 and Proposition 2.27)

(3) If an internal vertex v of Γ maps to a branch point, then there are no adjacent edges whose
image near v is a cusp-cusp flowlines for that D−

4 singularity.

(4) Non-root univalent vertices of Γ must map to branch points (at the D−
4 -singularities), and

each corresponding adjacent edge maps to one of the three initial ray flow-lines associated
to the D−

4 -singularity in the inward direction.
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Given a D−
4 -flowtree, the associated relative cycle in L is said to be its soliton class. A D−

4 -flowtree
is rigid if Γ if all non-univalent vertices are trivalent and none of them map to a D−

4 -singularity.

We often refer to D−
4 -flowtrees as D

−
4 -trees, implicitly understanding that there are gradient flow-

line conditions as in Definition 3.2 and it is not just a combinatorial graph object.

Remark 3.3. By construction, a D−
4 -tree in fact defines a regular homotopy class, representing

its soliton class. It is possible to develop the theory for relative homotopy classes on L, and not
just relative homology classes. □

In the physics literature [GMN13b; GMN13a; GMN14], soliton classes of D−
4 -trees have the fol-

lowing nomenclature:

(i) For a D−
4 -tree with a root vertex mapping to a branch point in S, its soliton class is said

to be a 4d BPS state.

(ii) For a D−
4 -tree with a root vertex mapping to a fiber T ∗

z S, its soliton class is said to be
a vanilla 2d-4d BPS state. The point z ∈ S above which the D−

4 starts is said to be the
ultra-violet parameter for a certain 1/2-BPS surface defect. This surface defect is assumed
to be massive in the infrared and have finitely many vacua: in our setting, this is equiva-
lent to the puncture being positive and there existing finitely many intersections L ∩ T ∗

z S,
so-called vacua, above z ∈ S.

(iii) For a D−
4 -tree with a root edge, which must be semi-infinite and asymptote to a Reeb chord,

we are not aware of any specific terminology in the physics context. They are certainly fun-
damental objects in the study of spectral networks, and produce Hamiltonian invariants for
exact Betti Lagrangians: we refer to them as augmented D−

4 -trees. This notation is chosen
due to its relation to the augmentation of the Legendrian contact dg-algebra, cf. Section 7.

(iv) The framed 2d-4d BPS states in [GMN13b, Section 3.3] do not correspond to rigid D−
4 -

trees. These are associated to two points z1, z2 ∈ S and a path ρ between them, the latter
defining a supersymmetric interface between the surface defects associated to z1, z2 ∈ S.
In our context, this is captured by the continuation strips from L∩ T ∗

z S to L∩ T ∗
z S, where

the path ρ is interpreted as a morphism between the fibers, cf. Section 5. Note that in
[GMN13b, Section 3.3] it is written “It is generally believed that the defect [. . .] does not
depend on the precise path ρ but only on its homotopy class. In the present paper we
will take this as an assumption.”. In our formalization, the properties of partially wrapped
Fukaya categories readily imply that the (cobordism classes of) moduli of continuation
strips are indeed only depending on the homotopy class of ρ, not the representative ρ itself,
for any compactly supported deformation keeping the Floer datum and L fixed at ends.
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As will be proven in Sections 4 and 5, aD−
4 -tree will correspond to the adiabatic limit of a punctured

pseudoholomorphic disk bounded by the Betti Lagrangian L ⊂ (T ∗S, λst). In the case that the
root vertex maps to a branch point, there are no punctures and the absolute cycle in L defined
by the boundary of such pseudoholomorphic disk coincides the soliton class of the tree. This case
can occur if L ⊂ (T ∗S, λst) is not exact and does occur for certain meromorphic Betti Lagrangians.
The case that the root of a D−

4 -tree is a semi-infinite edge does occur for exact Betti Lagrangians:
the D−

4 -tree is the adiabatic limit of a pseudoholomorphic disk with one positive puncture at the
Reeb chord associated to the semi-infinite edge. The boundary of such pseudoholomorphic disk,
understood as a relative cycle in (L, ∂L), coincides with the soliton class of such D−

4 -tree. See
Sections 4 and 5 for more details.

Remark 3.4. In the physics context of theories of class S, general 4d BPS states also include
graphs which are not necessarily D−

4 -trees, cf. [GMN13b, Section 3.1]. There is a natural general-
ization of Definition 3.2 to the notion of D−

4 -graph, but it will not be used in this manuscript. In the
framework of Floer theory, such general D−

4 -graph would correspond to a configuration of several
pseudoholomorphic disks (with no punctured) bounded by the Betti Lagrangian, whose boundaries
intersect each other. □

3.2. Definitions on spectral networks. Let us introduce the definition of a spectral network
associated to a Betti Lagrangian L ⊂ (T ∗S, λst), where a Riemannian metric (S, g) has been fixed.
First we introduce pre-spectral networks in Definition 3.5, discuss coherent extensions and the
associated soliton classes. Then we define spectral networks in Definition 3.12.

Definition 3.5 (Pre-spectral networks). Let (S, g) be a Betti surface endowed with a Riemannian
metric, and L ⊂ (T ∗S, λst) a compatible Betti Lagrangian of rank n. By definition, a pre-spectral
network F compatible with (L, S, g) is a properly embedded finite directed graph F ⊂ S such that:

(1) Each edge of F lies outside KL and is decorated with an ordered pair (ij), i, j ∈ [1, n]
distinct.

(2) Each directed edge decorated with (ij) is an (ij)-gradient flowline for the multigraph L ⊂
(T ∗S, λst).

(3) There are four types of vertices allowed in F: initial, interaction, non-interaction and
inconsistent. These are depicted in Figure 6; note that this classification requires the
decoration on the adjacent edges.

(4) All branch points of the projection L→ S are initial vertices of F. At an initial vertex, all
adjacent edges are decorated with (ij), where i, j index the sheets of L for the ramification
point above the branch point.

(5) The network F is flow-acyclic, in the sense that it does not admit a directed cycle of edges
(w1, . . . ,wn) in F, satisfying the following two conditions.
(a) For 1 ≤ m ≤ n − 1, if wm and wm+1 meet at an inconsistent or a non-interaction

vertex, then the two decorations agree.
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(b) If wm and wm+1 meet at an interaction vertex, then either the two decorations agree,
or wm+1 is the outgoing edge decorated with (ik) in Fig. 6.

Edges of F are also said to be walls for the pre-spectral network F. An edge decorated with (ij) is
often said to be an (ij)-wall. A wall which (asymptotically) ends at a marked point m ⊂ S is said
to be semi-infinite. Finally, in the meromorphic case, where (S,Σ, g) has a Riemann structure, a
WKB pre-spectral network Fθ of phase θ is defined to be a pre-spectral network compatible with
(Re(eiθΣ), S, g). □

Figure 6. The four local models for vertices in pre-spectral networks in Defini-
tion 3.5: initial, interaction, non-interaction and inconsistent. We refer to the
two types of interaction vertices as creation and 6-valent. In all these models
i, j, k, l ∈ [1, n] are all different.

Vertices of F are also referred to as joints, and a pre-spectral network is said to be creative if all the
interaction joints are creation joints. Observe that creative pre-spectral networks are automatically
flow-acyclic. For notational ease, we will always assume that a given WKB pre-spectral network
has phase 0.8 Also, we will often omit explicitly writing the data of the Riemannian metric g in
(S, g) and a Betti Lagrangian L ⊂ (T ∗S, λst) will always implicitly have a compatible choice of
such g.

8Because a WKB pre-spectral network of phase θ for Σ is the same object as the WKB pre-spectral network of
phase 0 for eiθΣ.
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Remark 3.6. (1) Note that there are two different orientations on W, either seen as a spectral
network or as a flowline graph. The orientation as a spectral network is outgoing to infinity:
e.g. the three rays emerge out of a D−

4 -singularity. The orientation when seen as a flowtree is
opposite, incoming from infinity: the three flowlines near a D−

4 -singularity convergence towards it.

(2) In the physics literature, annihilation type joints, opposite to creation joints, are also allowed
as interaction vertices. This is because the BPS index vanishes and non-active walls are not drawn.
These will not appear in our context, as flowlines canceling each other are accounted by themselves,
e.g. cf. Section 7.3 and Figure 24 therein. □

The following result allows us to describe the pre-spectral networks in Definition 3.5 as unions of
D−

4 flow-trees, as in Definition 3.2.

Proposition 3.7 (D−
4 -trees from pre-spectral networks). Let L ⊂ (T ∗S, λst) be a Betti Lagrangian

and F a compatible pre-spectral network. Consider a point z ∈ w on a wall w ∈ F. Then:

(1) There exists a D−
4 -tree whose root vertex maps to z and the flowline for its adjacent edge

is mapped to w.
(2) The entire image of such D−

4 -tree is contained in that of F.
(3) The set of such flow-trees is finite and, if F is creative, it contains a unique element9.

Proof. Consider a rooted (partial) flowtree Γ whose root edge maps to a wall of F and the non-root
univalent vertices map to the vertices of F. Let us now explain an iterative procedure that extends
Γ to a larger partial flow-tree Γ′ by adding walls of F to each of the non-root univalent vertices of
Γ. This algorithm produces finitely many such extensions and the D−

4 -flowtree in the statement of
Proposition 3.7 is then declared to be the set of maximal extensions of the partial flow-tree given
by the flowline connecting z to the starting point of w.

The procedure is described as follows. Let v be a univalent vertex and w a wall of F having v
as the starting vertex:

(1) If v maps to an initial vertex, then the procedure ends without doing anything.
(2) If v maps to a non-interaction joint, add the ingoing wall labeled with the same pair of

sheets as w.
(3) If v maps to a hexavalent interaction joint. Let wij,wjk,wik be the ingoing edges and

w′
ij,w

′
jk,w

′
ik the outgoing edges. In the cases w = w′

ij or w = w′
jk, we add the ingoing

wall labeled with the same pair of sheets as w. If w = w′
ik, then we can either add the two

edges wij and wjk, or we add the single wall wik.
(4) If v maps to a creation joint, and w = w′

ij or w = w′
jk, do the same as above. In the case

w = w′
ik, we add the two walls wij and wjk.

9We can drop flow-acyclicity at the cost of changing the statement to the set of flow-trees being finite up to some
energy cut-off.
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(5) Finally, if v maps to an inconsistent joint, either w = w′
ij or w = w′

jk, and so we can
proceed on as above.

Since the spectral network F is finite, and a vertex cannot reappear with the same flowline edge
by the flow-acyclicity of F, given any Γ the process will stop after finitely many steps. Since each
step can produce more than one trees if and only if there are some hexavalent vertices involved, F
being creative implies that it can produce exactly one extension. □

An example of a D−
4 -tree as Proposition 3.7 is depicted in Figure 7 (Center). We can use Proposi-

tion 3.7 to associate a D−
4 -tree to a wall w ∈ F without specifying a point z ∈ w. Indeed, since w

is directed, we choose z to be the unique boundary point of w reached by flowing backwards along
w. This would be the “negative end” of w, and note that it might be a marked point m ⊂ S,
in which case the D−

4 -tree is interpreted to have a root semi-infinite edge. In either case, the
argument for Proposition 3.7 thus shows that there is a well-defined D−

4 -tree for w. By definition,
a D−

4 -tree obtained from Proposition 3.7 is said to be a D−
4 -tree on the pre-spectral network F.

Figure 7. (Left) A spectral network F with a wall w, in clear orange, and a point
z ∈ w, in pink. This wall w is a semi-infinite edge. (Center) The D−

4 -tree Γ(z;w)
with a root vertex at z, in red. (Right) The D−

4 -tree Γ(w) in solid red, with a semi-
infinite root edge asymptotic to a Reeb chord (in dashed red). In this example, one
might take i = 1, j = 2 and k = 3. As with the above figures, yellow vertices are
initial vertices of F, the marked point in m ⊂ S is drawn in orange and its associated
Legendrian front in blue.

Definition 3.8. Let F be a pre-spectral network, w a wall and z ∈ w a point. Each D−
4 -tree

obtained as in Proposition 3.7 is denoted by Γ(z;w,F) and its soliton class is denoted by s(z;w,F).
□
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Remark 3.9. If L ⊂ (T ∗S, λst) is an exact Betti Lagrangian, then the set of D−
4 -trees associated

to a wall in Definition 3.8 contains a unique element for each wall w. □

Note that creative pre-networks are rather robust objects, i.e. invariant under smooth isotopies of
S and C∞-small perturbations of the base metric (S, g).

The existence of new Stokes’ lines, in the nomenclature of [BNR82], a.k.a. higher-order Stokes
phenomenon in [HLOD04, Section 2] (see also [AKT01, Section 4]), implies that the pre-spectral
networks in Definition 3.5 do not contain sufficient information to study spectral curves with
irregular singularities, or Stokes local systems on a Betti surface, for rank three or higher. Newer
walls for the pre-spectral networks must be introduced to account for all the possible D−

4 -trees
dictated by a Betti Lagrangian. From this perspective, the role of inconsistent vertices is to give
birth to the new Stokes’ lines, producing interaction vertices. Inspired by the terminology in
[GHK15, Definition 2.26], we introduce the following notion to capture the appearance of new
Stokes’ lines:

Definition 3.10. Let F,F′ be two pre-spectral networks compatible with (L, S, g) such that F ⊂ F′

is an inclusion10 of stratified 1-manifolds. By definition, F′ is said to be a consistent extension of
F if:

(1) The vertex set of F is contained in the vertex set of F′,
(2) the inconsistent vertices in F are interaction joints in F′.

In such a situation, we denote F → F′ for a consistent extension of F. □

Definition 3.10 is one step in an iterative process, as a consistent extension of a pre-spectral network
might itself have inconsistent vertices. A first idea is to iterate this process ad infinitum. The only
issue is that the flow-energy of the newly created D−

4 -trees might remain bounded, potentially
leading to infinitely many D−

4 -trees below a finite flow-energy cut-off. For that, we introduce the
following notion of a gapped sequence of consistent extensions, a terminology inspired by the notion
of gapped A∞-algebras from [Fuk+09a].

Definition 3.11. Let F1 → F2 → . . . be a sequence of consistent extensions of pre-spectral
networks. Given a point z ∈ Fm+1 − Fm, consider the minimum minm+1(Z(s(z))) of the flow-
energies for all D−

4 -trees Γ(z;w,Fm+1), for w a wall in the pre-spectral network Fm+1 containing
z. By definition, the sequence is said to be gapped if there exist positive constants ℏ,M ∈ R+ such
that

min
m+1

(
Z(s(z))

)
> ⌊m/M⌋ℏ

for all z ∈ Fm+1 − Fm and m ≥M , m ∈ N. □

Definitions 3.5, 3.10 and 3.11 allow us to introduce the definition of a spectral network:

10Note that this is different than a graph inclusion, as there might be more vertices in F′ than in F.
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Definition 3.12 (Spectral networks). Let L ⊂ (T ∗S, λst) be a Betti Lagrangian with (S, g) a
chosen Riemannian metric. By definition, the Betti Lagrangian L is said to admit a Morse spectral
network W if there exists a gapped sequence W1 → W2 → . . . of consistent extensions of pre-
spectral networks Wi, i ∈ N. By definition, a Morse spectral network is finite if Wi = Wi+1 for
sufficiently large i ∈ N. In the meromorphic case, Σ is said to admit a WKB spectral network Wθ

of phase θ if it admits a Morse spectral network consisting of WKB pre-spectral networks of phase
θ. □

Definition 3.12 is more general than the notion of spectral networks in the physics literature
[GMN13b; GMN12; GMN13a; GMN14], thus the terminology Morse spectral network. That said,
for notational ease, we often refer to Morse spectral networks in Definition 3.12 as spectral networks
and refer to the spectral networks in the physics literature as WKB spectral networks, as they are
always associated to meromorphic spectral curves.

In the introduction, as stated in Theorem 1, we claimed the existence of spectral networks com-
patible with a Betti Lagrangian L ⊂ (T ∗S, λst). The next two sections are devoted to the proof of
Theorem 1. Specifically, Theorem 1.(i), for exact Betti Lagrangians, is established in Section 3.3.
Theorem 1.(ii), for WKB spectral networks, is proven in Section 3.4.

Note that, thanks to the gapped condition, we can ensure that for a given energy level E ∈ R+,
there exists m ∈ N such that any z ∈ Wm+1 −Wm, satisfies minm+1(Z(s(z))) > E. This allows us
to define the energy-filtration on spectral network.

Definition 3.13 (Energy filtration). Let F be a spectral pre-network and E ∈ R+. By definition,
F(E) is the set of points in F such that minF(Z(s(z))) ≤ E. Similarly, for a spectral network
W = (W1 → W2 → . . .) we define W(E) to be Wm(E), where m ∈ N is the smallest number such
that any z ∈ Wm+1 −Wm satisfies minm+1(Z(s(z))) > E. □

Remark 3.14. By construction, for any z ∈ W(E), any D−
4 flowtrees that end at z with en-

ergy less than E must be contained in W(E). By scanning according to the energy filtration in
Definition 3.13, it follows that a Morse spectral network is the union of all possible D−

4 -trees. □

3.3. Proof of Theorem 1.(i). Let L ⊂ (T ∗S, λst) be an exact Betti Lagrangian and (S, g) a
metric adapted to L. The goal is to show that there exists a finite Morse spectral network W

compatible with L and (S, g), as in Definition 3.12. In the local model for Betti Lagrangians
near the D−

4 -ramification points of the projection π : L −→ S, the Lagrangian multigraph L can
be (and is) assumed to be holomorphic over a neighborhood of the D−

4 -branch point in S, and
the Riemannian metric (S, g) is taken to be Kähler near such neighborhood. Thus we can apply
the local model for the three initial flowline rays near a D−

4 -singularity studied in Section 2.4, and
consider the associated trajectory, maximally extended, for each of these three rays out of each D−

4 -
branch point in S, using the asymptotics of trajectories (Proposition 2.19 and Proposition 2.27).
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Let W1 be the union of all these trajectories, i.e. for each D−
4 -branch point, consider the union

of all the trajectories in S obtained by flowing out of the branch point from each of the three initial
rays. This graph W1 might nevertheless not define a pre-spectral network due to the following
phenomena:

(1) A trajectory from a D−
4 -branch point might pass through another D−

4 -branch point. Note
that a trajectory might do that in a way that it flows towards a D−

4 -branch point entering
it via its cusp-cusp sheets, or it might merely pass through it while having two smooth
sheets, or a cusp-smooth sheet, above it. By exactness, such trajectories cannot enter a
D−

4 -branch point via a cusp-cusp edge, so that case we have discarded, but the other two
cases are still possible.

(2) The trajectories formingW1 might intersect each other in a non-transverse manner, e.g. tan-
gentially.

In order to construct a pre-spectral network from W1, we must perturb the initial Riemannian
metric (S, g) so that these two issues above do not occur. In this case of an exact Betti Lagrangian,
such perturbation exists by [Ekh07, Section 3.2], which itself uses [Sma61]; the possible pertur-
bations form an open dense set within the corresponding space of Riemannian metrics. We thus
apply such perturbation to (S, g) and obtain a graph in S, which we still denote by W1. This
graph W1, after perturbing g, does define a pre-spectral network which satisfies:

(1) W1 has only initial, non-interaction and inconsistent vertices. That is,W1 has no interaction
vertices. The initial vertices of W1 are in bijection with the D−

4 -branch points in S.
(2) the edges of W1 adjacent to an initial vertices are given by the three possible trajectories

out of the D−
4 -branch point.

The edges ofW1 are decorated automatically by the condition on the initial vertex in Definition 3.5:
the three trajectories out of a D−

4 -branch point are decorated with (ij), where i, j ∈ [1, n] are the
two sheets joined at the ramification point above it. This decoration extends uniquely to all edges
of W1 because the incoming decorations at any of the vertices determine the outgoing ones, as
in Figure 6. This W1 is the first of the (to be) sequence of pre-spectral networks leading to the
spectral network W.

Let us construct a first consistent extension W1 → W2, as follows. For each inconsistent vertex
of W1, consider the unique flowline that starts at the inconsistent vertex: this exists and it is
well-defined due to the local model of the three sheets for the multigraph L ⊂ (T ∗S, λst) above
such an inconsistent vertex. Let W2 be the graph in S defined by the union of all such flowlines;
the decoration on the new edges of this graph are uniquely determined by the decorations in W1

and Figure 6. Similar to the case of W1, the resulting graph in S might have non-transverse in-
tersections and trajectories passing through a D−

4 -branch point which are not initial rays for that
branch point. As before, we further perturb the Riemannian metric data so that such behavior
is not present: the space of such perturbation is the intersection of two dense open sets, open
and non-empty. Let us still denote by W2 the result of such perturbation. As a graph, W2 might
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appear to be a pre-spectral network: it is nevertheless possible that some of the new trajectories
being introduced are periodic or, in general, violate the acyclicity condition Definition 3.5.(4).
That is, there might be a trajectory in W2 that starts at an inconsistent vertex of W1 and ends
at the same interaction vertex; e.g. entering it via one of the two existing incoming flowlines from
W1. By Proposition 2.19, exactness of L ⊂ (T ∗S, λst) implies that this cannot occur and thus W2

defines a pre-spectral network with no periodic trajectories.

We iterate the construction in the previous paragraph, thus constructing a consistent extension
W2 → W3 whose new trajectories start or end at the inconsistent vertices of W2. In order to ensure
that W3 is a pre-spectral network, we perturb the metric data again and use Proposition 2.19. In
particular, W3 is flow-acyclic, because by our construction, W3 network is creative. This argument
proves flow-acyclicity of F3. as above. Iterating this construction for i ∈ N, we obtain a sequence
W1 → W2 → . . . of consistent extensions of pre-spectral networks. Our task is now to ensure that
this sequence is gapped. In the exact Betti Lagrangian case, we will establish an a priori bounds on
the energy to prove finiteness.It is in line with the a priori inequalities used in Gromov-compactness
results for pseudo-holomorphic strips. The following subsection is devoted to proving gapped and
finite, thus establishing the necessary results to conclude the proof of Theorem 1.(i).

Remark 3.15. A type of behavior that might a priori occur is that of a spiraling sequence of
creation vertices approaching a D−

4 -vertex, violating the finiteness condition for W. Figure 8 is an
example of such a sequence. □

3.3.1. Energy gaps in consistent extensions. Near each D−
4 -singularity b ∈ L, we have a holomor-

phic neighborhood where both the sheets of the Betti Lagrangian and a neighborhood Ub ⊂ S of
π(b) are endowed with holomorphic coordinates. Let z ∈ Ub be a local conformal coordinate and
λ1, . . . , λn define the smooth sheets of L over Ub. As in Example 2.5, consider the associated front
given by the set of functions

{±Re(z3/2),Re(|z|λ1(0)eiθ), . . . ,Re(|z|λn(0)eiθ), }, z ∈ Ub.

By a C∞-small perturbation L ⊂ (T ∗S, λst), compactly supported near the ramification point, we
can assume that this front is generic. That is, all the associated Reeb chords occur at different
values of θ and it contains only double transverse points. We always choose a local model near a
D−

4 -singularity satisfying these conditions and, inspired by [Ekh07, Section 3.1], we refer to this
as satisfying preliminary transversality conditions at the D−

4 -singularity.

The spiraling behavior from Remark 3.15, which we want to ensure does not occur in an infinite
manner, can be formalized as follows:

Definition 3.16 (Chain interactions). Locally in a neighborhood Ub ⊂ S of a D−
4 -branch point,

a chain interaction tree is a flow-tree F : Γ → Ub such that:
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Figure 8. (Upper left) An initial vertex in a pre-spectral network of rank 3 with its
adjacent three trajectories and a (13)-trajectory (from another vertex) interaction
with a wall of this initial vertex. Notice that we have denoted the sheets as in
[GMN13b; GMN13a; GMN14] and added a branch cut (in dashed blue) for the first
and second sheets. (Upper center) A consistent extension of the upper left piece
obtained by adding the (23)-wall, in red: its behavior is that of spiraling around the
initial D−

4 vertex, approaching it. (Upper right onward) A sequence of consistent
extensions where the newly created walls from inconsistent vertices spiral around the
initial D−

4 -vertex, infinitely approaching it. As with the above figures, the yellow
vertex is the initial vertex of F and each new wall for a consistent extension is drawn
in a different color: red, yellow, purple and green, in order of appearance.

- The distinguished out-going edge is a smooth-cusp flowline.
- All the internal vertices are trivalent and lie outside the origin. Furthermore, given an
internal vertex, there is a unique out-going edge which is a smooth-cusp flowline, and there
is exactly one in-going edge which is given by an initial ray at π(b). □

Let us show that chain interaction trees have uniformly bounded number of internal vertices.

Proposition 3.17. In the notation above, let z ∈ Ub ⊂ S be a local coordinate centered the D−
4 -

branch point π(b). Then, there exists two positive finite constants δ ∈ R+ and N ∈ N such that
any chain interaction trees with image contained in {z : |z| ≤ δ} ⊂ Ub has its number of internal
vertices bounded above by N .
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Proof. Consider a chain interaction tree in Ub and a sufficiently small circle S1
θ giving the base

for the front of the Legendrian at the D−
4 -singularity. We project the chain interaction tree to

a flowtree on this circle S1
θ , as follows. Given the tree, we totally order the vertices of Γ by the

distance from its unique root vertex: then the in-going external edge coming from a smooth-singular
flowline projects to a flowline of the same index on S1

θ . In addition, each external edge coming
from the Reeb chord ray meeting the smooth-singular flowline gives a two-valent internal vertex
with a negative puncture. (For instance, if the incoming smooth-singular flowline ij interacts with
a singular-singular flowline jk to create a smooth-singular flowline ik, then the projected flowtree
is two-valent, with the in-going flowline ij and the out-going flowline ik.) Therefore, each such
external edge gives rises to an internal negative puncture. The unique out-going external edge and
the remaining unique in-going singular-smooth flowline edge may be either positive or negative.
By [Ekh07, Section 3] and the preliminary transversality condition, a cusp-free generic Legendrian
link has an upper bound on the number of internal vertices and edges, given a finite bound on the
number of positive punctures, which in our case is at most 2. In conclusion, there is a uniform
upper bound on the length of the chain interaction tree, as required. □

Proposition 3.18. Let W = (W1 → W2 → . . .) be a spectral network constructed as in Section 3.3.
Then the spectral network W is gapped and finite.

Proof. Let us show W is gapped. First, apply Proposition 3.17 to obtain two positive constants
δ ∈ R+ and N ∈ N such that chain interaction trees contained in U2δ neighborhoods of the D−

4 -
singularities have lengths bounded above by N . By choosing δ ∈ R+ small enough, we can and
do assume that the neighborhoods U2δ are a disjoint union of small balls containing all the D−

4

singularities. Second, choose a positive constant ℏ ∈ R+ smaller than the minimum of the flow-
energies for all flowlines traveling from the boundary ∂Uδ to the boundary ∂U2δ. By Definition 2.7,
Betti Lagrangians are weakly bounded and thus we can choose this minimal energy ℏ to be smaller
than the minimal flow-energy needed to travel between the distinct neighborhoods ∂U2δ of the
D−

4 -singularities in S.

Let Γ be a rigid D−
4 tree with flow-energy ≤ E. Suppose the non-univalent internal vertices

avoid the D−
4 -singularities. Then we will show that E > ⌊

(
|V (Γ)|/N

)
⌋ℏ, where N is the upper

bound from Proposition 3.17. From this, it follows that W must be gapped, since D−
4 -trees in

in Wi − Wi−1 are all rigid, and none of the non-univalent internal vertices get mapped to the
branch points, and these trees have at least i internal vertices. To prove the claim, we make the
obesrvation that there are at most ⌊

(
|V (Γ)|/N

)
⌋ maximal interaction chain trees contained in Γ,

since by Definition 3.16, such trees have at most N internal vertices. Furthermore, by our choice
of ℏ ∈ R+, the unique external in-going smooth-cusp edge in the interaction chain tree must carry
flow-energy at least ℏ and thus a maximal chain interaction tree must also have flow-energy at
least ℏ. Therefore, E > ⌊

(
|V (Γ)|/N

)
⌋ℏ, as claimed.
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To argue that W is finite, note that the primitive of λst restricted to the exact Lagrangian
L ⊂ (T ∗S, λst) is a smooth function on the compact domain given by the complement of the U2δ-
neighborhoods in S. It is therefore a bounded primitive and, by Lemma 2.14, the total energy of
any D−

4 -tree must be uniformly bounded as well. Since W is gapped, only finitely many D−
4 -trees

can appear and thus W is finite, on any precompact subset of S. Finally, in order to control
finiteness of W at infinity, we use Lemma 2.17 implies that the walls that intersect the boundary
transversely, in the inward direction, cannot leave, and this condition holds for any other wall that
is created at interaction joints. Therefore, we are reduced to the finiteness of flow-trees in J1S1

with a fixed number of negative punctures. Again, such flow-trees have finitely many internal
vertices. Therefore, W is finite everywhere. □

3.4. Proof of Theorem 1.(ii). The structure of the argument is similar to the exact Betti case,
as presented in Section 3.3. The only significant difference is that the only perturbations that we
are allowed are those performed in the holomorphic setting and varying the phase θ. In particular,
we can no longer guarantee that W is creative, since three flowlines may intersect at a single point.
The sequence W = (W1 → W2 → . . .) of consistent extensions of pre-spectral networks is built
in the same manner. As before, the issues to be addressed are non-transverse intersections and
flow-acyclicity. For removing periodic trajectories, we use Proposition 2.27 in order to argue that
the sequence of consistent extensions of pre-spectral networks produces no periodic trajectories
(instead of Proposition 2.19). For the former, and the more general flow-acyclicity, we need a
different argument, as [Ekh07, Section 3.2] is not a holomorphic perturbation. Lemma 3.19 below
proves that tangencies can indeed be removed. Assuming that result, we apply Proposition 3.18,
which also works in this setting, and conclude Theorem 1.(ii).

To argue that we can remove non-tranverse intersections, consider z ∈ S a point in the base and
let γ(s) be an ij-flowline of phase 0 starting at γ(0) = z and let C ∈ R+ be a constant. Define
the charge map of γ at time s with initial charge C to be the constant C +

∫ s

0
(λi − λj)(γ′(t))dt.

By definition, the flat coordinate11 W on a neighborhood of γ in S is the analytic continuation of
the charge map over a small sectorial neighborhood of γ avoiding the ij-branch points, so we have
W = C +

∫
(λi − λj) in such a neighborhood. The constant term C matters in the case γ is a

new-born edge at an interaction joint. Consider the θ-deformation of γ given by the curve

(15) s→ W−1((C + s)eiθ),

so the θ-deformation has the same energy (the absolute value of charge) as γ at time s. By
differentiating Eq. (15) with respect to θ, we deduce that the normal deformation vector at time
s is given by (C + s)/(λi − λj). Here the appearance of (C + s) in the expression in Eq. (15) is
because charge-preserving deformations necessarily have their normal deformation affected by the
energy. Let us now show that via θ-deformations we can indeed ensure transversality:

11The map W is a flat conformal coordinate map in the sense that the pull-back of λi − λj becomes dW in the
W -coordinate.
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Lemma 3.19. Let γ1, γ2 be a (ij)-flowline and (kl)-flowline of phase θ = 0, i, j, k, l ∈ [1, n]
distinct, and suppose that γ1, γ2 have an isolated tangential intersection at a point w ∈ S. Then,
for small enough generic θ ̸= 0, their θ-deformations intersect transversely.

Proof. Let Wij and Wkl denote the charge maps with initial charges l1 and l2, associated to γ1
and γ2 near z. The goal is to show that the variation vectors of γ1 and γ2 are Wij/(λi − λj) and
Wkl/(λk − λl) and that tangencies are stable if and only if the variation vectors agree.

We begin the proof. In the z = Wij-coordinate, we can write

λi − λj = dz, λk − λl = ϕ(z)dz,

for some holomorphic function ϕ defined in this z-domain. Then ϕ(z) is not constant because λk−λl
cannot be a constant multiple of λi − λj everywhere, as w is an isolated tangential intersection
point. As before, W−1((l2+ s)e

iθ) gives rise to the θ-deformation of γ2. As we change θ, the initial
points of γ1 and γ2 typically change too (unless they are initial flowlines themselves) and so the
quantities l1 = l1(θ), l2 = l2(θ) also depend on θ. Thus, our aim is to show that the map

(16) F (s1, s2, θ) = (s1, s2, θ) → ((l1(θ) + s1)e
iθ,W−1((l2(θ) + s2)e

iθ)) ∈ S× S

is transverse to the diagonal for generic θ. This is achieved in two steps, as follows.

Step 1. Let us analyze the locus of points where the θ-deformations intersect tangentially. We
claim that the θ-deformations can be only tangential over the tangency locus, where the tangency
locus is defined to be the set where the imaginary part Im(ϕ) = 0 vanishes. Indeed, suppose the
θ-deformations are tangential, with the common tangency given by the vector v, and note that

v ∈ ker Im(eiθ) ⇔ v ≡R e
−iθ, and so v ∈ ker(Im(eiθϕ)) ⇔ v ≡R e

−iθ/ϕ,

where v ≡R w denotes v, w being real colinear. Therefore, in this case, 1 and 1/ϕ should be real
colinear at the point of the tangency which is if and only if Im(ϕ) = 0, as claimed. Therefore
tangencies can only appear along Im(ϕ) = 0.
Now, the tangency locus is a locally finite stratified manifold, see e.g. [Wal75]. Let us show

that the tangency locus is smooth. For that, choose a smooth parametrized 1-dimensional stra-
tum η(t) of the tangency locus and note that differentiating the condition Im(ϕ) = 0 leads to
Im(ϕ′η′(t)) = 0. This latter question is that of the flowline of ϕ′ passing through l1. Then Pi-
card–Lindelöf’s uniqueness of solutions of differential equations implies that the tangency locus
must be the entire flowline of ϕ′ passing through l1 and thus it is smooth.

Step 2. Let us compute the set of points in the tangency locus where the transversality of the map
F also fails. By construction, the vector space given by im(dF )+T ·diag is generated by the rows
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of the 4× 4 matrix: 
eiθ 0
0 eiθ/ϕ
1 1

∂θl1e
iθ + i(l1 + s1)e

iθ (eiθ/ϕ)∂θl2 + i(l2 + s2)e
iθ/ϕ

 .

After an elementary transformation eliminate the terms containing ∂θl1 and ∂θl2, the determinant
of the matrix is equal to

(1/ϕ)((l2 + s2)/ϕ− (l1 + s1)).

Therefore the matrix is not invertible, and so transversality fails, if and only if

l1 + s1 = (l2 + s2)/ϕ(17)

This set is discrete. Indeed, since z = (l1 + s1)e
iθ and W (z) = (l2 + s2)e

iθ, this set belongs to the
zero set of the holomorphic function

z = W (z)/ϕ(z)

which is discrete unless W (z) = zϕ(z). This latter equality cannot occur though: differentiating
both sides gives ϕ(z)dz = dW = (ϕ(z)+ zϕ′(z))dz and so ϕ′(z) = 0 along the 1-stratum η(t). This
is a contradiction since ϕ(z) is holomorphic and not a constant function. Therefore, since the set
of points where (17) holds (and so transversality fails) is finite, standard parametric transversality
applies and we conclude that, for generic θ, the θ-deformations do not intersect tangentially. □

As argued above, at the beginning of Section 3.4, Theorem 1.(ii) then follows now that Lemma 3.19
is proven, after we sort out flow-acyclicity. To see that flow-acyclicity holds, we impose the generic-
ity condition that for each inductive step, Wi consists only of vertices that are stable under generic
infinitesimal perturbations of θ, and that there does not exist an interaction vertex such that the
out-going ik-wall is an ancestor to one of the in-going walls (in other words, some of the in-going
walls have multiplicities). Such vertices are not generic, since the normal deformation vector for
the new WKB flowline at v has its norm greater than that of the out-going wall at v. We now
proceed on by induction. Suppose the acyclicity condition holds for Wk but fails for Wk+1 and let
(w1, . . . ,wn) be the directed cycle that satisfies conditions (a) and (b) in Definition 3.5, for which
the decorations of w1 and wn agree. Since there are no periodic trajectories, this is possible only if
w1 is a wall contained in Wk, and so we see that there is some i such that wi ⊂ Wk is an ancestor
to w1 in Wk. However, then the terminal vertex of wi fails to satisfy the genericity condition.
Theorem 1 is thus established, as Theorem 1.(i) was concluded in Section 3.3.

3.5. Spectral networks and 2d-4d BPS indices. In the context of the supersymmetric field
theories in [GMN13b; GMN12; GMN13a; GMN14], BPS states are certain irreducible unitary rep-
resentations of a fixed super Lie algebra acting on a given Hilbert space. In this framework, the
counts of BPS states are achieved by considering super traces of certain operators on this Hilbert
space. In Floer theory, counts of pseudo-holomorphic disks are given by considering the (oriented)
cobordism type of their moduli spaces. For D−

4 -trees, we have the choice of counting them either
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way: by counting the pseudo-holomorphic strips that limit to them, or by treating them combi-
natorially via the spectral network W and using supertraces; the results of this article show that
these counts coincide, cf. Section 5.3. The Floer theoretic count is discussed in Section 5, and we
now discuss the combinatorial count.

Let S̊, L̊ be the unit tangent bundles of S and L, respectively. Let H be the homotopy class
representing the sphere bundle fiber. Given z ∈ S̊, we write zi, i ∈ [1, n] for the lifts of z to L̊. We

denote by C[π1
(
L̊)] the group algebra of the fundamental group of (relative) homotopy classes in L̊:

as further discussed in Section 5, we do not explicitly include the set of endpoints in the notation,
as it is implicitly understood by context. For instance, if we consider a soliton class s(z;w), it
is implicitly understood that it is a relative homotopy class with endpoints in the lifts above z ∈ S.

Let F be a pre-spectral network and w a wall. We denote by t(w), resp. s(w), the sphere bundle lift
of the terminal point of w, resp. initial, given by the unit velocity vector of F(w) at the terminal
point, resp. initial. Regard Z as a category with a single object, with hom identified with Z (as a
set, not as an additive group), and the set of walls W (F ) as a category with trivial morphisms.

Definition 3.20. Let F be a finite pre-spectral network and W (F) its set of walls. By definition,
the vanilla 2d4d BPS index on F is the functor

µ : C[π1
(
L̊)]×W (F) → Z(18)

uniquely defined by the following constraints:

(1) µ([̊s(z;w)];w) = 1 for w an initial wall.
(2) µ(·;w) vanishes on all classes, except for the H-orbits of s̊(z;w) ∈ {s(z;w)} for z ∈ w.
(3) µ(Hρ;w) = −µ(ρ;w).
(4) µ is independent of the basepoint z ∈ w for the classes in {s(z;w)}.
(5) Given a non-interaction vertex v with ingoing walls wij,wkl and outgoing walls w′

ij,w
′
kl,

let v(wij) denote the unit velocity lift of v at wij. Then

µ(ρ;wij) = µ(ρ;w′
ij),

for all ρ ∈ hom(v(wij)j, v(wij)i), and similarly for µ(·;wkl) and µ(·;w′
kl).

(6) Let v be an interaction vertex with ingoing walls wij,wjk,wkl, outgoing walls w′
ij,w

′
jk,w

′
kl.

and v(wij), v(wjk), v(wik) the corresponding unit velocity lifts. Then

µ(ρ;w′
ij) = µ(ρ;wij),(19)

µ(ρ;w′
jk) = µ(ρ;wjk),(20)

µ(ρ;w′
ik) = µ(ρ;wik) +

∑
[ρ1]◦[ρ2]=[ρ]

µ(ρ1;wij)µ(ρ2;wjk),(21)
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where ρ is a path such that the end points of the projection all lie at v, and the sum is over the
mod 2H-orbits. □

By definition, a wall of W is said to be active if its BPS index is non-zero.

Remark 3.21. (1) Eq. (21) is known as the 2d Hori-Vafa wall-crossing formula. In the framework
of spectral networks, for generic phase, the counts as captured by Definition 3.20 are given by a
vanilla 2d-4d BPS index which is truly a 4d BPS index modified to accout for the 2d interactions.
In the above we are able to restrict to pure 2d BPS indices because in our context they do coincide
with the vanilla 2d4d BPS indices.

(2) In Section 5 it will be proven that Definition 3.20 is actually a count of pseudo-holomorphic
strips for a fiber near that wall: it counts continuation strips oriented by the wall along a W-adapted
path. □

3.6. Spectral networks and rigid flowtrees. Flowtrees are often used in the context of Floer
theory as a limiting model for configurations of pseudoholomorphic curves. To wit, [Fuk93, Chapter
1] studies such trees as a first model of the Fukaya A∞-category, see also [FO97, Theorem 2.3]
and [Fuk97, Chapter 1]. In the framework of Legendrian submanifolds, rigid flowtrees are studied
in [Ekh07], compared to pseudo-holomorphic disks and used to provide certain computational
models for the Legendrian contact dg-algebra, see also [RS20]. A first aspect in the Floer-theoretic
understanding of spectral networks is its relation to such flowtrees, which we analyze in this
subsection. Note that this is far from sufficient in order to prove our main results or compare to
[GMN12; GMN13a; GMN14], and Sections 4, 5 and 6 proceed beyond these initial techniques. For
now, we use the notation and concepts from [Ekh07] and establish the following result:

Proposition 3.22 (Augmented D−
4 -trees and rigid flowtrees). Let (S,m,Λ) be a Betti surface,

L ⊂ (T ∗S, λst) an exact Betti Lagrangian, (S, g) an adapted metric and W ⊂ S a compatible cre-
ative Morse spectral network. Then, there exists a front-generic exact Lagrangian L† ⊂ (T ∗S, λst)
Hamiltonian isotopic to L, and a perturbed metric (S, g†) such that:

(1) L† = L and g† = g outside a compact subset, and otherwise L† C∞

≈ L and g†
C∞

≈ g.
(2) There is a bijective correspondence between augmented D−

4 -trees onW and the rigid flowtrees
of (S, g†) with a single positive puncture on ∂∞L

†.

The relation to spectral networks is Proposition 3.22.(2), whereas Proposition 3.22.(1) describe
the type of perturbation that it is used, i.e. the Betti Lagrangian and the metric essentially only
need to be modified near the branch points, equiv. the vertices of W.
Note that the results of [Ekh07] only apply to Legendrians with generic front singularities. The
Legendrian lift of an exact Betti Lagrangian is not in that class because D−

4 -singularities are
not generic real Legendrian singularities. Thus, to establish Proposition 3.22, we first need to
understand rigid flowtrees near a D−

4 -singularity.
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3.6.1. Trees near D−
4 -singularities. Consider the D−

4 -front singularity, as discussed in Case (2) of
Section 2.4, cf. also [CZ22, Section 2.2.3]. Its germ can be parametrized as

δ−4 : R2
u,v −→ R3

x,y,z, δ−4 (u, v) =

(
u2 − v2, 2uv,

2

3
(u3 − 3uv2)

)
.

The singularity itself is at the origin of R3 and the front is invariant under (2π/3)-rotation along
the z-axis. Since δ−4 (0, v) = δ−4 (0,−v), the three edges of A2

1-singularities are located at

E0 := {(x, y, z) ∈ R3 : x < 0, y = z = 0} = δ−4 (0, v) = R<0, v ∈ R \ {0}
and its two additional images under this rotation, which are

E1 := {(x, y, z) ∈ R3 :
√
3x = 2y, z = 0} = δ−4 (

√
3v, v) = e−2πi/3R<0

E2 := {(x, y, z) ∈ R3 :
√
3x = −2y, z = 0} = δ−4 (−

√
3v, v) = e2πi/3R<0,

also with v ∈ R \ {0}. The three initial rays discussed in Case (2) of Section 2.4 are

R0 := {(x, y, z) ∈ R3 : x > 0, y = z = 0} = R>0, R1 := e−2πi/3R>0, R2 := e2πi/3R>0,

which lie exactly in between these three edges E0, E1, E1, cyclically alternating asR0, E1, R2, E0, R1, E2.
The local lifts for these three non-generic flowtrees are depicted in Figure 9.

Figure 9. A non-generic model for the flowtrees near the D−
4 -singularity.

In a nutshell, the claim is that a generic C∞-small compactly supported Hamiltonian perturba-
tion of such non-generic D−

4 -front gives rise to a generic Legendrian front whose only rigid flowtrees
are C∞-close to the rays R0, R1, R2 in the support of such perturbation, and otherwise coincide
with them. This is the content of the following:

Lemma 3.23 (Sneaky trees). Let Π ⊂ R3 be the germ of a D−
4 -singularity, modeled as above, and

Λ(Π) its Legendrian lift. There exists a compactly supported C∞-small Legendrian isotopy of Λ(Π)
such that the resulting Legendrian Λ† has a front Π† such that:

(1) The Lagrangian projection of Λ† is embedded.
(2) there are exactly three rigid flowtrees T0, T1, T2 in (R2

x,y, gst) for the generic Legendrian Λ†,
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(3) Each Ti is C
∞-close to Ri and, outside a compact set, Ti = Ri, i = 1, 2, 3.

(4) The compact support of the Legendrian isotopy can be taken to be arbitrarily small near the
domain of the D−

4 -singularity.

Figure 10. (Left) The spatial front for a generic C∞-small perturbation of the D−
4 -

front singularity. (Right) The view for this front from above, with orange encoding
A2-cusp edges and dark blue edges indicating A2

1-crossing edges. Each of the three
orange dots indicates a A3-swallowtail singularity.

Proof. Choose a C∞-small Legendrian isotopy of Λ(Π) which preserves the (2π/3)-rotation sym-
metry of the front and let Π† be its front. Due to this symmetric choice and the fact that a flowtree
between two sheets cannot pass through a crossing of those sheets, it suffices to analyze rigid flow
trees in the sectorial region above E1 and E2. A C∞-small perturbation of D−

4 -singularity gives
a front Π with three swallowtails as depicted in Figure 10. In Figure 10 (right) we choose this
region betwee E1, E2 to be the bottom sector, so that R0 is a vertical semiray from the center
downwards. Since the perturbation is compactly supported and the gradient condition is local,
any rigid flowtrees for Π coincide with those of Π† away from a compact set, and thus must coincide
with R0, R1, R2. The argument now contains two parts:

(1) the construction of a rigid Morse flow tree Γ(D−
4 ) coinciding with R0 at the boundary,

(2) showing that no other rigid trees exist in this local model.

For Part (1), a flowtree Γ(D−
4 ) is constructed following Figures 11 and 12. In Figure 11 (left)

the flowtree is depicted in green, as seen from above, and Figure 11 (right) determines the relative
homology class of its boundary by declaring that it geometrically intersects each relative cycles
e1, e2, e3 once, e1, e3 positively and e2 negatively. We have also described Γ(D−

4 ) in Figure 12 as a
movie, slicing the front in Figure 11 (left) with horizontal slices, from bottom to top. This flowtree
Γ(D−

4 ) has an asymptotic positive puncture ρ at the boundary condition given by R0, no negative
punctures, one switch (S) and one end (E). This is a legitimate flowtree by [Ekh07, Section 2]. We
choose the perturbation of Λ(Π) and perturb the metric g to g† such that the tree is transversely
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Figure 11. (Left) The flowtree Γ(D−
4 ) as seen from above, with two black dots

indicating its unique switch (S) and end (E). (Right) Three homology classes e1, e2, e3
in the (Legendrian lift of the) front and the flowtree Γ(D−

4 ) seen from far above, so
that the three swallowtails are contained in the central red dot.

cut out, which can be done by [Ekh07, Prop. 3.14]. The dimension of the moduli space for a
general tree Γ is given in [Ekh07, Definition 3.4] as:

dim(Γ) = −2 + Iu(ρ
+)−

|Γ−|∑
k=1

(Is(γ
−
k )− n+ 1)

+ e(Γ)− s(Γ)− y1(Γ),

where Iu(ρ
+) = 2 is the index at the positive puncture ρ+, i.e. the dimension dim(W u(ρ+)) of

the unstable manifold, Is(γ
−) = 2 is the coindex at the negative puncture γ−, i.e. the dimension

dim(W s(γ−)) of the stable manifold, e(Γ) is the number of ends in Γ, s(Γ) is the number of switches
and y1(Γ) the number of Y1-type vertices. In the case of Γ(D−

4 ), the formula for the dimension
yields

dim(Γ) = −2 + Iu(ρ) + e(Γ)− s(Γ) = −2 + 2 + 1− 1 = 0,

as there are no negative punctures nor Y1-vertices. This proves Γ(D
−
4 ) is a rigid flowtree.

For Part (2), let us argue that no additional rigid flowtrees exist, which we deduce using the
dimension formula for dim(Γ) above. First, for any germ of a Legendrian singularity, there exists a
front with no Reeb chords. Hence, given that ρ is the only allowed boundary condition away from
the singularity and in the sectorial region between E1 and E2, there can be no negative punctures.
By the classification of vertices in [Ekh07, Section 3] and the combinatorics from Figure 12, the
rigid flowtrees must have one end, and therefore one switch. Since the switch can only occur
as in Γ(D−

4 ), any rigid flowtree that matches R0 actually coincides with Γ(D−
4 ). Finally, the

combinatorics of the sheets imply that no two of the three rigid flowtrees, given by Γ(D−
4 ) and its

images under the (2π/3)-rotation, can interact with a Y0-vertex. Thus these are the only possible
rigid flowtrees. □
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Figure 12. Slices of the rigid flowtree Γ(D−
4 ), drawn in red, in the germ of a D−

4 -
front singularity. The front is sliced horizontally, bottom to top. A switch (S) occurs
at the leftmost diagram in the second row and an end (E) occurs at the center
diagram in the third row.

Remark 3.24. These trees in the proof of Lemma 3.23 were first introduced by the first author in
his work [CM18], and referred to as sneaky trees, due to their shape.12 □

3.6.2. Proof of Proposition 3.22. This is now a consequence of Lemma 3.23 and the bijection
established in [Ekh07]. The only point left is appropriately choosing the neighborhoods of the D−

4 -
singularities, i.e. the initial vertices of W, cut off the part of the rigid flow-trees that begin at such
neighbourhoods, and arguing that the resulting partial flowtrees can be extended. For each D−

4 -
singularity b ∈ S, we choose a neighborhood Ub(δ) ⊂ S whose only initial vertex is b, there are no
non-initial vertices of W, and ∂Ub(δ) transversely intersects W at the three initial rays associated
to b. The perturbation needed is now obtained by locally perturbing according to Lemma 3.23 at
each such Ub(δ). Since the rigid flow-trees must begin at ends, which are located at the cusp-edges,
we see that we can cut-off rigid flow-trees along edges that first leave the Ub(δ). Note that the
resulting partial flow tree in Ub(δ) can be extended to a global flowtree using Lemma 2.17. Such
extension is rigid, as rigidity depends only on the vertices of the flowtree, and so it must have been
the sneaky trees constructed in Lemma 3.23. Then the property in Part (1) holds by construction,
and Part (2) holds by [Ekh07, Theorem 1.1.(b)]. □

Remark 3.25. (i) Technically, the perturbation in [Ekh07, Theorem 1.1] is global, and thus the
spectral network W is perturbed by a C∞-small smooth isotopy because of transversality. We

12A coarse chalkboard explanation of these trees can be found in the talk “Differential Algebra of Cubic Graphs”
at the Harvard Center of Mathematical Sciences for “A Celebration of Symplectic Geometry 2017: 15 Years of
JSG.”, around minute 53.
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implicitly absorb such smooth isotopy in our notation, as spectral networks are invariant under
such isotopies.

(ii) We are implicitly using that the exact Betti Lagrangian L is Maslov 0, which will be shown in
Lemma 5.13, which tells us that the topological index of the boundary must be zero. The topological
dimension of such a disk (with single positive puncture) is zero only if the limiting Reeb chord has
index 1 (and so the index of the limiting puncture is 2). This is if and only if the Reeb chord
corresponds to a positive crossing, by the argument used in Section 2.5 (see also Fig. 5 for a
heuristic explanation). □

4. Adiabatic convergence for D−
4 -trees

The main object of this section is to prove the direction (⇐=) of the characterization in Theo-
rem 2. Namely, we show the contrapositive statement: points in the complement of the spectral
network W do not have such pseudo-holomorphic strips through them and, for Theorem 2.(i), that
for a point in the spectral network there are no such pseudo-holomorphic strips in any relative
homology class except for possibly the soliton class. The precise statement is Theorem 4.2. The
direction (=⇒) is proven in Section 5.

The image of a Betti Lagrangian L ⊂ T ∗S under the ε-scaling action on (T ∗S, ωst) is denoted
εL ⊂ T ∗S. Throughout the manuscript, the expression adiabatic limit refers to the limit ε → 0
and for this section we assume that L has either conical ends or is meromorphic with O(−1)-ends.
The following notions formalize the scenarios with non-existence of pseudo-holomorphic strips in
the adiabatic limit:

Definition 4.1. Let (S,m,Λ) be a Betti surface, L ⊂ T ∗S a Betti Lagrangian adapted to (S, g)
and Jg the almost complex structure associated to g. Consider a spectral network W compatible
with L, as in Definition 3.12. For a point z ∈ S and the cotangent fiber Fz = T ∗

z S:

(1) The pair of Lagrangians (Fz, L) is said to be uniformly disk-free in the adiabatic limit if for
any given energy E ∈ R+, there is some neighborhood Uz(E) ⊂ S of z and a positive con-
stant ε0(E, z) ∈ R+ such that there is no non-constant Jg-holomorphic disk of energy below
E between the Lagrangians εL and Fw, for all w ∈ Uz(E) and ε ∈ R+ with ε ∈ (0, ε0(E, z)].

(2) If z ∈ W belongs to a wall, the pair of Lagrangians (Fz, L) is said to be uniformly Stokes
in the adiabatic limit if for any given energy E ∈ R+, there is some neighborhood Uz(E) ⊂
S of z and a positive constant ε0(E, z) ∈ R+ such that there is no non-constant Jg-
holomorphic disk of energy below E bounded between the Lagrangians εL and Fw whose
relative homology class is not of the parallel transport of the soliton class associated to z,
for all w ∈ Uz(E) and ε ∈ R+ with ε ∈ (0, ε0(E, z)]. □

That is, informally, (L, Fz) is uniformly disk-free if there are no pseudo-holomorphic strips bounded
by (εL, Fw) for ε≪ 1 small enough and w close to z, for a given energy cut-off E ∈ R+. Similarly
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for uniformly Stokes. The use of the word uniformly in Definition 4.1 is to emphasize that the
neighborhood Uz(E) is independent of the adiabatic parameter ε. Since every statement in this
section will be in the adiabatic limit as ε→ 0 we often drop the cue in the adiabatic limit, e.g. we
simply refer to being uniformly disk-free or uniformly Stokes. The main result, implying the first
part of Theorem 2, reads as follows:

Theorem 4.2 (Pseudo-holomorphic strips in spectral networks). Let (S,m,Λ) be a Betti surface,
L ⊂ T ∗S a Betti Lagrangian adapted to (S, g) and W a compatible spectral network. Then

(1) If z ∈ Wc, then (Fz, L) is uniformly disk-free.
(2) If z ∈ W, then (Fz, L) is uniformly Stokes.

The purpose of this section is to prove Theorem 4.2. The intuition for Part (1) is summarized as
follows. If z ∈ Wc was such that (εL, Fzε) bounded a pseudo-holomorphic strip in (T ∗S, Jg), then
we want to have such sequences of strips converge, as ε → 0, to a D−

4 -tree in S passing through
z. If such convergence statement held, then the results in Section 3 would force the D−

4 -tree to be
contained in W and thus z ∈ W, reaching a contradiction. We remark that all the results we prove
in this section rely on the relevant disks having uniformly bounded diameter (c.f. Lemma A.2),
which follows from the geometric boundedness of L (Proposition A.1).

Of course the technical part is establishing convergence results for such pseudo-holomorphic
strips with boundary conditions on (εL, Fz) in a manner that the limit is indeed a D−

4 -tree, or
at least it is a D−

4 -tree away from a fixed small neighborhood of the branch points. Note that
this is a much stronger result than just stating that the strips would converge to a flowtree, as
such a weaker statement would provide no control on the trajectories associated to leaves and
semi-infinite edges of the tree, and thus the resulting tree would typically not be a D−

4 -tree nor
there would be any understanding of their behavior with regards to the initial rays at the branch
points. In particular, a new aspect in the proof of Theorem 4.2 is that we must have control on
the behavior of the degeneration of such pseudo-holomorphic strips as it approaches the boundary
of a neighborhood of the branch points, even if z ∈ Wc is typically far from any branch points.
The precise convergence result that we establish reads as follows:

Proposition 4.3 (ε-strips converge to trimmed D−
4 -trees). Let (S,m,Λ) be a Betti surface and

L ⊂ T ∗S a Betti Lagrangian adapted to (S, g) with a compatible spectral network W. Suppose that
(uε, zε,∆m(ε), E) is an ε-strip sequence uε : ∆2 −→ S, with boundary of (εL, T ∗

zεS). Then, after
possibly considering a subsequence and a reparametrization of the domain ∆2, its limit

lim
ε→0

(uε, zε,∆2, E) : Γ −→ S

exists and it is a (broken) trimmed D−
4 -tree. The tree is unbroken if z lies in the interior of W(E).
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The concepts needed to state Proposition 4.3, including the notion of ε-strip sequences, their limits
and broken trimmed D−

4 -trees, are introduced in Section 4.1 and Proposition 4.3 is then proven in
Section 4.2. Proposition 4.3 is used to conclude Theorem 2 in Section 4.3.13

4.1. ε-strips and their limits. Let us first set up the geometric ingredients to discuss ε-strips
and their limits. We endow its cotangent bundle (T ∗S, ω) of (S, g) with the compatible almost-
complex structure Jg associated to ω and g via the Levi-Civita (Ehresmann) connection of the
latter; Jg is also known as the Sasaki almost-complex structure.

We use the following type of domains for pseudo-holomorphic strips: fix ξ ∈ (0, 1), ξ ≪ 1,
and consider a point c = (c1, ..., cd) ∈ Rd. By definition, △d+1(c1, . . . , cd) is the subdomain of
(−∞,∞)× [0, d+ 1] ⊂ C given by removing d horizontal slits of vertical width ξ, each starting at
the point (cj, j) in the direction of +∞, for j ∈ [1, d]. Each such horizontal slit is thus centered
around the semi-infinite ray [cj,∞)×{j}, see e.g. Figure 13. If the input position c ∈ Rd depends
on a parameter ε ∈ R+ but c is implicitly understood (or arbitrary and not particularly relevant),
then we denote such subdomain by △d+1(ε). Such domains △d+1(ε) are given the conformal struc-
ture inherited as subdomains of C.

Definition 4.4. Let (S,m,Λ) be a Betti surface and L ⊂ T ∗S a Betti Lagrangian adapted to
(S, g). By definition, an ε-strip sequence (uε, zε,△m(ε), E) is a collection of Jg-holomorphic maps

uε : △m(ε) −→ T ∗S,

defined for all ε ∈ R+ small enough and such that:

(1) the image of uε is bounded by L and Fzε ,
(2) area(uε) ≤ εE. □

An additional piece of notation on such domains△d+1(c): given a boundary component of ∂△d+1(c)
with both of its ends at +∞, its boundary minimum of I the unique point with the smallest real
part. Also, a subdomain in △d+1 is said to be horizontal if it is of the form [x1, x2]× [y1, y2] with
[x1, x2]× {y1} and [x1, x2]× {y2} lying on the boundary of △d+1. See Figure 13.

4.1.1. Combinatorial trees associated to domains △d+1. There is a (combinatorial) tree associated
to each of the domains △d+1(c1, . . . , cd), constructed as follows.

Definition 4.5 (Trees associated to △d+1). Let △d+1(c1, . . . , cd) ⊂ C be a domain, its associated
tree T := T (△(c)) is the rooted d-leaved tree whose interior vertices have valence at least three
and satisfies:

13Note that it is nevertheless possible to upgrade Proposition 4.3 to show convergence to an actual (broken)
D−

4 -tree. This would add even more technicality and pages to the manuscript and, for the sake of balance, we have
not pursued this technical enhancement.
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Figure 13. A depiction of the type of domain △d+1(c) being used to describe the
conformal structure. The domain is drawn in the strip with the slits highlighted
in black, and the conformal structure in inherited from C. The x-coordinate of
the boundary minima is highlighted with a yellow vertical dashed line and the tree
associated to the domain is depicted in green.

(1) The vertices of T are in bijection with the values of c ∈ Rd+1. These can be visually
described by vertical rays passing through the boundary minima of △d+1(c1, . . . , cd).

(2) The edges of T are in (natural) bijection with the connected components of the complement
of such vertical rays in △d+1(c1, . . . , cd).

(3) By definition, two edges of T share a vertex if and only if the corresponding components
of those two edges are adjacent along the vertical ray corresponding to that vertex. □

See Figure 13 for an example of Definition 4.5. By definition, an open subdomain D ⊂ △d+1 is
a subdisk if the part ∂D \ (∂△d+1) of its boundary consist of vertical rays avoiding the boundary
minima.14 As in Definition 4.5, subdisks D ⊂ △d+1 yield rooted (d + 1)-leaved subtrees TD ⊂ T
by introducing vertices at each of the edges whose corresponding components contain the vertical
boundaries of ∂D. We denote by T/TD the rooted (d+ 1)-leaved tree obtained by contracting the
subtree TD ⊂ T associated to a subdisk D ⊂ △.

We shall cover these domains △ by subdisk domains. We always implicitly assume that the vertical
boundary segments of the components of such covers avoid the boundary minima, are all disjoint,
and their intersections are also given by subdisk domains. In the same manner that a subdisk gave
a subtree, an open cover △m = D0 ∪ D1 by two subdisk domains D0, D1 gives an open cover of
the associated tree: T (△) = T (D0) ∪ T (D1). Note that D0, D1 are typically each disconnected.

4.1.2. Limits of ε-strip sequences. The goal of this subsection is to rigorously explain what it means
for an ε-strip sequence, as in Definition 4.4, to converge to a trimmed D−

4 -tree. In particular, we
refine the type of domain subdivision introduced in [Ekh07, Section 5.2], introduce adapted covers
in Definition 4.6 and limits of ε-strip sequences in Definition 4.8.

14These subdisks are often disconnected, each connected component being topologically a disk.
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For each branch point b ∈ S, we have fixed a neighborhood Ub ⊂ S as in Section 3.3.1. We can
and do choose such Ub to be disks of a certain radius r, denoting that by Ub = Ub(r). Specifically,
we fix two truncation parameters δ, η ∈ R+ such that the disks Ub(2δ + ηδ) are disjoint and over
each subdisk Ub(2δ), the piece of the Betti Lagrangian L∩T ∗Ub(2δ) ⊂ T ∗S is holomorphic and the
metric is the standard flat metric restricted from C. We denote the union of such neighborhoods
by

Bη,δ :=
⋃

b∈KL

Ub(2δ + ηδ).

By definition, a broken trimmed D−
4 -tree is the intersection of a disjoint union of D−

4 -trees in S
with the domain S \ Bη,δ such that the flowlines entering each disk Ub(2δ + ηδ), if such flowlines
exist, coincide with initial rays at b ∈ S. The tree is unbroken if there is a single D−

4 -tree compo-
nent.

From now on, whenever we discuss the metric and the covariant derivative, we will assume
that we are using the Sasaki metric, and the associated Levi-Civita connection. Given an ε-strip
sequence (uε)ε, as in Definition 4.4, we want to understand its behavior in the adiabatic limit,
i.e. as ε → 0. As observed in [Ekh07, Lemma 5.6], |∇uε| = O(ε) when restricted to a half-disk
subdomain of fixed radius, that maps outside some fixed neighborhood of the caustics. However,
near the caustics, we will not be guaranteed such a control. The idea is to subdivide the domains
of each uε into open sets where we have some control of either |∇uε| or the image of uε. As
per usual application of gradient estimates, convergence for points where |∇uε| remains uniformly
O(ϵ)-bounded follows (c.f. [Flo89b, Theorem 2], [FO97, Proposition 9.7, Proposition 9.8]). The
challenge is to find such subdivisions and control the behavior of the image when |∇uε| blows up.
The initial Jg-holomorphic strip, before performing any ε-scaling, has domain △2 and maps to
(T ∗S, Jg), with two punctures, as the boundary lies in L and a cotangent fiber Fz, for some z ∈ S.
In order to obtain the subdivision, we will reparametrize that domain △2, as we ε-scale, by a
sequence of ε-depending domains △m(ε) := △m(c(ε)), m ≥ 3, where the parameters c(ε) depend
on the adiabatic parameter ε but the number m ∈ N does not. A first useful open cover for these
domains is described as follows:

Definition 4.6 (Adapted covers for ε-strip sequences). Let (uε, zε,△m(ε), E) be an ε-strip se-
quence with zε converging to a point in S \ B(2δ + ηδ) as ε → 0. By definition, an ε-sequence
of open covers △m(ε) = D0(ε) ∪D1(ε) is said to be adapted to (uε, zε,△m(ε), E) if the following
holds for ε ∈ R+ small enough:

(1) Each Di(ε) are subdisks, i = 1, 2.
(2) The topology associated to the domains Di(ε) is independent of ε, i = 1, 2. That is, the

order of the parameters c(ε), the topology of the components of Di(ε), and the topology of
their intersections (eventually) remains constant as ε→ 0.

(3) uε(D0(ε)) lies outside B(δ) and |∇uε| = O(ε) for points in D0(ε).
(4) uε(D1(ε)) lies inside B(2δ).
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In addition, a subdisk W0(ε) ⊂ D0(ε) is said to give an adapted horizontal decomposition of D0(ε)
if

(i) W0 has width O(log(ε−1)) and contains all the boundary minima contained in D0.
(ii) The vertical boundary part of ∂W0 is disjoint from the vertical boundaries of Di(ε), i = 1, 2,

and its topology remains constant as ε→ 0.

A triple (D0(ε), D1(ε),W0(ε)) is said to be adapted to (uε, zε,△m(ε), E) if ∆m(ε) = D0(ε)∪D1(ε)
is an adapted cover and W0(ε) is an adapted horizontal decomposition of D0(ε). □

The geometric conditions on uε are Definition 4.6.(3),(4) and (i): on D0(ε) the norm of the de-
rivative |∇uε| = O(ε) remains controlled (constant with respect to the scaling measure), and the
width condition O(log(ε−1)) on its subdomains W0(ε) ensures that the images uε(W0) converge to
a point. In particular, the associated trees T (ε)/TW0(ε) give models for the domain of a map that
contracts the connected subdisks in W0 to points.

Remark 4.7. The conditions Definition 4.6.(2) and (ii) imply that there is a fixed number of
components for D0(ε), D1(ε) and W0(ε) in an adapted cover, independent of ε. In fact, the combi-
natorial trees associated to each such domains, as in Section 4.1.1, are well-defined and independent
of ε. In particular, the combinatorial type of the tree Γ associated to △m(ε) is independent of ε
and so are the corresponding induced subtrees. □

The adapted covers of Definition 4.6 are still not sufficient to conclude Proposition 4.3, i.e. that
the ε-strip sequence converges to a trimmed D−

4 -tree. The remaining additional condition that we
must require (and we will prove can be achieved) reads as follows:

Definition 4.8 (Limits of ε-strip sequences). The limit of an ε-strip sequence (uε, zε,△m(ε), E)
is said to exist if there exists an adapted cover (D0(ε), D1(ε),W0(ε)) such that the following two
types of conditions hold:

(1) There are three types of components of D0\W0: fiber, ghost or flowline. They are classified
depending on their possible images under uε, as follows:

(i) (Fiber components) Some horizontal boundary components map to the cotangent fiber,
with projections C∞-converging to the point lim zε as ε→ 0.

(ii) (Ghost components) Horizontal boundaries map to the same sheets of L, with projec-
tions C∞-converging to points.

(iii) (Flowline components) Horizontal boundaries map to different sheets of L if the domain
has widths of size O(ε−1) and the (projection of the) rescaling u ◦ (ε−1) C∞-converges
to a flowline. The flowlines are said to have zero length if the resulting limiting flowline
is a point.

(2) Let T be the tree associated to △m(ε) and consider the (reduced) tree Γred obtained by
removing the subtrees of T/TW0(ε) corresponding to fiber components of D0 \W0, contract-
ing the subtrees corresponding to the ghost components of D0 \W0, removing the subtrees
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corresponding to components in D1, and removing any 2-valent vertices that connect the
two flow-edges of the same index. Then, we require that Γred admits a set of edges such that:

(i) (Edges map to initial D−
4 -rays) Each edge is such that there exists a vertical cut of the

associated flowline component subdomain of △m(ε) with uε mapping its right adjacent
component inside T ∗Bη,δ, and the edge converges to one of the initial rays associated
to a branch point, with the inward orientation.15

(ii) (Maximality) For any flowline component Θ ⊂ D0\W0 with non-zero flow, there exists
an edge as in (i) that belongs to the right adjacent component of Θ. □

In essence, proving Proposition 4.3 is tantamount to showing that, given the ε-strip sequence,
there exists an adapted cover satisfying the conditions in Definition 4.8. The limiting object for
the ε-strip sequence is technically not a flow-tree F : Γ −→ S due to the presence of the ghost
components and flowlines components with zero lengths in △m(ε), cf. Definition 4.8.(1.ii) and
(1.iii). For instance, an entire ghost component might map to a point in the adiabatic limit; these
are said to be ghost edges of Γ. This matter is resolved combinatorially by contracting the edges
of the tree Γ associated to △m(ε) that correspond to these two types of components. The resulting
tree is often referred to as the reduced tree, and one can effectively work with the reduced tree
instead of the original Γ; this is what is happening in Definition 4.8.(2).

If the limit of an ε-strip sequence exists, as in Definition 4.8, it is denoted by

lim
ε→0

(uε, zε,∆m(ε), E) : Γ −→ S.

It is implicitly understood as a flow-tree with ghost components, so the map factors through its
reduction Γred, as explicitly described in Definition 4.8.(2). In particular, the flowline edges of this
limit are given by the adiabatic limit of the rescaling u ◦ (ε−1) along each flowline component of
non-zero length.

Remark 4.9. The limit of an ε-strip sequence depends on the truncation parameters (δ, η) fixed
initially and the corresponding trees Γ = Γδ,η might not be nested if one decreases the parameters
η, δ → 0. That said, the associated reduced trees Γred can (and we will show will) be nested, in
that Γred

(δ,η) ⊂ Γred
(δ′,η′) for smaller truncation parameters (δ′, η′). This is another technical reason for

reduction. □

4.2. Proof of Proposition 4.3. In this subsection we prove the convergence of ε-strip sequences
to trimmed D−

4 -trees. In the initial setup, there are a number of technical steps which are mirroring
[Ekh07, Section 5] and [Nho24, Section 5]; we thus simply refer the necessary parts of those
manuscripts and continue focusing on the new part of the argument. Specifically, we must build
an adapted cover as in Definition 4.8.

15Note that the spectral network W is oriented opposite to the flowline direction.
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First, in order to build such cover satisfying the component constraints from Definition 4.8.(1),
we proceed as follows. By Lemmata 5.7, 5.13, 5.16 and 5.17 in [Ekh07], the domain △m(ε) itself
admits an adapted cover (D0(ε), D1(ε),W0(ε)). Here the horizontal decomposition subdiskW0(ε) is
obtained by considering subdisks which are neighborhoods of the boundary minima of the required
width O(log(ε−1)).

Remark 4.10. (i) As far as we know, the construction of the domain-adapted cover in [Ekh07,
Section 5] has a gap in the proof of [Ekh07, Lemma 5.4], in the claim that such balls of radius δε
exist (his λ is our ε). It must be justified that there is a uniform upper bound on the boundary
length of the images of uε outside of the union of the domains T ∗Ub(2δ). This upper bound never-
theless exists, as it follows from the truncated reverse isoperimetric inequality that we prove in the
appendix, cf. Theorem A.3.
(ii) Lemmatas 5.6 and 5.7 in [Ekh07] are stated only for exact Lagrangians. However, the only
place the proof uses exactnesss is to establish the O(ε)-estimate on energy. Since this condition is
part of the definition of an ε-strip sequence, the proof goes through verbatim. □

The components of D0(ε) \W0(ε) consist of horizontal subdomains of △m of the three types
required in Definition 4.8.(1). By [Nho24, Lemma 5.15], the fiber components C∞-converge to
the point lim zε. By [Nho24, Lemma 5.17], the ghost components also C∞-converge to a point.
By [Ekh07, Lemma 5.18] (see also [Nho24, Lemma 5.17]), the flowline components C∞-converges
to flowlines, after taking the ε-dependent reparametrization uε(ε

−1s, ε−1t). Therefore, the new
contribution at this point is to construct the adapted cover such that Definition 4.8.(2) holds:
controlling the behavior of the limit flowtree near the branch points.

Given the ε-strip sequence (uε, zε,△m(ε), E), denote by Γ the tree associated to the domain△m(ε),
which is well-defined by the adapted cover constructed above, cf. Remark 4.7. Note that, as
in [Nho24, Lemma 5.18], the ε-finiteness of energy implies that there cannot be flowline edges
of infinite length. Thus, given the bound on the covariant derivative, any leaf in (the subtree
associated to) the D0(ε)-region of Γ corresponds to either a ghost component or a fiber component.
In particular, there can be no leaves that are flowline edges.Furthermore, the following lemma tells
us that there exists at least one external D1-edge of Γ:

Lemma 4.11. There exists at least one external edge of Γ that corresponds to a horizontal com-
ponent in D1(ε).

Proof. Suppose by contradiction that there is no such an external edge. By construction, this
is only if the image of uε lies outside some fixed neighbourhood of the branch points, for small
enough ε. It follows that for the given subsequence, the puncture removal step was unnecessary
and |∇uε| = O(ε). However, there is then a single horizontal strip component which necessarily
must be a fiber component. Therefore, the image of uε converges to the point lim zε and that
implies that the geometric energy must have been zero, which a contradiction. □
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Let us cut the domain △m = △m(ε) along the vertical rays through the boundary minima
of △m that connect to a horizontal boundary component mapping to the fiber. We denote by
△̄m1 , ..., △̄mn the resulting right-adjacent components and by Γmi

the induced tree in Γ associated
to each such components. By the above, the D0(ε)-leaves of Γmi

are all ghost components.

Consider the set of vertices contained in Γmi
that are terminal points of a flowline edge of non-

zero length; such a vertex is not 1-valent. These vertices are ordered by their x-coordinate, and
a maximal vertex (for a given mi) refers to such a vertex with highest x-coordinate within Γmi

.
In particular, given two maximal vertices v, w, their right-adjacent components are necessarily
disjoint. Let v be a maximal vertex, and let Θv = Θv(ε) be the corresponding horizontal domain
in D0(ε) \W0(ε). Then the component Θv associated to a maximal vertex satisfies the following:

Lemma 4.12. Let v ∈ Γ be a maximal vertex as above. Then there exists a branch point b(v) ∈ S
such that the right-adjacent components of Θv(ε) are mapped into the neighborhood T ∗Ub(v)((2 +
η)δ).

Proof. Since △m = D0(ε) ∪ D1(ε) is adapted, the components in D1(ε) map into the region
T ∗Bη,δ ⊂ T ∗S. By maximality, it also follows that the horizontal domains of D0(ε) \W0(ε) right-
adjacent to Θv are either ghosts, fiber components or flowline components of zero length. Since
there are finitely many such components, their images C∞-converge to points, and by construction
the subdisk W0 also converges to points. Since the neighborhoods Ub(2δ + ηδ) are all disjoint
and the right-adjacent component to Θv is connected, it must map into one connected component
T ∗Ub(2δ + ηδ) of T ∗Bη,δ, which determines the branch point b(v) = b ∈ S. □

Now we arrive at the crux of the argument: we must show that Θv(ε), possibly after refining
with vertical cuts, is such that its right-adjacent component not only maps to T ∗Ub(v)(2δ + ηδ)
but does so converging near T ∗∂(Ub(v)(2δ + ηδ)) to an initial flowline ray of the D−

4 -branch point
b(v) ∈ S in the adiabatic limit. This is the content of the following:

Proposition 4.13 (Behavior near D−
4 -points). Let (uε, zε,△m(ε), E) be an ε-strip sequence, v ∈ Γ

a maximal vertex and b(v) ∈ S its associated branch point. Then, after possibly taking a subse-
quence, there exists a sequence of vertical cuts vε for the domain Θv(ε) such that the restriction
uε|Θ→

v
of uε converges to one of the initial flowline rays of b(v), where Θ→

v denotes the right adjacent
component of Θv(ε) after the cuts.

Proof. By construction, the open set Ub(v)(2δ + ηδ) is such that the metric g is flat, the associated
Sasaki metric coincides with the standard flat metric on C2 ∼= T ∗C, and the Betti Lagrangian
L ⊂ T ∗S above this open set splits into the holomorphic cusp component and the smooth sheet
components. Consider the limiting flowline γv associated to the component Θv. Since it is not a
ghost edge, fiber component or zero-length flowline, it must (eventually) enter Bη,δ, specifically
the connected component containing b(v) ∈ S. Choose η′ ∈ (η/2, η) such that γv is transverse to
the boundary ∂Bη′,δ and let v(z) be the final intersection point at which γv is oriented inward.
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After passing to a subsequence, there is a sequence of vertical rays vε for Θv converging to the
point v(z); fix such a sequence of rays. We claim that the energy

∫
λ∗C(ε

−1(uε|vε)) of the ε-scaled
uε converges to zero along these vertical cuts.

Indeed, write the restriction uε|vε = (zε, wε) in coordinates and apply the gradient estimate |∇zε| =
O(ε) to obtain ∣∣∣∣∣

∫
vε

λ∗C(ε
−1uε)|vε

∣∣∣∣∣ ≤ m · sup
∣∣ε−1wε

∣∣ ·|∇zε| .(22)

Here the quantity m appears in the upper bound because the height of Θv is at most m. Since∣∣ε−1wε

∣∣ is uniformly bounded and |∇zε| is of order O(ε), the integral on the left converges to zero
in the adiabatic limit, as claimed.

Let vε(top) and vε(bottom) denote the top and the bottom end-points of each vertical cut vε in
Θv, △vε the right-adjacent components to vε and ∂h(△vε) the horizontal boundary of △vε . Since
the restriction uε|△vε

is Jg-holomorphic, with g = gst, the pointwise symplectic area ω∗
Cuε over △vε

is real and positive, except possibly at finitely many points. Therefore, the symplectic area

(23)

∫
△vε

ω∗
Cuε ∈ R+

is real and positive, which will be used momentarily in Eq. (24). Independently, the restriction
u|∂h(△v) extends to a connected curve in L and, since Θv is a flowline component, ∂h(Θv) maps
to distinct sheets of the Betti Lagrangian L. Given that the smooth sheets of L are disjoint over
Bη,δ, Lemma 4.12 implies that u|∂h(△v) must map to the holomorphic cusp component. Thus the
flowline γv is a cusp-cusp flowline.

Let us finally deduce that γv coincides with an initial trivalent ray at b, as follows. By applying
Stokes’ theorem, the ε-scaled energy reads

ε−1

∫
△vε

ω∗
Cuε = ε−1

∫
∂h△ε

λ∗
C∂uε − ε−1

∫
vε

λ∗
Cuε|vε = ±

(
(z(vε(top))

3/2 − (z(vε(bottom))3/2
)
− ε−1

∫
vε

λ∗
Cu|vε .

(24)

By Eq. (22), the second term on the right hand side of Eq. (24) converges to zero in the adiabatic
limit ε→ 0. Since (z(vε(top)) and (z(vε(bottom)) converge to z(v), the right hand side of Eq. (24)
converges to ±z(v)3/2. By Eq. (23), the left hand side of Eq. (24) is real and positive and thus
±z(v)3/2 is also real and positive. This can only occur if the (image of the) point v lied on one of
the initial rays for its associated branch point b(v). Since the cusp-cusp flowlines form a singular
foliation, the leaves of which lie outside b(v), except for the three trivalent rays, we see that the
restriction uε|Θv must converge to one of the initial rays coming out of b(v) in the adiabatic
limit. □
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Let us apply Proposition 4.13 to each maximal vertex vi associated to the subdomains △mi
for

the initial adapted cover (D0(ε), D1(ε),W0(ε) at the beginning of the argument. Proposition 4.13
implies that these adapted covers can be refined to satisfy the condition in Definition 4.8.(2.i). The
maximality condition Definition 4.8.(2.ii) follows from our choice of domains △mi

and maximal
vertices. In consequence, there exists an adapted cover for the given ε-sequence such that its limit
exists.

Let {Γ} be the set of all D−
4 -trees in W with the univalent edges given by the initial edges of

(uε, zε,△(ε), E), with energy less than E. The energy and the endpoint constraint imply that the
set of such trees must be finite. By construction, each component limε→0(uε, zε,△(ε), E) must
be a trimmed D−

4 -tree in {Γ}, since the initial edges in Proposition 4.13 are directed inward.
Furthermore, the internal vertices of such trees can only appear at the joints of W(E). It follows
that the D−

4 -tree is contained entirely in W(E). Furthermore, in the case z lies in the interior of
W(E), the tree cannot be broken because their soliton classes cannot concatenate. Thus we have
established Proposition 4.3. □

4.3. Proof of Theorem 4.2. For Part (1), suppose that the point z ∈ Wc is not uniformly disk-
free. By definition, there exists an ε-strip sequence (uε, zε,△m(ε), E) with z = lim zε. Consider
the spectral subnetwork W(E) ⊂ W with energy at most E and fix the truncation parameters
δ, η ∈ R+ as in the proof of Proposition 4.3, so that the only vertices of W(E) that lie in Bη,δ are
the initial trivalent vertices. Proposition 4.3 implies that, after possibly considering a subsequence,
the limit lim(uε, zε,△m(ε), E) exists and it is a trimmed D−

4 -tree through z with energy below E.
Furthermore, such a D−

4 tree must be entirely contained in W(E). It thus follows that z ∈ W(E),
which contradicts the initial hypothesis z ∈ Wc. Part (2) follows analogously. □

5. Family Floer and Non-abelianized Local Systems

Let (S,m,Λ) be a Betti surface and L ⊂ (T ∗S, ωst) a Betti Lagrangian of rank n. The object
of this section is two-fold. First, in the exact case, to construct two functors F and ΦW that
carry GL1-local systems on the Betti Lagrangian to GLn-local systems on the base S and show
that they are equivalent. Second, finish the proof of Theorem 2, which concerns both exact and
meromorphic Betti Lagrangians. The construction of the functors depends on the existence of a
compatible spectral network W ⊂ S. In a nutshell:

(1) The functor ΦW : Loc†1(L) −→ Loc†n(S) is constructed by considering a variant of D−
4 -trees,

with the parallel transport of image local system being modified according to the interac-
tion of a given path in S with the spectral network W. It is constructed in Section 5.1.16

(2) The functor F : Loc†1(L) −→ Loc†n(S) is constructed by considering continuation maps be-
tween the Family Floer cohomology groups of the Lagrangian L with the cotangent fibres

16Technically, ΦW(V ) has only parallel transport defined for W-paths. In contrast, F(V ) has parallel transport
for all paths.
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of T ∗S. It is constructed in Section 5.2.

(3) A natural transformation between these two functors is established in Section 5.3. The
proof of Theorem 2 is then completed in Section 5.4.

Note that the projection L −→ S, given by restricting to L the projection T ∗S −→ S to the zero
section, is a branch cover and thus the push-foward of a local system on L does not give a local
system on S, just a constructible sheaf on S. The point of these two functors above is that they
conceptually explain how to correct such constructible sheaf on S (coming from the push-forward
of a local system on L) back to a local system on S. Each approach presents a different type of
correction: ΦW uses the detour paths coming from W to correct the lack of flatness, in line with
[GMN13b; GMN13a; GMN14], whereas F uses pseudo-holomorphic strip counts. As one of the
main themes of this article is the comparison between spectral networks and Floer theory, we shall
explain how the former is an expression of the adiabatic limit of the latter.

In the above, Lock(M) denotes the dg-category of rank-k local systems of C-modules on a smooth

manifold M , and Loc†k(M) denotes the dg-category of rank-k twisted local systems of C-modules
on a smooth manifold M . We recall that a twisted local system on M is a local system on the
unit cotangent bundle T∞M ofM whose monodromy around the spherical cotangent fiber is given
by −Id. The unit cotangent bundle will also be denoted M̊ and its projection to the base by
π : M̊ −→ M . There are equivalent descriptions of local systems of C-modules, e.g. as locally
constant sheaves, as modules Fun(Π(M),C-mod) over the fundamental ∞-groupoid Π(M) of M ,
or as C-modules over chains C−∗(ΩM ;C) on the base loop space; e.g. cf. [Lur17, Appendix A].

For an open surface M = K(π1(M), 1) and M̊ ∼= M × S1, so (twisted) local systems effectively
translates to representations π1(M,m) −→ GL(V ) of the fundamental group of M , where V is a
C-vector space and m ∈M a base point, which will be implicitly understood. Such representations
are equivalent to modules over the group ring C[π1(M)], and the functors F and ΦW will essentially
be described as

F,ΦW : C[π1(L̊)]-mod −→ C[π1(S̊)]-mod.

In fact, both F,ΦW will be described locally (for short paths) and thus we shall be considering
paths with varying endpoints. So our precise choice for describing Lock(M) will be that of the
fundamental ∞-groupoid. That is, for this manuscript, a local system L ∈ Lock(M) consists of
the data of a stalk Lm at every point m ∈M , where Lm is a k-dimensional C-vector space, and an
isomorphism L(γ) : Lx −→ Ly for any continuous path γ : [0, 1] −→M , γ(0) = x, γ(1) = y, which
only depends on the homotopy class of γ. The structure group of the associated bundles for these
local systems will always be GLn(C), if we are in a given rank n.

Remark 5.1. (1) The branch cover π : L −→ S lifts to a branch cover π̊ : L̊ −→ S̊. In this case,

there are identifications L̊ ∼= L× S1, S̊ ∼= S × S1, and the latter map reads π̊ = (π, id).



70 ROGER CASALS AND YOON JAE NHO

(2) Intuitively, the functors F,ΦW : C[π1(L̊)]-mod −→ C[π1(S̊)]-mod will be described by giving

a group algebra morphism C[π1(S̊)] −→ C[π1(L̊)]. That is, they are described by explaining how

to lift paths in S̊ to paths in L̊. Rigorously, a path in S̊ with two endpoints z, z′ ∈ S̊ will lift to
a collection of paths in L̊ whose endpoints are allowed to be in a set of 2n points (the pre-images

of z, z′). Such paths are not morphisms in the fundamental groupoid of L̊: they would roughly be
morphisms between direct sums of objects, which only make sense once we consider C-modules.
This is a technical reason to describe the functors between the module categories.

(3) For an open surface M , there is a dg-equivalence Lock(M) ≃ Loc†k(M) once a spin structure
is chosen; cf. Appendix A.3 or [CL22, Appendix B.2]. Since protected spin characters are not the
scope of this article, this effectively implies that F,ΦW can be understood as functors carrying a
GL1-local system on the Betti Lagrangian L ⊂ T ∗S to a rank GLn-local system on the base S. □

Due to Remark 5.1.(2), we adopt the following notational conventions. First, π1(S̊) will stand for

the relative homotopy classes π1(S̊, tS), where tS is a collection of points in S, often understood
implicitly by context. Second, consider the functor f ∗ : Loc†(L) −→ Loc†(S) that is the pull-back

of a group algebra morphism f : C[π1(S̊)] −→ C[π1(L̊)] and V ∈ Loc†(L). Given a path γ ⊂ S
with

f(γ) =

g∑
i=1

aiτi, τi ∈ π1(L̊, tL), ai ∈ C

a linear combination of relative homotopy classes in π1(L̊, tL), with the points in tL projecting to
those in tS, we denote

f ∗(V )(γ) =

g∑
i=1

aiV (τi)[τi]

to indicate that the parallel transport f ∗(V )(γ) of f ∗(V ) along γ is given by
g∑

i=1

aiV (τi)

and zero otherwise, and that the map f ∗ in fact admitted the homotopy refinement f which
(further) keeps track of the relative homotopy classes [τi], a linear combination of which gives
the image of γ. This notation is used in the following subsections, c.f. e.g. Definition 5.6 and
Corollary 5.22.

Remark 5.2. Alternatively, we can add the dependence on base points tS and tL explicitly in the
notation, as in Section 3.5. Such notation becomes rather excessive and we have leaned towards
having such endpoints of relative homotopy classes implicitly understood. This is not a particular
challenge: the sets are always given a point in S, or S̊, where we will consider the cotangent fiber,
and its lifts in the Betti Lagrangian L ⊂ T ∗S, or L̊. □
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5.1. The functor ΦW: non-abelianization of local systems. The goal of this section is to
define the functor

ΦW : Loc†1(L) −→ Loc†n(S),

using a finite spectral network W compatible with a Betti Lagrangian L ⊂ T ∗S. It formalizes the
constructions in [GMN13b; GMN13a; GMN14], where such types of local systems were studied in
the context of providing coordinates for the moduli of flat connections on Riemann surfaces, see
[GMN13b, Section 10.1]. In particular, the images ΦW(V ) of (twisted) local systems V ∈ Loc†1(L)
encode the formal generating functions of framed 2d−4d states from [GMN13b] after evaluating the
spin character at y = 1. The local systems ΦW(V ) will be described by giving their stalks ΦW(V )z
at z ∈ S̊ and the associated parallel transport isomorphisms ΦW(V )(ρ) : ΦW(V )z −→ ΦW(V )z′

along certain paths ρ : [0, 1] −→ S̊ with ρ(0) = z, ρ(1) = z′.

Remark 5.3. For notational ease, we often denote by z ∈ S̊ points in S̊, even if z also denoted
points in S. Given a regularly parametrized path in S that starts at ρ(0) = z ∈ S, the unit cotangent

lift via the velocity vector ρ′(0) at z gives a unique point in S̊ projecting to z. That is the type of

point we also denote z ∈ S̊, as it is uniquely determined by and determines z ∈ S once the path is
chosen. □

The stalks ΦW(V )z at z ∈ S̊ are simple to describe for points z ∈ S̊ with π(z) ̸∈ KL not a branch
point. By definition, we choose

ΦW(V )z := Vz1 ⊕ · · · ⊕ Vzn ,

where z1, . . . , zn ∈ L̊ are the lifts to L̊ of the n-preimages of π(z) ∈ S via π : L −→ S.17 The

requirement that ΦW(V ) ∈ Loc†(S) determines the stalks at all z ∈ S̊. If V ∈ Loc†1(S), Vzi is a
rank-1 C-module and ΦW(V )z is therefore a rank-n C-module.

The parallel transport isomorphisms ΦW(V )(ρ) : ΦW(V )z −→ ΦW(V )z′ are more interesting and
depend on the spectral network W. In order to describe them, we shall define parallel transport
for an open dense set of paths ρ that interact generically with W, as follows.

Definition 5.4 (W-adapted paths). Let I ⊂ R be a finite closed interval. An immersed path

ρ : I → S̊ is:

(i) W-adapted, if its projection π
(
ρ) : I −→ S is immersed and transverse to W ⊂ S.

(ii) free, if the image of π
(
ρ) is embedded and disjoint from W.

(iii) short, if its the unit-velocity lift of an embedded path in S intersecting W transversely and
exactly once. □

Any relative homotopy class with endpoints in Wc is represented by a W-adapted path, as in
Definition 5.4. Given a W-adapted path, we can trivialize the sheets of L along the path π(ρ): we

17Since V is a twisted local system, all choices of lifts are isomorphic.
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denote by ρi be the lifts of ρ to L̊, i ∈ [1, n]; they are given by lifting π(ρ) to n lifts in L and then

considering the unit-velocity lifts to L̊.

Let ρ : [−ε, ε] → S̊ be a short W-adapted path (with its projection) intersecting W at a point
z = ρ(0) in an (ij)-wall w. Let S(z;w) := {s(z;w)} be the set of soliton classes at z: each s(z;w)
defines a regular homotopy class with relative endpoints zj and zi, oriented from the former to the
latter.We denote by s̊(z) be the unit-velocity lift of s(z;w) to L̊ and set the signs sgn(ρ)(z) = 1 if the
frame

〈
W′(z), ρ′(0)

〉
is positively oriented, and −1 otherwise. We need the following deformations

for short paths. If sgn(ρ)(z) = 1, then we deform π(ρ)|[−ε,0] near 0 so that it becomes tangential

to W at 0 and directed against the orientation on W: denote by ρ− the lift to S̊ of such resulting
path. Similarly, let ρ+ be the lift to S̊ of a deformation of π(ρ)|[0,ε] near 0 so that it becomes
tangential to W at 0, now in the same direction as that of W. The following definition formalizes
the detour paths in the physics literature, cf. e.g. [GLM15, Section 3.2] or [Lon18].

Definition 5.5 (Detour paths). Let ρ : [−ε, ε] be a short W-adapted path with sgn(z) = +1 and
ρ± its two deformations. By definition, the regular homotopy class [̊s(ρ)], with relative endpoints
ρi(−ε) to ρj(ε), is given by

[̊s(ρ)] :=
[(
ρ+

)i ◦ s̊(z) ◦ (ρ−)j].
For sgn(z) = −1, the regular homotopy class [̊s(ρ)] is defined to be [̊s(ρ)] :=

[
ρi− ◦ s̊(z)◦ρi+

]
, where

ρ̄ denotes the inverse path. □

Intuitively, the representative
(
ρ+

)i ◦ s̊(z) ◦ (ρ−)j of [̊s(ρ)] in Definition 5.5 is (the lift of) a path
that starts as ρ, when it hits z it takes a detour going around the soliton s(z;w), and then goes
back to z and continues the path ρ. These detour paths are the crucial correction so as to define
ΦW in a manner that ΦW(V ) is indeed a local system on S̊, and not merely a constructible sheaf.
For instance, at a D−

4 -singularity, these detour paths correct the non-trivial monodromy around a
branch point to be the identity. Specifically, the parallel transport isomorphisms for ΦW(V ) are
defined as follows:

Definition 5.6 (Parallel transport for ΦW). Let V ∈ Loc†1(L), (W, µ) and indexed spectral net-

work, and ρ : I −→ S̊ a W-adapted path. By definition, the parallel transport isomorphisms
ΦW(V )(ρ) are defined as follows:

(i) If ρ is free, then

ΦW(V )(ρ) :=
n∑

i=1

V (ρi)[ρi],

where the sum runs over the n lifts ρi of ρ to L̊, i ∈ [1, n].
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(ii) If ρ is short, with its projection intersecting W at z, then

ΦW(V )(ρ) :=
n∑

i=1

V (ρi)[ρi] +
∑

s̊(z)∈S(z;w)

µ(̊s(z))[̊s(ρ)]V
(̊
s(ρ)

)
,

where the second sum runs over all the soliton classes s(z;w) associated to z ∈ W.

(iii) If ρ is given as a composition ρ = ρ1 ◦ ρ2 ◦ . . . ◦ ρn, each ρi either short or free, then

ΦW(V )(ρ) = ΦW(V )(ρ1) ◦ ΦW(V )(ρ2) ◦ . . . ◦ ΦW(V )(ρk).

□

Definition 5.6 allows us to define parallel transport for all W-adapted paths, by declaring parallel
transport along a homotopy class to be independent of a representative. For instance, if a class
is represented by a free path, then Definition 5.6.(i) applies. The contributions from the second
summand of Definition 5.6.(ii) are said to come from detour paths, in line with Definition 5.5. It
is possible to verify combinatorially by hand that Definition 5.6 yields a well-defined local system,
independent of the representative of a given (twisted) homotopy class of a path, see e.g. [GMN13b,
Section 5.6]. Given the Floer-theoretic framework we develop, this property will be rather a
consequence of interpreting W in terms of pseudo-holomorphic strips.

Remark 5.7. A brief explanation of the homotopy invariance from a Floer-theoretic viewpoint
is as follows. Given a W-adapted path ρ, we can consider the exact Lagrangian isotopy T ∗

π(ρ(t))S

given by moving the cotangent fibres along the path ρ. After an appropriate choice of (a family
of) almost complex structures, we consider continuation strips with boundary on L and T ∗

π(ρ(t))S

and, using the data of ρ(t) and the (twisted) local system V , we orient the moduli space of such
strips. The cobordism type of such moduli space depends only on the twisted isotopy class of ρ, and
thus invariance follows once one shows that the formal sum of the boundaries of such continuation
strips coincides with ΦW(V )(ρ). □

Note that Definition 5.6 suffices to define parallel transport for paths with endpoints in the dense
complement Wc. This is in line with the current understand of wall-crossing phenomena and
related constructions in the literature. In contrast to see, the Floer theoretic parallel transports
are well-defined for paths with endpoints on W.
Due to the presence of Reeb chords at infinity, given by the data Λ of the Betti surface, we also
have an infinite version of W-adapted paths. By definition, an infinite path ρ : (−∞,∞) → S̊ is
said to be W-adapted if ρ is W-adapted over any interval [−N,N ], N ∈ N, with a uniformly finite
number of intersection points with W, and its projection π(ρ(t)), t → ±∞ asymptotes to radial
Reeb chord rays near a subset of marked points. The discussion above all apply to these types of
paths as well.
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Given a Reeb chord r of a Legendrian link in Λ at a marked point m ∈ m. By Proposition 2.19,
there exists a small sectorial neighborhood

Sε(r) ∼= {(eiθ, r) ∈ S1 × R : θ ∈ [θ0 − ε, θ0 + ε], r > R},

with R ∈ R+ large enough, such that the Reeb chord r corresponds to θ0 and r → ∞ and Sε(r)
contains only the edges of W that are asymptotic to r. Let ρ(r) : (−∞,∞) −→ S be the infinite
path given by smooth the boundary ∂Sε(r), with ρ(∞) = ρ(−∞) = m, which we can assume
intersects transversely W. Such infinite paths ρ(r) are said to be the Reeb paths of r. The
following result establishes that the morphism of the functor ΦW over a Reeb path, even with its
homotopy refinement, is an invariant of the Hamiltonian isotopy class of L ⊂ (T ∗S, λst), up to
compactly supported Hamiltonian isotopy.

Theorem 5.8 (Invariance of soliton classes for Reeb paths). Let (S,m,Λ) be a Betti surface, r a
Reeb chord of a component of Λ near a marked point with Reeb path ρ(r), and L ⊂ (T ∗S, λst) an
exact Betti Lagrangian endowed with a compatible spectral network W ⊂ S. Then ΦW(V )(ρ(r)) is
an invariant of L, for any V ∈ Loc†(L) and up to compactly supported Hamiltonian isotopy.

Theorem 5.8 will be a consequence of the results we establish in Section 5.2 and Section 5.3,
c.f. Theorem 5.24.

5.2. The functor F: Family Floer and local systems. The goal of this section is to define a
functor

F : Loc†1(L) −→ Loc†n(S)

using Floer-theoretic methods, and independently of a choice of a spectral network in S. For that,
we use a version of Family Floer cohomology. Family Floer cohomology was initially pioneered
by K. Fukaya, see e.g. [Fuk02], along with [Abo14] and references therein. In brief, adapting
this framework to exact Betti Lagrangians allows us to define a type of Floer cochain complexes
CF •(T ∗

z S, L), recording Lagrangian intersections between L ⊂ T ∗S and the cotangent fiber T ∗
z S ⊂

T ∗S, and continuation maps between these as z ∈ S varies. Such maps are defined by studying
certain (cobordism type of) moduli spaces of pseudo-holomorphic strips. In particular, given
a path between z, z′ ∈ S, it is possible to construct a parallel transport from CF •(T ∗

z S, L) to
CF •(T ∗

z′S, L), which is what ultimately yields the functor F. This section presents the necessary
details to construct Family Floer cohomology for Betti Lagrangians and use it to define F. For the
rest of the section, we will assume that L is an exact Betti Lagrangian.

5.2.1. Framework for Floer cohomology. Let L ⊂ (T ∗S, ωst) be a Betti Lagrangian. The difference
between Betti Lagrangian and other types of Lagrangians previously studied in the literature
(e.g. closed cases, or partial wrappings in Liouville sectors) is the existence of horizontal ends
for the former, c.f. the conical and O(−1)-ends in Section 2. These ends naturally appear when
studying spectral curves, and thus we now develop the Floer-theoretic techniques for them. In this
context, the type of Hamiltonian isotopies that we employ is described as follows:
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Definition 5.9. A Hamiltonian H : T ∗S → R is said to be cylindrical if it is of the form H = h · r
outside the radius-R disk bundle D∗

RS, for some sufficiently large R ∈ R+, where h : S̊ → R is a
smooth function on the unit sphere bundle and r : T ∗S → S is the (radial) distance coordinate
to the zero section. Such a Hamiltonian H is said to have compact horizontal support if the
projection π(supp(dH)) lies in a pre-compact subset of S. Families of Hamiltonians parametrized
over a compact manifold are said to be uniformly horizontally supported if these Hamiltonians are
themselves horizontally supported over a compact set and are uniformly cylindrical. □

Let Z be the Liouville vector field on T ∗S uniquely determined by ιZωst = λst. By definition, an
ωst-compatible almost complex structure J is cylindrical if LZJ = J for large enough r. As in
[Ekh+13], we deform the Sasaki almost complex structure to make it cylindrical via

Jcyl :=

[
0 β(r)−1g−1

−β(r)g 0

]
(25)

where β : [1,∞) → R+ is a smooth increasing positive function such that ρ(r) ≡ 1 near r = 1 and
ρ ≡ r near infinity. We onwards implicitly assume that the chosen (families of) cylindrical almost
complex structure J agree with Jcyl outside the cotangent bundle over a pre-compact subset of S.

Remark 5.10. For simplicity, we provide the construction of F for exact Betti Lagrangians. The
key result obtained (e.g. Theorem 2) for the WKB case is similar: the presence of O(−1)-ends,
rather than conical or cylindrical ends, requires modifying some of the arguments but the qualitative
descriptions remains the same, as illustrated by several of the results proven above in both settings.
However, in the current paper, we will not construct the full functor F for the non-exact case,
though we essentially compute it for infinitesimally short line segments. □

Let J (T ∗S) denote the space of compatible almost complex structures on (T ∗S, ωst). To in-
troduce the precise Floer data needed to construct Floer cochain complexes, we use the following
interplay between the certain Lagrangians P ⊂ T ∗S and almost complex structures:

Definition 5.11. Let Js ∈ J (T ∗S) be a 1-dimensional family of almost complex structures,
with real parameter s ∈ R ⊂ C. By definition, a Lagrangian P ⊂ T ∗S is said to be uniformly
geometrically bounded with respect to Js if it is geometrically bounded with respect to the family
of metrics induced by Js and ωst. A 1-dimensional family of Lagrangians Ps is said to be uniformly
geometrically bounded if given the associated movie totally real submanifold {(Ps, s)} ⊂ (T ∗S ×
C, ωst ⊕ ωst), there exists a constant C ∈ R+ and a Js-compatible symplectic form ωPs such that
(Ps, s) is Lagrangian and the triple (ωPs , Js, (Ps, s)) is geometrically bounded. □

A summary result of the needed outcome from the literature on Lagrangian Floer theory reads
as follows:

Proposition 5.12 (Floer Complexes). Let P,K ⊂ (T ∗S, ωst) be a transverse pair of spin La-
grangians, each endowed local systems VP ,VK of C-modules and with chosen spin structures. The
following holds:
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(1) Let JP,K : [0, 1] → J (T ∗S) be a generic time-dependent family of cylindrical almost complex
structures18 such that P and K are uniformly geometrically bounded. Then, there exists a
cochain complex

(CF ∗((P,VP ), (K,VK); JP,K), ∂),

known as the Lagrangian Floer complex, generated by the intersection points in P ∩K and
whose differential is obtained by counting the 0-dimensional part of the moduli space of
JP,K-holomorphic strips bounded by P and K.

(2) The chain-homotopy type of the complex in (1) is independent on the choice of JP,K: in
particular, a homotopy from JP,K to J ′

P,K, for which P and K are uniformly geometrically
bounded, induces a quasi-isomorphism

(CF ∗((P,VP ), (K,VK); JP,K), ∂) −→ (CF ∗((P,VP ), (K,VK); J
′
P,K), ∂).

(3) Let Ks : K × [0, 1] → T ∗S be a Lagrangian isotopy, with associated local systems VKs,
such that either its movie is uniformly geometrically bounded, or the isotopy generating Ks

is a composition of a compactly supported Hamiltonian isotopy with a global Hamiltonian
isotopy fixing P . Then {Ks}s induces a continuation quasi-isomorphism

c : (CF ∗((P,VP ), (K0,VK0); JP,K), ∂) −→ (CF ∗((P,VP ), (K1,VK1); JP,K), ∂),

which is compatible with concatenation, and depends on {Ks,VKs} only up to chain homo-
topy.

(4) If P,K are both Maslov zero Lagrangians, then the differential of (1) vanishes and thus

(CF ∗((P,VP ), (K,VK); JP,K), ∂) ∼=
⊕

x∈P⋔K

(hom(VP (x),VK(x))).

is the C-module generated by the intersection points, endowed with the zero differential. □

Proof. For P,K closed Lagrangians and VP ,VK , the Lagrangian Floer complex and its invariance
were established in [Flo88]. A more contemporary treatment which includes the construction and
invariance of such complexes for exact and monotone Lagrangians is [Oh15, Chapter 16]. The case
were the local systems VP ,VK are non-trivial is addressed in [Kon95]. This addresses Parts (1)
and (2) in these cases. The method of moving Lagrangians, for Part (3), was introduced in [Oh93],
with [Oh15, Chapter 14.4] providing the necessary energy estimates. For P,K (and their movies)
not necessarily compact Lagrangians, but geometrically bounded, the statement follows by using
the monotonicty inequalities introduced in [AL94, Section 5], cf. also the arguments surrounding
the proof of [GPS20, Proposition 3.19]. For Part (4), with P,K Maslov 0, the vanishing of the
differential is a consequence of the virtual dimension of the moduli space of strips between P and
K: it necessarily has to be −1 and so, for regular Floer data, it must be empty. □

18This is sometimes known as the Floer data.
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The case of interest in this manuscript is P = T ∗
z S a cotangent fiber transverse to L, and K = L

a Betti Lagrangian. For Proposition 5.12.(4) to apply, we must ensure the hypothesis of Maslov 0
for L. It is verified as follows:

Lemma 5.13. A Betti Lagrangian L ⊂ T ∗S is Maslov 0.

Proof. By definition, the metric g induces a complex structure on S, and L is holomorphic over some
neighborhood of the D−

4 -singularities. Now, over any pre-compact subset, the smooth sheets of the
rescaled εL ⊂ T ∗S uniformly C∞-converge to the zero section, outside of some fixed neighborhood
of the D−

4 -singularities. Since the zero section is holomorphic and L is holomorphic near the branch
points, εL is arbitrarily close to being holomorphic over any precompact subset of S as ε → 0.
Therefore the phase function of εL is arbitrarily close to zero over any pre-compact subset of S
and thus L is Maslov 0 (cf. also [Nho24, Section 6.2.1]). □

The computation of the Floer complexes in Proposition 5.12.(1) and the continuation maps in
Proposition 5.12.(3) is typically challenging: for reasonably generic Lagrangians P,K, there is no
explicit description of the continuation maps beyond their definition. This in part is caused by a
difficulty in explicitly computing the (cobordism type of the moduli spaces of) pseudo-holomorphic
strips involved in these maps. An important conceptual point is that in our setting we are able
to use a spectral network W adapted to a Betti Lagrangian L ⊂ (T ∗S, ωst) in order to succeed at
explicitly computing such pseudo-holomorphic strips, at least in the adiabatic limit. For instance,
the arguments in Section 4 ensure that, adiabatically, there are no pseudo-holomorphic strips
bounded by εL and T ∗

z S for z ∈ Wc, cf. Theorem 4.2.(1), which is the key ingredient behind
showing that the continuation strips for (CF ∗(T ∗

z S, L), ∂) with z ∈ ρ moving along a W-free path
ρ are “trivial” (we will make this notion of “trivial strips” precise using Lemma 5.28 and the
discussion afterward).

Remark 5.14. (1) The dependence on spin structures in Proposition 5.12 can be more compactly
repackaged by passing to sphere bundles, after choosing the Floer data. This is related to the map
ΦW in Section 5.1 being defined on homotopy classes of paths on the unit sphere bundle; see also
Remark 5.1.(3).
(2) We often write CF ∗(P,K) for the Lagrangian Floer complex, due to the invariance Propo-

sition 5.12.(2), and implicitly understanding ∂ and the local systems if the context allows for that.
For instance, if P = T ∗

z S is a cotangent fibre, the local system VK will always be trivial. □

5.2.2. The stalks of F(V ). A naive application of Proposition 5.12 leads to the following ansatz for

constructing F : Loc†1(L) −→ Loc†n(S). Given a local system V ∈ Loc†1(L) of rank-1 C-modules,
we define the stalk F(V )z of F(V ) at a point z ∈ S to be C-module underlying CF (T ∗

z S, L;V ).
The following first considerations then appear:

(1) F(V )z is well-defined as a cochain complex. Thus considering just its underlying C-module
is not invariant unless the differential vanishes.19

19In which case the C-module coincides with its cohomology and is invariant.
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(2) F(V )z is a rank-n C-module if L ⊂ T ∗S is a Betti Lagrangian only if z ̸∈ KL is not a
branch point.

(3) The stalk F(V )z and the resulting local system F(V ) are independent of the adiabatic
parameter ε, up to isomorphism. However, ΦW and the comparison to spectral network
certainly requires passing to the adiabatic limit ε→ 0.

The three consideration are intertwined, and they are all solved at once by considering z ∈ Wc

and introducing an adiabatic parameter ε → 0. This is achieved by considering the stalk F(V )z
to be C-module underlying CF (T ∗

z S, εL;V ) for ε small enough. This is well-defined and addresses
the above thanks to the following fact, which allows us to choose the Floer datum to be Jcyl.

Proposition 5.15. Let z ∈ Wc and Uz ⊂ S be the disk-free neighborhood. Then, there exists
ε(z) ∈ R+ the moduli space of non-constant Jcyl-holomorphic strips between εL and T ∗

wS is empty
for any w ∈ Uz.

Proof. Choose ε ∈ R+ small enough such that εL lies in the unit disk bundle. Then, the integrated
maximum principle argument (see e.g. [Nho24, Lemma 3.28]) implies that there exists a bijective
correspondence between Jcyl-holomorphic strips bounded by εL and T ∗

z S, and Jg-holomorphic
strips bounded εL and T ∗

z S. Indeed, the integrated maximum principle guarantees that the images
of the Jcyl and Jg-holomorphic strips lie within the unit disk bundle, and Jcyl ≡ Jg coincide inside
this disk bundle. Then Theorem 4.2 implies the statement. □

Remark 5.16. The dependence of such putative stalk F(V )z (more precisely, the Lagrangian L) on
the adiabatic parameter ε can also effectively be removed, at the cost of introducing ε-dependence on
the Floer datum instance. Indeed, it follows from [SW06, Remark 1.3] that the rescaling v(s, t) =
ε−1 · u(s, t) gives a bijective correspondence between Jg-holomorphic discs bounded by εL and T ∗

z S,
and Jε−1g-holomorphic discs bounded by L and T ∗

z S. □

Let V ∈ Loc†(L), then the above discussion, including Proposition 5.15 and Remark 5.16, leads to
the following definition for the stalks of F(V ) ∈ Loc†(S):

Definition 5.17 (Stalks for F(V )). Let V ∈ Loc†(L) and z ∈ S̊ be such that π(z) ∈ Wc and
ε ∈ R+. The stalk F(V )z is defined to be

F(V )z := CF (T ∗
z S, εL) =

n⊕
i=1

Vzi.(26)

where zi ∈ L̊ are the lifts of z. That is, the stalk at z is the Lagrangian Floer complex defined
by the rescaled Betti Lagrangian εL and the cotangent fiber T ∗

π(z)S ⊂ T ∗S, where all the elements
are concentrated in degree 0 and the differential is trivial. □

Two comments on Definition 5.17:
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(1) We use of the sphere bundles S̊ and L̊ in order to have signs over Z (and thus C) well-
defined. As said above, spin structures could be used instead when working with the Betti
Lagrangian L and cotangent fibres in T ∗S. An argument in favor of using sphere bundles is
that one can refine this framework to quantum local systems, where the q-variable, keeping
track of the protected spin character y in [GMN13a, Section 3.2] (see also [GMN12, Section
4.2]), is now the value of the monodromy of the local system along the sphere fiber. This
restricts to twisted local systems when q → −1, which is our setup, but it is also valuable
to develop the theory without specializing the q-variable and thus we setup the groundwork
for such generalization to be rather natural.

(2) The dependence on ε is emphasized as a reminder that computations take place in the adi-
abatic limit ε→ 0, where W can be characterized Floer-theoretically. It is nevertheless not
strictly necessary, which can be argued as follows. First, L is a uniformly bounded multi-
graph and thus there exists a radius R ∈ R+ such that the Betti Lagrangian L ⊂ D∗

RS lies
within the disk bundle of T ∗S of radius R. Second, consider a smooth family βs(r), s ∈ [ε, 1],
of deformation functions such that

(i) Each βs(r) is constant for r ≤ R and are uniformly linear at infinity r → ∞,
(ii) βε = ε for r ∈ [0, 2R) and βε = r for sufficiently large r,
(iii) β1 = 1 for r ∈ [0, 3R).

If Js
cyl = Jβs

g denotes the associated family of deformed Sasaki almost complex structures,

then Js
cyl is such that Jε

cyl = Jε−1g for r ≤ R and J1
cyl = Jg for r ≤ R. Also, the family is

uniformly geometrically bounded and of generalized contact type, in the sense that r2β−1
s

are all Js
cyl-plurisubharmonic. Therefore, we can apply Proposition 5.15 and Remark 5.16

and identify CF (T ∗
z S, (εL,VεL), Jcyl) ∼= CF (T ∗

z S, (L,VL), J
ε
cyl), the latter being defined

using Jε
cyl. Note that interpolating CF (T

∗
z S, L; J

s
cyl) from s = ε to s = 1 can be done using

standard techniques because there are no moving boundaries involved.

(3) The stalks for F(V )z are defined for points in z ∈ W. Similarly, the parallel transport in
Section 5.2.3 is also defined for paths with endpoints on W. The choices of Floer data,
which are done homotopy-coherently, allow for such well-definedness on the entirety of S.

The stalks for F(V ) given as in Definition 5.17, we now move to the parallel transport for the
twisted local systems F(V ). As with Section 5.1, the parallel transport isomorphisms contain the
more subtle and interesting information, in this case that of continuation strips.
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5.2.3. The parallel transport of F(V ). Let V ∈ Loc†1(L) be a twisted GL1-local system. In Sec-
tion 5.2.2, we explained the choice of stalks for F(V ), which consisted of F(V )z = CF (T ∗

z S, εL) =⊕n
i=1 Vzi for a point z ∈ S̊ whose projection to S is not a branch point of the projection L −→ S.

Given a path ρ : [0, 1] −→ S̊, with z = ρ(0) and z′ = ρ(1), we now want to construct a paral-
lel transport isomorphism F(V )(ρ) : F(V )z −→ F(V )z′ . This will uniquely determine the image
twisted local system F(V ) ∈ Loc†n(S). We will first construct a local system Fϵ(V ) for each adi-
abatic parameter ϵ > 0 with the stalks as in Definition 5.17, for points contained outside some
ε-dependent nested neighbourhood of W, that converges to Wc as ε→ 0. These local systems will
come with the property that for all 0 < ε′ < ε, there is a unique natural isomorphism Fϵ(V ) and
Fϵ′(V ), which stabilizes to the identity map over morphisms with end-points onWc. We then define
F(V ) as the direct limit local system. Intuitively, the parallel transport for Fϵ(V ) is a generalization
of the continuation maps in Proposition 5.12.(3). The continuations maps in Proposition 5.12.(3)
cannot be applied in our case because the (moving) fibers T ∗

z S are not geometrically bounded.
We will consider instead deformed continuations strips, which introduce correction terms to the
standard continuation maps that account for the failure of geometric boundedness of the moving
fiber. Such parallel transport is constructed as follows.

Let Hs : T
∗S × [0, 1] −→ R be a uniformly horizontally supported time-dependent Hamiltonian

isotopy generating the fiber transport along the inverse path of ᾱ of α, Xs its Hamiltonian vector
field and ψs its flow, and consider the infinite strip Z := Rs × [0, 1]t ⊂ C. Choose a smooth,
increasing function l : (−∞,∞) → [0,∞) such that l = 0 near −∞ and l = 1 near +∞. We call
such functions elongation functions. Let J0(t) and J1(t) be a family of almost complex structures
obtained by compactly supported perturbations of Jcyl, and let J(s, t) be a family of almost complex
structures such that

(i) J(s, t) = J0(t) for s≪ 1 and J(s, t) = J1(t) for s≫ 1,
(ii) J(s, t) is also given as a compactly supported perturbation of Jcyl.

Such family of almost complex structures is said to be admissible.

Definition 5.18. Let α : [0, 1] −→ S be a path, L ⊂ T ∗S a Betti Lagrangian, and J(s, t) be an
admissible family of almost complex structures. A map u : Z → T ∗S is said to be a deformed
continuation strip for α and L if it solves the following partial differential equation:

∂su+ J(s, t)∂tu− l′(s)Xl(s)(u) = 0

u(s, 1) ⊂ L

u(s, 0) ⊂ T ∗
ᾱ(l(s))S

lim
s→∞

u(s, t) ∈ T ∗
α(1)S ∩ L

lim
s→−∞

u(s, t) ∈ T ∗
α(0)S ∩ L.

(27)
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For paths α : [a, b] → S, the deformed continuation strip for α will mean Eq. (27) using the path
α(bt+ (1− t)a) instead. □

In Eq. (27), the condition u(s, 0) ⊂ T ∗
ᾱ(l(s)))S is a moving boundary condition and, in a sense,

the term l′(s)Xl(s)(u) accounts for that. Indeed, up to composing with the Hamiltonian flow ψ of
Hs, the deformed continuation strips in Definition 5.18 are essentially pseudo-holomorphic strips:
taking the gauge transform ũ := ψ−1

l(s)u and J̃ := ψ∗J(s, t), we recover the homogeneous pseudo-

holomorphic curve equation ∂J̃ ũ = 0 with moving boundary condition on L (instead of the fibers).
By the exponential estimate [Oh15, Proposition 14.1.5], the solutions of (27) are asymptotic to
the intersection points of L and T ∗

α(1)S, as s → −∞, and of of L and T ∗
α(0)S, for s → ∞. By

[Nho24, Proposition 3.37], the solutions of the gauge transforms have bounded diameter, and this
diameter can be chosen uniformly for a uniform family of Hamiltonian isotopies. Thus the moduli
space of solutions of (27) admits a Gromov compactification. By the transversality arguments in
[Sei08b, Chapter 2], the solutions of (27) are transversely cut-out for a generic choice of J and the
0-dimensional part of the moduli space of solutions of (27) gives a finite set. Given a generic fam-
ily J(s, t) of admissible almost complex structures, we denote by M(α, J(s, t)) the moduli space
of solutions of Eq. (27). The cobordism type of M(α, J(s, t)) is invariant under deformations of
J(s, t), l(s, t) and α. Observe that since we are in cohomological grading, the induced continuation
map sends a generator in L ⋔ T ∗

α(0)S at s = +∞ to L ⋔ T ∗
α(1)S at s = −∞. This explains why we

are using ᾱ, and the inverse of the Hamiltonian isotopy instead.

The parallel transports for F are defined by counting the solutions of (27): intuitively, it is the
number of points in M(ρ, J(s, t)). Since only the cobordism type of M(ρ, J(s, t)) is invariant, the
count must be such that a canceling pair of points contributes zero to the count. Specifically, to
count solutions of (27) we must invariantly orient M(ρ, J(s, t)).

For that, we first use the following fact, often used in Floer theory: given a bordered20 Riemann
surface C ⊂ C and a Lagrangian sub-bundle E −→ ∂C of a bundle C2 −→ C, a boundary
condition on the Lagrangian sub-bundle E induces the Cauchy-Riemann operator

∂ : C∞(C,C2, E) → C∞(C,Ω0,1
C ⊗ C2),

where C∞(C,C2, E) denotes the space of C∞-sections of C2 whose restriction to the boundary lies
in E.

Remark 5.19 (On orientations). 1. Let U2/O2 be the Lagrangian Grassmannian of C2, ρ : S1 →
U2/O2 a loop of index 0, and Eρ be the Lagrangian sub-bundle of C2 over S1 given by ρ. If the
index of the induced Cauchy-Riemann operator ∂̄ on (D2, S1) operator is 2, then ker(∂̄) = ρ(1)
and the homotopy class of the trivialization of (C2, E) ≃ (C2,R2) determines the orientation on

20For our purposes, it is sufficient to consider C being the disk, the strip Z, or the half plane.
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det ∂̄; cf. e.g. [Fuk+09b, Chapter 6].

2. The homotopy class of the trivialization is detected by π2(U2/O2): the second Whitney class
defines a map w2 : π2(U2/O2) → Z2 and we can identify π2(U2/O2) ≃ Z⟨H⟩. Under the natural
homomorphism π2(U2/O2) → π1(O2), H is the generator that gets mapped to the family of or-
thonormal frames on R2, whose lift to the sphere bundle R2 × S1 winds around the the unit sphere
fiber once. The orientation of ∂̄ depends only on the mod 2H class; declaring the orientation
induced by the trivial loop to be +1, the orientation induced by H is the opposite one [Fuk+09b,
Chapter 6.2]. □

Technically, the stalks as defined in Definition 5.17 implicitly use an orientation of the determinant
line bundle of the associated linearized Cauchy-Riemann operator, which would themselves be
tensoring the stalks Vzi in the Floer complex. Let us precise on the choice of these orientations,
which thus trivialize these line bundles and legitimize our choice of stalk in Definition 5.17. Near
each intersection point in L ⋔ T ∗

z S, we use a specific linearized Cauchy-Riemann operator of
the constant half-disk at each zi ∈ L ⋔ T ∗

z S, described as follows. The configuration tuple
(T ∗S;L, T ∗

z S, ωst) is locally isomorphic to (C2; ⟨u1, u2⟩ , iR2
(x,y), ωstd), where u1, u2 is a unitary frame.

Consider U the unitary matrix with columns u1, u2 and the path of unitary matrices

ϕ : [0, 1]t −→ U2, ϕ(t) := i exp(−t log(U)),
each of which acts on C2 as an isometry by left multiplication. Consider the path of linear
Lagrangians

Lt := ϕt(⟨u1, u2⟩) ⊂ T ∗C2

from ⟨u1, u2⟩ to iR2. The path ϕt takes an orthonormal basis on ⟨u1, u2⟩ to an orthonormal basis on
iR2 and the square phase of this as a path in the Lagrangian Grassmannian U2/O2 is e

−2πt and so
the grading of the path becomes −2t, t ∈ [0, 1]. The path Lt defines a linearized Cauchy-Riemann
operator of the constant half-disk at each zi ∈ L ⋔ T ∗

z S by the moving boundary condition on Lt.
We now discuss the specific trivialization to choose on the moving boundary part T ∗

α(s)S. Given
a W-adapted path ρ, the metric g on S defines a complex structure I and we can consider the
frame F =

〈
ρ(a), Iρ(a)

〉
at Tπ(ρ(a))S. Choose the frame on the tangent space of T ∗

z S ⋔ L to be

the one given by the image of exp(log(U)) on the dual frame F ∗ =
〈
ρ∗(a), I∗ρ∗(a)

〉
. The trivial

spin cover over the frames (ϕt ◦ ϕ−1
1 )(F ) gives an orientation on the linearized Cauchy Riemann

operator, which is then identified with the trivial line bundle. This is our trivialization, and thus
we conclude the discussion on orienting the moduli spaces M(ρ, J(s, t)) of deformed continuation
strips, solving Eq. (27).

We can now construct the continuation maps without the assumption that the Lagrangian K
in Proposition 5.12.(3) is geometrically bounded, which is needed in this framework of spectral
networks as we must apply it to P = T ∗

z S a cotangent fiber. The result reads as follows:

Proposition 5.20 (Continuation of CF ∗ under moving fiber). Let (S,m,Λ) be a Betti surface,
L ⊂ (T ∗S, λst) a Betti Lagrangian, W a compatible spectral network and V ∈ Loc†(L). Then:
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(1) (Well-defined) Given ρ : [0, 1] −→ S̊ be a W-adapted path from z0 = ρ(0) and z1 = ρ(1), the
signed count of points in the (oriented cobordism type of the) moduli spaces M(ρ, J(s, t))
of solutions to Eq. (27) determines a continuation map

Fε(V )(ρ) : CF ∗(T ∗
π(z0)

S, (εΣ, V )) → CF ∗(T ∗
π(z1)

S, (εΣ, V ))(28)

which is independent of the representative of the smooth homotopy class ρ.
(2) (Twisted equivariance) For any ρ : [0, 1] −→ S̊ be a W-adapted path, the continuation map

in (1) satisfies
Fε(V )(Hρ) = −Fε(V )(ρ),

where H is the homotopy class of the cotangent circle.

(3) (Concatenation morphism) Given two W−adapted path ρ1, ρ2, the continuation map in (1)
satisfies

Fε(V )(ρ1 ◦ ρ2) = Fε(V )(ρ1) ◦ Fε(V )(ρ2).

Proof. (of Proposition 5.20) It suffices to orient the moduli M(ρ, J(s, t)) using the twisted local
system V ∈ Loc†(L) such that it becomes cobordism invariant with respect to ρ. Indeed, once that
is established, the cobordism argument in Floer theory, cf. e.g. [Sei08b], concludes invariance (1)
and the concatenation property (3). To orient, consider a deformed continuation strip u traveling

between two lifts zi0 to z
j
1 in L̊, i.e. with positive punctures on these two points, the lower boundary

mapped to L and the upper boundary to the moving fibers along ρ. Choose a sphere bundle lift of
the path u(s, 1), s ∈ (−∞,∞), so that it agrees with ϕ−1

1 (ρ(a)) at zia, for all a = 0 and a = 1. The

induced metric on S gives a framing of S along u(s, 1). Considering the two points zi0, z
j
1 ∈ L̊ as

constant half-disks, we can glue them to the ends of the strip u and obtain the glued disk zi0♯u♯z
j
1.

As discussed above, this data defines a linearized Cauchy Riemann operator over the disk zi0♯u♯z
j
1

which has index 2. Its orientation depends on the choice of the trivialization of the pull-back of the
tangent bundles of the Lagrangian spaces: our choice for orientation is to concatenate the sphere
bundle lift of u(s, 1) traveling through L, the paths (ϕt ◦ ϕ−1

1 )(F ) and then (the dual frame given
by) the sphere bundle path ρ traveling through the moving fibers. This choice is independent of
the sphere bundle lift of u(s, 1) and, by construction, twisting the path ρ by H reverses the sign
of the orientation, which established (2). □

We now construct the local systems Fε and F. Firstly, make a choice of the regular Floer datum21

for each pair (T ∗
z S, L), z ∈ S, so that we get the stalk given by the (abstract) Floer cohomology

groups HF (T ∗
z S, L). Furthermore, the parallel transport is well-defined once the Floer datum has

been chosen at each intersection point, since the moduli space of solutions of Definition 5.18 is
well-defined, up to cobordism. Thus, regardless of the choice of the regular Floer datum, the family
Floer twisted local system, regarded as a functor Π1(S̊) → Vectn, is well-defined, up to unique

21This datum must also contain a time-dependent Hamiltonian term in the case that z is a branch point,
c.f. [Sei08b, Section 8(e)].
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natural isomorphism.

The dependence on the adiabatic parameter ε is incorporated as follows. By Theorem 4.2, for any
precompact subset U ⊂ S −W there exists εU > 0 such that for all 0 < ε < εU , the Floer datum
Jε
cyl for (T

∗
z S, L, Jcyl), z ∈ U , is regular. Choosing Jε

cyl to be the regular Floer datum for (T ∗
z S, L)

for z outside U , we obtain a local system, which we consider of as a functor Fε(V ) : Π1(S̊) → V ectk.
Furthermore, by our description of Jε

cyl, given any U ⊂ U ′, and scaling stability (Lemma 5.31) the
induced natural isomorphism between Fε(V ) and Fε′(V ) acts as the identity on morphisms that
represent paths that are contained fully in U , for ε′ < min(εU ′ , ε).

Definition 5.21. The family Floer cohomology local system F is the direct limit local system
lim−→Fε. □

The discussion above implies that F is well-defined up to unique isomorphism. By scaling stability,
whenever we compute parallel transport maps of F, we may compute it for ε small enough. The
results of the current section then can be regarded as showing that the local system F coincides
with ΦW(V ), over objects that lie outside Wc.

We conclude this section with a discussion on how the continuation maps in Proposition 5.20
can be enhanced to record (twisted) homotopy classes, while remaining invariant. Specifically, let
M(ρ; J(s, t), V ) denote the moduli space M(ρ, J(s, t)) equipped with the orientation (from V ) as
in the proof of Proposition 5.20. For each deformed continuation strip u ∈ M(ρ; J(s, t), V ), we
denote by s̊u the sphere bundle lift of u(s, 0) and by σ(̊su, ρ) the sign of det(D∂̄Ju)̊su,ρ, the oriented
determinant line of the linearized Cauchy-Riemann operator obtained using s̊u and ρ.

Corollary 5.22 (Homotopy refinement). In the notation above, the homotopy refinement of the
deformed continuation map in Proposition 5.20 is

F(V )(ρ) =
∑

u∈M(ρ;J(s,t),V )

σ(̊su, ρ)V (̊su)[u(−s, 1)],(29)

and it only depends on the homotopy class of ρ, and is compatible with concatenation.

An advantage of Eq. (29) over Eq. (28) is that the former is invariant under the H-action, as an
H-twist in the sphere bundle lift s̊u is canceled out by the parallel transport V (̊su). We shall
momentarily show in Section 5.3 that the parallel transport F(V ) as in Eq. (29) yields, in the
adiabatic limit, the homotopy refinement of ΦW(V ).

5.2.4. Ancillary discussion on spin structures. The (twisted) Floer complexes constructed above

used the sphere bundles S̊, L̊ instead of working directly with S, L, each endowed with spin struc-
tures. Two reasons are that, with this groundwork, it is reasonably direct to improve the above
discussion to include the protected spin characters y-variable in [GLM15] and, more technically,
it allows us to package the discussion on the dependence on spin structures directly in the sphere
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bundle classes. The former is achieved by keeping track of the homotopy class on the sphere
bundle, without forcing the twisted evaluation y → −1. Indeed, it is possible to show that the
solutions of Eq. (27) are immersed and thus have canonical lifts to the unit sphere bundles, where
their (relative) homotopy classes can be recorded.

To compare the Floer complexes constructed above using the sphere bundles, cf. Proposi-
tion 5.20, with the Floer complexes one would define using S, L and their spin structures, we
proceed as follows. First, suppose that s̃, s, β are all trivial near L ⋔ T ∗

z S, and that the frame
bundle of L has its torsor at z ∈ T ∗

z S ⋔ L so that it is equal to the one given by the ϕ−1
t image of

some chosen frame ⟨e1, e2⟩ on iR2. Taking the trivial spin cover over the framing (ϕt ◦ϕ−1
1 ) ⟨e1, e2⟩

gives a path of spin structures on Lt and the induced orientation is the trivial one. Then consider
the sphere bundle lift of the path α and the sphere bundle lift of the path Lt, as prescribed by
S̊ and s̃. The orientation on the induced linearized Cauchy-Riemann operator then determines
the sign and it coincides with that of the holonomy of F(V ) along u(s, 0). As a consequence of
Theorem 5.24 and this discussion, we can summarize the outcome as follows:

Corollary 5.23. Let (S, s) and (L, s̃) be endowed with spin structures, and consider V ∈ Loc(L)
and V ∈ Loc†(L) such that s̃∗V = V. Then the family Floer local system obtained using V is the
s∗-pullback of F(V ). □

5.3. Equivalence between F and ΦW. The aim of this section is to prove the following result,
comparing the functors F and ΦW, i.e. the twisted local systems obtained from Family Floer and
those obtained via the combinatorics of spectral networks:

Theorem 5.24 (F and ΦW are equivalent). Let (S,m,Λ) be a Betti surface, L ⊂ (T ∗S, λst) an
exact Betti Lagrangian, (S, g) a compatible metric and W an adapted Morse spectral network. Then
the two functors

F,ΦW : Loc†1(L) −→ Loc†n(S)

are equivalent. In particular, the combinatorial corrections from detour paths on W coincide with
the Floer-theoretic corrections from deformed continuations strips.

To compare these two functors it suffices to focus on the objects, as morphisms naturally com-
mute with the construction. The statement of Theorem 5.24 also holds for the enhancements of
those functors that keep track of specific (relative) homotopy classes in the unit sphere bundles.
Theorem 5.24 is proven by analyzing the behavior of F in the adiabatic limit ε → 0. Namely,
understanding the deformed continuation strips from Eq. (27) with one boundary condition on εL
and the other (moving) boundary condition on cotangent fibers as ε → 0. Since W controls the
adiabatic behavior of pseudo-holomorphic strips, there are two regions to consider:

(1) In the complement Wc of the spectral network, the parallel transport of ΦW is trivial.
Therefore, we need to show that the deformed continuation strips defining the parallel
transport for F are also trivial if the path lies in Wc.



86 ROGER CASALS AND YOON JAE NHO

(2) ForW-adapted short paths, we must show that the adiabatic limit of deformed continuation
strips across a wall of W is exactly given by the trivial strips and strips whose flowtree limit
coincides with the detour paths introduced in Section 5.1.

In order to prove these facts above, we start with a quantitative refinement of Eq. (27), estimating
the behaviors of deformed pseudo-holomorphic strips in terms of their length. Specifically, consider
z ∈ S such that T ∗

z S is transverse to the Betti Lagrangian L and fix a unit tangent vector v ∈ S̊
base at z. Employing the Riemannian metric (S, g), consider the path αv(s) = expz(sv) starting
at z in the direction of v. For s sufficiently small, αv is an embedding and T ∗

αv(s)
S remains

transverse to L. This latter condition implies in particular that there are no D−
4 -singularities in

a small enough neighborhood of the image of αv. We model such a path by considering local
coordinates (x1, x2) near z = x1 + ix2 so that αv(s) = (s, 0), and then the (local) Hamiltonian
Hv : T ∗R2

x1,x2
−→ R, Hv(x1, x2; p1, p2) = −p1 generates the transport of T ∗

z S along ᾱv(s). To
achieve compactly supported behavior, localizing this fiber transport along ᾱv(s), let us cut-off H

v

to a Hamiltonian b(x1, x2)H
v with b(x1, x2) a bump function concentrated at αv(s), i.e. b(x1, x2) is

constant equal to 1 in a neighborhood of αv(s) and vanishes outside a slightly larger neighborhood.
To simplify, we still denote by Hv the cut-off Hamiltonian, denote by Xv its Hamiltonian vector
field and by ψv its flow. The system Eq. (27) defining deformed continuation strips can now be
specialized to paths αv(s), where dependence on the unit tangent vector v is acquired and Hv is
fixed.

Definition 5.25. Let ε ∈ R+ and J(s, t) be an ε-admissible family of almost complex structures
on Z, and consider an elongation function l(s) and a length d ∈ R+. By definition, a map
ud : Z −→ T ∗S is said to be a continuation strip along αv(s) : [0, d]s → S if it solves the system

∂sud + J(s, t)∂tud − d · l′(s)Xv(ud) = 0

ud(s, 1) ⊂ L

ud(s, 0) ⊂ T ∗
ᾱv(d·l(s))S

lim
s→−∞

ud(s, t) ∈ T ∗
αv(d)S ∩ L

lim
s→+∞

ud(s, t) ∈ T ∗
z S ∩ L.

(30)

We often denote u(s, t) = ud(s, t), understanding the dependence on d implicitly. □

To ease notation, given a value for the adiabatic parameter ε ∈ R+, we assume that we have
fixed an s-dependent deformation function ρs(r), as in Section 5.2.1, and an ε-admissible family
of almost complex structures refers to an admissible family of almost complex structures obtained
by deforming Jρε

cyl, instead of Jcyl. Our first task is choosing the elongation function l(s) such that
solutions to Eq. (30) of small enough length have controlled behavior. This is the content of the
following:

Proposition 5.26. In the notation for Eq. (30), there exists a choice of an elongation function
l(s) and a constant dv ∈ R+ such that the following holds:
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(1) The continuation strips ud(s, t) along αv(s) of length d ∈ (0, dv) whose limiting endpoints
lie in the same smooth sheet of L cannot leave the dv-neighborhood of their endpoints.

(2) For the continuation strips ud(s, t) along αv(s) of length d ∈ (0, dv) whose limiting endpoints
lie in different smooth sheets of L, there exists a sequence of lengths dn → 0 such that the
associated family udn of strips Gromov converges to a broken J(s, t)-pseudo-holomorphic
strip bounded between L and T ∗

z S.

Proof. For Part (1), let u = ud(s, t) be a solution of Eq. (30) and consider its gauge transform
ũ = ψ−1

l(s)u. Then the symplectic area of ũ is

∫
Z
ũ∗ω = −

∫
u(s,1)

λst − d ·
∫
Hv(u(s, 1))ds = W ((ψ−1

1 ◦ u)(−∞, 0))−W (u(+∞, 0))− d ·
∫
Hv(u(s, 1))ds,

(31)

where dW = λst|L is a primitive of the Liouville form along L. Along αv(s), let h > 0 be such
that over some small neighbourhood of αv(s), the smooth sheets of ϵL have distance at least h > 0
apart, with respect to the Sasaki metric. For each z ∈ αv(s), let ∪Bh/2(z

i) ⊂ T ∗S denote the
small neighbourhood of the intersection points between T ∗

z S and L. Let ℓ ∈ R+ be a constant so
that Jcyl-holomorphic half-disks with energy less than ℓ/2 intersecting ∪iBh/4(z

i) cannot leave the
larger neighbourhood ∪iBh/2(z

i), for all z ∈ αv(s).
Choose an elongation function l(s) so that l′(s) is supported on [0, ℓ]. By the hypothesis that the

endpoints lie on the same sheet, the limiting endpoints of the gauged transformed strips have to
be the unique intersection point of T ∗

z S and L lying on the same sheet as the endpoints of ud. By
Eq. (31), the symplectic area (a.k.a. energy) of the gauge-transformed strip is of the form O(d) for
for small enough. Therefore, the graph of ψ−1

d·l(s)(u(s, t)) on the moving part has energy O(d) + l.

In addition, for d small enough, the symplectic 2-form making the movie (ψ−1
d·l(s)(L), s) Lagrangian

can be made arbitrarily close to ωst ⊕ ωst and the metric induced by ψ∗
d·l(s)J(s, t) can be made

arbitrarily close to the correspondingly standard metric. Thus, [Nho24, Proposition 3.37] implies
that the graph of ψ−1

l(s)(u(s, t)) on the moving part cannot leave the (3ℓ)/2-neighborhood of the

intersection points between L and T ∗
z S for small enough d, which concludes Part (1). For Part

(2), it suffices to verify that the symplectic area of the family of solutions (30) admits a uniform
positive lower bound. This follows from the fact that ud(s, t) travels between distinct sheets of
L (see [Nho24, Eq.6.1.10]). Therefore, the Gromov compactness argument developed in [Nho24,
Section 6.1.5] applies and ud(s, t) Gromov converges to a broken J(s, t)-pseudo-holomorphic strips
bounded between L and T ∗

z S for a subsequence of lengths dn → 0. □

By definition, a continuation strip u is said to be small if it is as in Proposition 5.26.(1).

Remark 5.27. Note that there is a difference between Proposition 5.26 and [Nho24, Proposition
6.11]: in the result above, the Hamiltonian isotopy does not necessarily fix the neighborhood of the
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intersection points. In order to correct this matter, we need to be very careful with the choice of
the elongation function l. □

After a small perturbation of J(s, t), we can and do assume that the moduli space of same sheet
continuation strips consist of small continuation strips, and that it is transversely cut-out.

Lemma 5.28. In the notation above, for small enough d ∈ R+, the moduli space of small contin-
uation strips of length d is cobordant to a singleton moduli space, consisting of a single strip whose
boundary on L may be identified with a lift of the arc αv(s), s ∈ (0, dv).

Proof. Near z, a smooth sheet of L can be described a graph of a smooth function f . As observed in
[Flo89b], we may regard f as a (locally-defined) Hamiltonian on T ∗S and write ε·gr(f) as the image
of the zero section under the time ε-flow Ψ of f . Taking the inverse of the fibre-preserving global
Hamiltonian isotopy Ψ−1

ε , the configuration (εL, T ∗
z S, Jcyl) transforms into (Z, T ∗

z S,Ψ
−1
ε (Jcyl)). Un-

der this transformation, the perturbation term in Eq. (27) turns into (dΨ−1
ε )∗(Xv(ud)). Since we

are only interested in small continuation strips, whose diameter we can a priori control, using the
monotonicity argument in the proof of [Nho24, Proposition 6.11], we are free to interpolate the
perturbation term from (dΨ−1

ε )∗Xv to l′(s)Xv. We claim that the solutions of the new equation
are all constant, up to gauge-transformation. This leads to a cobordism of the moduli space of
small continuation strips, whose other end consists of a single strip.

To verify the claim, consider the solutions of Eq. (27) with J(s, t) replaced by ψ∗
εJ(s, t) and

the boundary condition L replaced by the zero section. Since the Hamiltonian fixes the zero
section, we are back to the situation of [Nho24, Proposition 6.11] where the Hamiltonian fixes the
Lagrangians near the intersection points. Therefore, after taking the gauge-transform Ψ−1

s u(s, t),
the strip becomes constant. As claimed, we may identify its boundary on L with a lift of the arc
αv(s), s ∈ (0, dv) to the smooth sheet gr(f). □

Strips as in Lemma 5.28 are said to be trivial strips.

We introduce the following notions, analogous to Definition 4.1:

Definition 5.29. Let L ⊂ (T ∗S, λst) be a Betti Lagrangian and W an adapted finite creative
Morse spectral network.

(i) A point z ∈ S is said to be continuation-free in the adiabatic limit if there exists ε(z) ∈ R+

and a neighbourhood Uz such that for any ε ∈ (0, ε(z)), (T ∗
wS, L) is J

ε
cyl disk-free for w ∈ Uz,

and there exists a length d(z, ε) ∈ R+ and an elongation function l(s, ϵ) such that for all
points w ∈ Uz there are no Jε

cyl-holomorphic continuation strips that are not small along
arcs of the form αv : [0, d]s → S, for d ∈ (0, d(z, ε)), w ⊂ Uz and v ∈ TwS a unit tangent
vector at w

(ii) A point z ∈ W different from a vertex is said to have Stokes transport in the adiabatic limit
if there exists ε(z) ∈ R+ and a length d(z) ∈ R+ such that for any ε ∈ (0, ε(z)), there
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exists an elongation function l(s, ε) for which there are no large Jε
cyl-holomorphic strips for

L along the arc αv(s) : [−d(z), d(z)]s → S, that do not belong to the path detour class
along αv(s), where v denotes the outward normal vector to W at z.

Note that vertices of W do not need to be considered in Definition 5.29 because the behavior near
them has been fixed by the local models. We must now establish the analogue to Theorem 4.2 for
continuation strips, which reads as follows:

Proposition 5.30. Let L ⊂ (T ∗S, λst) be a Betti Lagrangian and W an adapted finite creative
Morse spectral network. Then the following holds:

(i) If z ∈ Wc, then z is continuation-free in the adiabatic limit.
(ii) If z ∈ W and not a vertex, then z has Stokes transport in the adiabatic limit.

Proof. For Part (1), fix a precompact open subset of Wc whose closure does not intersect W. We
argue by contradiction: suppose that there is a sequence of points zn, unit tangent vectors vn of
zn, with lengths d(zn) converging to zero but such that there are Jε

cyl-holomorphic continuation
strips which are not small; for L and along arcs αvn(zn). By Proposition 5.26 such a sequence
has a subsequence that converges to a broken Jcyl-holomorphic strip. By the integrated maximum
principle and the equality Jε

cyl = Jε−1g along the disk bundle containing L, Jε
cyl-holomorphic strips

have to necessarily be Jε−1g-holomorphic strips. Then Remark 5.16 and Theorem 4.2 together imply
that such broken Jε−1g-holomorphic strips cannot exist, thus a contradiction. This establishes Part
(1).

For part (2), let Uz be the Stokes neighbourhood of z. By Theorem 4.2, we see that there
exists some ε(z) > 0 such that for all ε ∈ (0, ε(z)), the only disks in (T ∗

wS, εL) must be parallel
transports of the soliton classes. We claim that the maximal arc αv(s) : [−dz, dz]s → S contained
in such a neighbourhood is the desired one. To see this, shrink ε(z) so that (T ∗

αv(0)
S, L) and

(T ∗
αv(1)

S, L) are all Jε
cyl disk-free, for all ε ∈ (0, ε(z)). Then we can combine Proposition 5.26 and

the previous argument to conclude that there exists an elongation function l(s) such that for each
t ∈ [−dv(s), dv(s)], there exists dt > 0 such that along αv(t + s) : [0, d]s → S, for d ∈ (0, dt), the
large Jε

cyl-continuation strips must have the homotopy class of the detour path across z (deformed
to have the end-points of αv(t+s), in a straightforward way). Indeed, this follows from Theorem 4.2
because the path homotopy class of its boundary must converge, as d → 0, to broken chains of
s(z), none of which can concatenate. Then, using the compactness of αv(s), we can split αv(s)
into finitely such segments. We can now perturb slightly to make sure the continuation strips are
all transversely cut-out. By Gromov compactness, having no large continuation strips of certain
homotopy class is a condition invariant under small enough perturbations of J(s, t). We then
apply the ”solitons cannot concatenate” argument again to conclude that the glued continuation
strips must be of the path detour class. We now turn off the perturbation, and argue by Gromov
compactness again, to conclude that for some elongation function, the homotopy class must also
be the path detour class, concluding (2).

□
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In addition, a simpler argument leads to the following type of stability under ε-scaling:

Lemma 5.31 (Scaling stability). For z ∈ Wc, there exists ε(z) ∈ R+ such that for all ε′, ε ∈
(0, ε(z)), ε′ < ε, the continuation map CF (T ∗

z S, L; J
e
cyl) → CF (T ∗

z S, L; J
e′

cyl) is the identity map.

Proof. The proof is similar to Part (1) in Proposition 5.30. Take ε(z) as in Theorem 4.2 so that
(ϵL, T ∗

z S) is disk-free for all ε ∈ (0, ε(z)). By the previous discussion, we obtain a family Js
cyl

such that Js
cyl = Js−1g in the disk bundle for ε′ ≤ s ≤ ε. Fix an elongation function l, then for

each ε′ < a′ < a < e, the continuation map from CF (T ∗
z S, L; J

a
cyl) to CF (T

∗
z S, L; J

a′

cyl) is given by
counting pseudo-holomorphic strips with the boundary conditions

∂su+ J(s, t)∂tu = 0

u(s, 1) ⊂ L

u(s, 0) ⊂ T ∗
z S

lim
s→±∞

u(s, t) ∈ T ∗
z S ∩ L,

(32)

using the family almost complex structures J(s, t) that are given by small perturbations of the

family J
l(s)a+[1−l(s)]a′

cyl . Since the equation is homogeneous, the strips that travel between the same
lifts of T ∗

z S must all be constant, and the strips that travel between distinct lifts of T ∗
z S must have

energy a priori bounded below by some small h ∈ R+. The same argument as in Proposition 5.30
implies that for |a′ − a| small enough, the continuation strips are all constant, and so they induce
the identity map. The rest follows from concatenation compatibility, from which we conclude that
the continuation map from s = ε to s = ε′ must be the identity map. □

Let us finally establish the equivalence between F and ΦW:

Proof of Theorem 5.24. Let us first compare the parallel transports for a path of the form ρ(s) =
αv(s) starting at z ∈ Wc and s small enough. Since any ΦW(V ) has trivial parallel transport for
V ∈ Loc†(L), c.f. Definition 5.6.(i), we must argue that the same holds for F(V ), for ε small enough.
Fix a small neighbourhood Uρ ⊂ Wc of ρ. By Theorem 4.2, there exists some ε(ρ) > 0 such that
for all 0 < ε < ε(ρ), (T ∗

z S, εL), z ∈ Uρ is disk-free. Fix 0 < ε < ε(ρ), then by Section 5.2.3,
the parallel transport of the latter is given by the moduli spaces of deformed continuation strips,
cf. Proposition 5.20. By Lemma 5.28 and Proposition 5.30 the corresponding moduli spaces of
continuation strips for such a path away from W is cobordant to the moduli space of trivial strips.
For the orientations, it suffices to note that the sphere bundle counts of the trivial strips give
the required orientation, see e.g. [Nho24, Lemma 6.14]. This implies that the count of deformed
continuation strips is that of trivial strips, and therefore the parallel transport of F(V ) along such
αv(s) ⊂ Wc equals that of ΦW(V ). By concatenation compatibility, we conclude that the parallel
transports agree over any free W-adapted path.

For each z ∈ W, we can consider a W-adapted short path of the form ρ(s) = αv(s), intersecting
W at z, just as in Definition 5.29. By Gromov compactness, we can perturb by a small amount so
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that the moduli space of large continuation strips is transversely cut-out, and so that the boundary
homotopy classes belong to the path detour class. Let u(s, t) be the resulting continuation strip
along such path: we must show that the assignment s(z;w) → σ(̊su, αv(s)) (where the count is
defined using the homotopy refinement Corollary 5.22) gives a functor with the properties as in
Definition 3.20. For each vertex v ∈ W, introduce nearby points b ∈ W on each edge adjacent

to v and for each such b, consider the corresponding short path arcs α
(b)
ν (s), intersecting W in

the positive direction. We now proceed on inductively, by starting with the points close to the
initial walls, and then following the birth of new walls along W. First, for these points b close
enough to the initial rays of the D−

4 -vertex v, direct computation gives the count σ(̊su, αv(s)) = 1,
e.g. c.f. [GMN13b, Section 5.6, Figure 21]. It thus suffices to show that σ(̊su, αv(s)) satisfies
the same properties as in Definition 3.20 near the creation joints of W. At the same time, that
these properties are satisfied is a consequence of Proposition 5.20 and the fact that the trivial loop
encircling the vertex ofW is contractible, and thus the associated (cobordism class of) moduli space
of continuation strips consists of constant strips (one per intersection point), up to cobordism. The
cancellation of the concatenation of non-trivial continuation strips along the trivial loop is encoded
in the 2d Hori-vafa formula Definition 3.20. Therefore, since the counting functions are the same,
the two local systems ΦW(V ) and F(V ) must also be isomorphic. □

Theorem 5.8 now follows from Theorem 5.24:

Proof of Theorem 5.8. By Theorem 5.24, the parallel transport ΦW(V )(ρ(r)) is equivalent to that
of F(V )(ρ(r)). In the adiabatic limit, the deformed continuation strips contributing to this latter
parallel transport converge to D−

4 -flowtrees with semi-infinite root edges asymptotic to r, and the
counts are in fact equal. Indeed, by [EHK16, Lemma 5.12] and [EHK16, Theorem 1.5], there exists
a bijective correspondence between rigid flow-trees for (a perturbed and neck-stretched version of)22

L and rigid index-0 pseudo-holomorphic disks (adjusted, in the sense of [EHK16, Section 3.2]) with
boundary on that exact Betti Lagrangian, all constrained to be asymptotic to r. In general, the
cobordism type of the latter moduli space of pseudo-holomorphic disks is not an invariant because
of bifurcations given by index −1 disks, see e.g. [EHK16, Lemma 3.13]. That said, Lemma 5.13
shows that Betti Lagrangians L ⊂ (T ∗S, λst) have Maslov index 0 and thus such index-(−1) disks
cannot appear. Therefore, the cobordism type of this moduli space is an invariant up to compactly
supported Hamiltonian isotopy and, consequently, so is the count of D−

4 -trees asymptotic to r. □

5.4. Proof of Theorem 2. The object of this subsection is to conclude the proof of Theorem 2.
The direction (⇐=) of the characterization in Theorem 2 was established in Section 4, c.f. The-
orem 4.2. We must thus show the implication (=⇒). This will be first done for exact Betti
Lagrangians in Section 5.4.1, using the results of this section (c.f. Proposition 5.30) and then Sec-
tion 5.4.2 is devoted to the meromorphic WKB case. To align with Definition 4.1, the existence
of a pseudo-holomorphic disk in the adiabatic limit can be made precise as follows:

22This modification of L is denoted by L† in [Ekh07; EHK16].
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Definition 5.32. The pair of Lagrangians (T ∗
z S, L) bounds a pseudo-holomorphic disk in the

adiabatic limit if there exists a constant ε0 ∈ R+ such that for all ε ∈ (0, ε0) there exists a
neighborhood Uε(z) ⊂ S and a point w ∈ Uε(z) in that neighborhood for which (εL, T ∗

wS) bounds
a non-constant pseudo-holomorphic disk. □

The results established thus far, specifically Theorem 4.2 and Proposition 5.30, now suffice to
conclude Theorem 2 for exact Betti Lagrangians.

5.4.1. Proof of Theorem 2 for exact Betti Lagrangians. Let z ∈ W be a point in a wall of the
spectral network, we must argue that there exists a pseudo-holomorphic strip between T ∗

z S and
L in the adiabatic limit. By Theorem 4.2, given any neighborhood U ⊂ S of z, we can find a
nested neighborhood W ⊂ U and a constant ε0 ∈ R+, depending on U , such that the pair of
Lagrangians (T ∗

wS, εL) is disk-free for all points w ∈ U \W and ε ∈ (0, ε0). Consider a W-adapted
short path αv with its endpoints in U \W and intersecting W and z. By the same argument as
in the proof of Theorem 5.24, there exists some ε′0 ∈ R+ such that for all ε ∈ (0, ε′0) the Floer-
theoretic parallel transport F(V )(α̊v(s)) equals that of ΦW(V )(α̊v(s)), where α̊v(s) denotes the lift

to the unit cotangent bundle S̊. The latter parallel transport is non-trivial, because the 2d-4d
BPS counting indices from Section 3.5 are non-zero at all walls of W, as W is creative. Thus the
former parallel transport F(V )(α̊v(s)) is non-trivial. This implies the existence of a point w ∈ W
such that (T ∗

wS, εL) is not disk-free, as otherwise Proposition 5.30 would imply ΦW(V )(α̊v(s))) was
trivial. In conclusion, as the adiabatic parameter ε→ 0 tends to zero, this concludes the existence
of a pseudo-holomorphic strip between L and T ∗

z S in the adiabatic limit, as required.

5.4.2. Proof of Theorem 2 for meromorphic spectral curves. There are a few differences between the
case of a meromorphic spectral curve Σ ⊂ (T ∗S, ωC) and an exact Betti Lagrangian L ⊂ (T ∗S, λst).
That said, when studying pseudo-holomorphic curves with respect to a generic meromorphic spec-
tral curve Σ ⊂ (T ∗S, ωC), we will now establish results showing that the behaviors that occur are
as if we were under an exactness assumption. In that sense, the proof follows closely that of the
exact case and we only highlight the key ingredients. First, we have the following strengthening
of the Stokes condition in Definition 4.1.

Lemma 5.33. Let z ∈ W be a non-initial point. Then, for every E ∈ R+, there exists a neigh-
bourhood Uz(E) ⊂ S of z and ε0(E, z) ∈ R+ such that there are no non-constant Jg-holomorphic
strips bounded between εΣ and T ∗

wS of energy less than E, for w ∈ Wc(E).

Proof. From Theorem 4.2, such pseudo-holomophic strips must have the homology class of the
parallel transport of the solitons with energy less than E. Since the integral of the holomorphic
Liouville 1-form along the boundary of such a strip must be real and positive, z must lie on
W(E). □

The following notation is useful:
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Definition 5.34. Let L ⊂ T ∗S be a Betti Lagrangian. By definition, L is said to be disk-free in
the adiabatic limit, if for every E ∈ R+ there exists ε0(E) ∈ R+ such that for all ε ∈ (0, ε0(E)),
the scaled Lagrangian εL does not bound a pseudo-holomorphic disk of energy less than equal to
E. □

Then the same argument used for Theorem 4.2 implies the following variation, which tells us
that Σ is tautologically unobstructed, up to some energy. In other words, we can run the usual
Floer theoretic machinery (see c.f [Sei15, Section 8(c)]) up to some energy cut-off.

Proposition 5.35. Let Σ be a meromorphic spectral curve with a WKB spectral network W. Then
Σ is disk-free in the adiabatic limit.

Proof. Let uε be a sequence of somewhere injective disks of energy less than E with boundary on
εΣ. Introduce three punctures on the boundary to fix the conformal structure and apply the same
adiabatic degeneration argument as in Theorem 4.2. By Section 2.7, the walls of W never return
to the branch points and thus the initial edge condition implies that the disks cannot close up.
Thus εΣ must be disk-free for small enough ε. □

The scaling relations is as follows: the adiabatic cut-off ε0(E) tends to zero as the energy E is sent
to infinity, i.e. ε0(E) → 0 for E → ∞. The necessary variant of Proposition 5.26 can be discussed
as follows.

Consider an energy cut-off E ∈ R+. The gapped condition implies that there exists a small
enough parameter h ∈ R+ such that W(E) and W(E + h) are isotopic as stratified 1-manifolds
with boundary. For each vertex v of the energy-truncated W(E), choose a Stokes neighborhood
and a bump function ρ. Fix a neighborhood of v contained in that of Proposition 5.35, with
diameter Cδ for some constant C ∈ R+. From Proposition 5.35, the pair (T ∗

z S, εΣ) is disk-free for
z ∈ BCδ(v) \W(E). Choose C such that Cδ is less than the injectivity radius of v consider α(s) a
geodesic line segment contained in BCδ(v).

Let w be an (ij)-wall of W(E), W :=
∫
λi − λj = x + iy be the conformal flat coordinate and

(px, py) dual coordinates to (x, y); here W is defined by a line integral from the given point to the
end variable point. For z ∈ w, we write αz(s) for the path given by s→ z+is in theW -coordinate.
Let supρ|L| be the supremum of the norm of the sheets of L, over a small neighbourhood of ρ that
contains the support of the generating Hamiltonian Hv. Then observe that the Hamiltonian term
Hv in Eq. (31) is less than ϵ supρ|L|. The analogue of Proposition 5.26 then reads:

Proposition 5.36. In the notation above, there exists ε0(z, E) ∈ R+ such that for all ε ∈
(0, ε0(z, E)) the following holds:

(1) There exists d(z, ε) ∈ R+ and an elongation function such that, given a free W-adapted
line segment α(s) contained in BCδ of length ε, the moduli of Jg-holomorphic continuation
strips of energy less than ε(E + ℏ) are all small.
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(2) For an interior point z ∈ W(E) ∩ BCδ, there exists δ(z, ε) ∈ R+ and an elongation func-
tion such that along the short path αz(s), s ∈ [−δ(z, ε), δ(z, ε)], any large Jg-holomorphic
continuation strips of energy less than ε(E + ℏ) must have the homotopy class of a soliton
at z.

Proof. The argument follows that of Proposition 5.26. For (1), choosing the elongation function
as in Proposition 5.26, since the Hamiltonian term contribution in the energy formula is of size

d ·
∣∣∣supρ L

∣∣∣ ϵ · ∫ l′(s)ds, for d small enough any pseudo-holomorphic strip bounded by (T ∗
z S, εΣ)

which comes from breaking off a continuation strip must have energy less than εE. Therefore,
for any s0 ∈ [0, 1], there exists η(s0) ∈ R+ such that the moduli of Jg-continuation strips along
[s−η(s0), s+η(s0)] is cobordant to the moduli of trivial strips. For (2), a similar argument applies:
the key point is that for Jg, we can fix the homotopy classes of continuation strips with energy
bounded above by ≤ E + δ. □

Since there are finitely many vertices in W(E), let us choose δ ∈ R+ such that Lemma 5.33 and
Proposition 5.36 hold. Given an (ij)-wall w, which is compact, we choose a (small) neighborhood
Uw ⊂ S of w so that Lemma 5.33 holds for all w ∈ Uw \W(E). We also (slightly) truncate w off
near the starting ends if w begins at the initial vertices of W(E). The following proposition has
exactly the same proof as Proposition 5.36:

Proposition 5.37. In the notation above, there exists ε0(v) ∈ R+ such that, for all ε ∈ (0, ε0(v, E)),
there exists δ(w, ε) > 0 such that the following conditions hold for strips along the path s→ z+ is,
s ∈ [−δ(w, ε), δ(w, ε)]:

(1) For any z ∈ Uw \W, the Jg-holomorphic continuation strips of energy less than ε(E + ℏ)
are all small.

(2) For any z ∈ w ∩ Uw, then the large Jg-holomorphic continuation strips of energy less than
ε(E + ℏ) all have the homotopy class of a soliton at z.

In general, Jg-holomorphic continuation strips are not going to be regular in this content. Fortu-
nately, given the energy bound, all the relevant moduli space of continuation strips are cobordant
with the given energy cut-off (here the perturbation of the almost complex structure must be cho-
sen in a way that it agrees with Jg on the boundary mapping to L, to avoid boundary bubbling,
c.f [Sei15, Section 8(c)]). Indeed, the energy formula for short enough arc implies that the dom-
inant term in the energy is

∫
λst over the boundary mapping to εL, the Hamiltonian term being

proportionately small, which is invariant up to homotopy. Therefore, the energy of the perturbed
continuation strip is determined by the boundary homotopy class.23 It follows that we can regular-
ize the moduli space by choosing some unspecified perturbation of Jg to make the strips regular.
The following terminology is convenient:

23See also the energy estimates in [Fuk+09b, Section 5.3.5]; in their terminology, the Hofer norm of the Hamil-
tonian isotopy as observed by the disk is small enough.
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Definition 5.38. Let w be an active wall of W(E) and z ∈ w. By definition, z supports a disk in
the adiabatic limit if for any E ∈ R+ there exists ε(z) ∈ R+ such that for all ε ∈ (0, ε0(z)) there
exists δ(z, ε) ∈ R+ such that the moduli space of large Jg-holomorphic continuation strip along
αz(s), |s| < δ(z, ε), of energy less than εE is non-empty and its regularization is not cobordant to
the empty set.

By definition, a wall w is said to support a non-constant disk in the adiabatic limit if the set of
points z ∈ w that support a disk in the adiabatic limit is non-empty. □

Proof of Theorem 2 in meromorphic case. First, consider a wall w of W(E). Let us show that the
set of points on w that support a disk in the adiabatic limit is open and closed. Indeed, openness is
a consequence of Gromov compactness and regularity of strips being an open condition. For closed-
ness, note that [Nho24, Proposition 4.4] shows the set is non-empty. Consider then a sequence of
points zn → z such that each support a disk in the adiabatic limit. For large enough n ∈ N, zn
belongs to the Stokes neighborhood of z and, by assumption, the moduli space of non-diagonal
Jg-holomorphic continuation strips along αzn(s) is non-empty. Concatenate the horizontal arc
coming from the top of αz(s) to the arc αzn(s), and further concatenate it with the horizontal
arc connecting to the bottom of αz(s). The resulting path is isotopic to the arc αz(s). Now, any
two moduli space of Jg-holomorphic continuation strips with given energy less than ε(E + ℏ) are
cobordant, and since the moduli space of large Jg-holomorphic continuation strips along αzn(s) is
not (virtually) null-cobordant, the same holds for αz(s).

Second, we discuss vertices of the spectral network. Suppose that the active ingoing walls all
support disks in the adiabatic limit. We claim that this is also the case for the active outgoing walls.
Indeed, by Proposition 5.36, for a small neighborhood of v the moduli space of Jg-holomorphic
continuation strips for the short paths across the outgoing walls is virtually cobordant to the
gluing of the ingoing moduli spaces. The count of these gluings is controlled by the index in
Definition 3.20, and so we are reduced to the exact situation. □

6. Spectral networks and 4d Fukaya Categories

In this section we relate spectral networks and Fukaya categories in 4-dimensions, in particular
proving Theorem 4. Specifically, we show how exact Betti Lagrangians can be understood as
objects of a Fukaya category in two related ways, cf. Sections 6.1 and 6.3, and how the parallel
transport rules dictated by a spectral network W are in fact encoding µ2-type morphisms for
the underlying A∞-structures naturally appearing in Floer theory, cf. Theorem 6.3, proven in
Section 6.2, and Theorem 6.12, proven in Section 6.3. An explicit description of the associated
Yoneda A∞-module over W(T ∗S,Λ) is also provided in Section 6.4. See [GPS20] for references
and context on (partially) wrapped Fukaya A∞-categories. In brief, the present section enhances
the Floer-theoretic characterization of spectral networks and non-abelian parallel transport, as
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presented in Sections 4 and 5, to the A∞-categorical framework. In this section, we will focus our
attention on exact Betti Lagrangians.

6.1. The Yoneda module of an exact Betti Lagrangian. Let W(T ∗S) denote the wrapped
Fukaya A∞-category of the open Liouville sector (T ∗S, λst), and modk the dg-category of chain
complexes of k-modules, understood as an A∞-category with higher µk vanishing, k ≥ 2. A Betti
Lagrangian L ⊂ (T ∗S, ωst) does not define an object in W(T ∗S), due to the nature of its asymp-
totic ends near the marked points, cf. Section 2. Thus, even if we endow a Betti Lagrangian L
with a local system24 V ∈ Loc(L), it is a priori unclear how Betti Lagrangians and their spectral
networks fits within the context of Fukaya categories. There are at least two solutions to address
this, depending on whether we want to preserve the geometry of L at infinity or we allow geometric
modifications of L at infinity. The first approach is presented in this section and the second in
Section 6.3.

For the first approach, the algebraic idea is simple: if C ∈ Ob(C) is an object in a category, then
HomC(·, C) ∈ Fun(Cop,modk) defines a module over C. This module is often known as the Yoneda
module. Since a Betti Lagrangian L /∈ Ob(W(T ∗S)) is not an object, as it does not have compact
horizontal support, we cannot merely construct a Yoneda module in this manner. Nevertheless,
given a Betti Lagrangian (L, V ) endowed with a local system V ∈ Loc(L), we now construct an
A∞-module over W(T ∗S) which behaves as if it was the Yoneda module of an object given by
(L, V ). Intuitively, its value on objects P1, . . . , Pk ∈ Ob(W(T ∗S)) is given by counting pseudo-
holomorphic polygons with boundary on the Lagrangians P1, . . . , Pk and the Betti Lagrangian L.
Consider the Floer cohomology groups HF ∗(P, (L, V )) as in Section 5, the result reads as follows:

Proposition 6.1. Let L ⊂ (T ∗S, ωst) be a Betti Lagrangian endowed with a local system V ∈
Loc(L). Then there exists an A∞-module Y(L,V ) : W(T ∗S) −→ modk with cohomologies

H∗(Y(L,V )(P )) ∼= HF ∗(P,L),

where P ⊂ T ∗S is any exact cylindrical Lagrangian with compact horizontal support.

Proof. The intuition is to formally add the Betti Lagrangian L ⊂ T ∗S as the most negative
object in W(T ∗S). We provide the necessary details, as follows. By [GPS20, Prop. 3.43], the
wrapped Fukaya A∞-category W(T ∗S) can be obtained as the strictly unital directed A∞-category

of a certain (terminal) decorated poset
−→
P (S)ter for (T ∗S, ωst) localized at the set of continuation

morphisms, as discussed in Section 3.8 in ibid. To begin, consider a decorated poset
−→
P (S), not

necessarily terminal, which satisfies the following conditions:

24Since [GPS20] uses local systems, not twisted, we use spin structures for Betti Lagrangians to orient. The
relation between twisted local systems and spin structures is discussed in Appendix A.3. We can use Corollary 5.23
to pass from spin structure count to twisted count. Alternatively, one could develop [GPS20] for twisted local
systems.
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(a) Each Lagrangian Pk in the poset is transverse to L, and each family of almost complex
structure can be extended to an almost complex structure on T ∗S, that agrees with Jcyl
outside some uniform compact base.

(b) For each chain p0 > p1 > . . . > pk, the moduli space of pseudo-holomorphic polygons
bounded by the (ordered) tuple of Lagrangians (Pp0 , Pp1 , . . . , Ppk , L) is also transversely
cut-out and compatible with gluing.

Such decorated poset exists after perturbing the almost complex structure. This requires the fact
that the relevant pseudo-holomorphic polygons do not escape off to infinity. Namely, that given
the exact Betti Lagrangian L, the (pairwise transverse) cylindrical Lagrangians P1, . . . , Pk ⊂ T ∗S
and {Js} a family of almost complex structures on T ∗S, we need that any Js-holomorphic polygon
with boundary conditions given by (P1, . . . , Pk, L) has uniformly bounded diameter, and the same
holds with moving Lagrangian boundary conditions on P1, . . . , Pk given by positive isotopies. This
geometric condition does hold in our case: L is contained in a finite-radius disk bundle, it is
uniformly geometrically bounded with respect to Js and, being exact, the energy of such polygons
is a priori bounded by the action of the intersection points. Therefore, the monotonicity argument
in [Nho24, Proposition 3.29] applies to guarantee such condition.

We then construct an A∞-module Y
pre
(L,V ) over the poset in

−→
P (S) with its A∞-operations given

by counting pseudo-holomorphic polygons between the Lagrangians {Pi} in
−→
P (S). For such chain

of Lagrangians {Pi}, we define the map

µk−1|1 : O(P1, P2)⊗ . . .O(Pk−1, Pk)⊗ Y
pre
(L,V )(Pk) −→ Y

pre
(L,V )(P1), P1 > P2... > Pk,

by counting pseudo-holomorphic (k + 1)-gons with boundary conditions given by (P1, ...., Pk, L),
withO as in Eq. (3.52) in ibid. We set the A∞-module map to be equal to zero otherwise, except for

the case µ1|1 : Y
pre
(L,V )(P ) −→ Y

pre
(L,V )(P ) where

−→
P (P, P ) = Z acts as the identity. The above defines

Y
pre
(L,V ) as A∞-module over the poset in

−→
P (S), we need to argue that it descends to the localization

W−→
P (S)

by continuation morphisms. For that, note that given any positive isotopy of cylindrical

Lagrangians {Kt}, t ∈ [0, 1], the continuation map CF (K0, L) → CF (K1, L) is invertible. Indeed,
since L lies in a finite disk bundle, L and Kt do not intersect at infinity, thus the conclusion follows
from the argument in [GPS20, Lemma 3.21] and the final assertion in [GPS20, Lemma 3.26]. It
also follows that C∗(Ypre

(L,V )(P )) ≃ CF ∗(P,L).

It now suffices to relate W−→
P (S)

to W(T ∗S). For that, consider the category of decorated posets

which satisfy (a) and (b) above, are downward-closed and duplicate-free. Denote its terminal

object by
−→
P (S, L)ter, cf. [GPS20, Lemma 3.42]. The inclusion

−→
P (S, L)ter ⊂

−→
P (S)ter of posets

induces an inclusion functor between the associated localized categories, and thus W−→
P (S)

admits

a tautological inclusion functor into W(T ∗S), which is in fact an equivalence. By precomposing
Y
pre
(L,V ) with the inverse of this equivalence, we obtain the required A∞-module Y(L,V ). □
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Remark 6.2. We use the following convention for composition and wrapping: the µ2-maps are
given as

µ2 : CF (A,B)⊗ CF (B,C) → CF (A,C)

and, when wrapping is involved, a morphism A → B has its domain A more positive than its
codomain B, i.e. positive wrapping gives CF (Aw, A) ⊗ CF (A,B) → CF (Aw, B). In particular,
the Betti Lagrangian L ⊂ T ∗S, e.g. a spectral curve, is always taken on the right slot of CF (·, ·),
as it is the most negative object. Similarly, in the partially wrapped setting, the positive push-off
of the (cylindrized) Betti Lagrangian is the most negative object, in that small negative wrapping
makes it fall into ∂∞L. □

In the same line as the equivalence established in Section 5.3, cf. Theorem 5.24, the A∞-modules
Y(L,V ) in Proposition 6.1 are closely related to the non-abelianized local systems, as follows. First,
for technical reasons, we normalize the Riemannian metric (S, g) so that inj(g) > 2, which is
achieved after a constant metric rescaling g → c2g; this is necessary for the proof of Proposi-
tion 6.6 to estimate action. Now, by definition, two points z, w ∈ (S, g) in a Betti surface with
a spectral network W ⊂ S are said to be W-adapted if distg(z, w) < inj(g)/20 and the minimal
geodesic αzw between z, w is a W-adapted path (cf. Definition 5.4). Since the metric (S, g) is
complete, we can and do choose w in terms of z such that the energy functional on the path space
Ωz,w between z and w is a Morse functional, cf. [Mil63, Theorems 14.2, 18.1 & 18.2]. This ensures
the transversality of intersections of cotangent fibres in (T ∗S, ωst) after wrapping by the geodesic
flow.

We implicitly identify HomW(T ∗S)(T
∗
z S, T

∗
wS) := CF ∗(T ∗

z S, T
∗
wS) with chains on the path space

Ωz,wS, see [Abo12]. In fact, CF ∗(T ∗
z S, T

∗
z S) is A∞-quasi-isomorphic to C−∗(ΩzS) endowed with

the A∞-refined Pontryagin product. The reason we focus on cotangent fibers is that [Abo11a]
shows that any cotangent fiber T ∗

z S ⊂ (T ∗S, ωst) generates W(T ∗S), and thus we have an A∞-
quasi-equivalence Tw(W(T ∗S)) ≃ Tw(CF ∗(T ∗

z S, T
∗
z S)). We denote by

µ1|1 : HomW(T ∗S)(T
∗
z S, T

∗
wS)⊗ Y(L,V ) −→ Y(L,V )

the structure map of the A∞-module Y(L,V ) in these degrees evaluated at two cotangent fibers.
The categorical statement relating Floer theory to non-abelianized local system reads as follows:

Theorem 6.3. Let (S, g) be a Betti surface, L ⊂ (T ∗S, ωst) a Betti Lagrangian, V ∈ Loc(L),
W ⊂ S an adapted spectral network and z, w ∈ S an W-adapted pair. Then the minimal geodesic
generator [αzw] ∈ HomW(T ∗S)(T

∗
z S, T

∗
wS) satisfies

(33) µ1|1([αzw], ·) = ΦW(V )(αzw).

□

In brief, Eq. (33) equates a map given by Floer-theoretically counting pseudo-holomorphic strips, on
its left, to the topological parallel transport given by the spectral network, on the right. Note that
the left hand side of the isomorphism Eq. (33) can be identified with Y(L,V )([αzw]), understanding
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Y(L,V ) as being applied to a morphism in W(T ∗S). Thus the structure map µ1|1 appearing in
Theorem 6.3 categorically (and cohomologically) describes the parallel transport map from z to w
when its domain is evaluated at HomW(T ∗S)(T

∗
z S, T

∗
wS)⊗ Y(L,V )(T

∗
z S). Theorem 6.3 will be proven

in a moment, in Section 6.2, after we discuss a useful corollary.
Given the A∞-quasi-equivalence Tw(W(T ∗S)) ≃ Tw(CF ∗(T ∗

z S, T
∗
z S)), the right hand side is a

model for Loc(S) ≃ C−∗(ΩzS)-mod. Thus, a local system in Loc(S) can be understood as a
W(T ∗S)-module. It is in general challenging to explicitly present A∞-modules over W(T ∗S), as
it involves solving partial differential equations, significant preliminary Floer data to be specified
and homotopy (co)limits need to be computed. An advantageous consequence of Theorem 6.3 is
that we can explicitly describe the class of A∞-modules over W(T ∗S) arising as non-abelianized
local system via the A∞-quasi-equivalence above. Specifically, under these identifications, we have
the following

Corollary 6.4. Let (S, g) be a Betti surface, L ⊂ (T ∗S, ωst) a Betti Lagrangian, V ∈ Loc(L), and
W ⊂ S a spectral network adapted to L. Then, under the A∞-quasi-equivalence W(T ∗S)-mod ∼=
C−∗(ΩzS)-mod,

Y(L,V ) ≃ ΦW(V ),

as A∞-modules over W(T ∗S). That is, the A∞-module Y(L,V ) : W(T ∗S) −→ modk is homotopic to
the A∞-module corresponding to ΦW(V ) : Loc(S) −→ modk. □

6.2. Proof of Theorem 6.3 (Floer µ1|1 is spectral transport). We need to compute the
wrapped Floer complex using a model that is also suitable for computing the µ1|1-maps in the
statement of Theorem 6.3. For that, we introduce such a model in Section 6.2.1, then compute
the structure maps in Section 6.2.3, and conclude the argument in Section 6.2.4.

6.2.1. A model for computing the wrapped Floer complex. Given two nearby points z, w ∈ S, the
goal of this subsection is to establish that appropriately chosen positive isotopies applied to T ∗

z S
exactly lead to a degree-0 cycle in HomW(T ∗S)(T

∗
z S, T

∗
wS) represented by the minimal geodesic αzw

between z and w, with this morphism complex given by direct limits as in [GPS20].

Recall that an exact isotopy {P}t∈[0,1] of cylindrical Lagrangians is said to be positive (at infinity),
denoted by P0 ⇝ P1, if α(∂t(∂∞Pt)) > 0, where ∂∞Pt denotes the boundary at infinity of Pt and α
is a given contact form. Note that a positive isotopy P0 ⇝ P1 induces an element c ∈ CF (P1, P0),
called the continuation element, cf. [GPS20, Section 3.3]. The relationship between continuation
elements and continuation maps is as follows. If P0 ⇝ P1 and K ⊂ T ∗S is a Lagrangian with
K,P0, P1 pairwise transverse, then the continuation map

c(Pt) : CF (P0, K) → CF (P1, K)

associated to the continuation element c ∈ CF 0(P1, P0) is chain homotopic to the evaluation µ2(c, ·)
of the map

µ2 : CF (P1, P0)⊗ CF (P0, K) → CF (P1, K)
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of the A∞-structure at the continuation element c. In fact, this even holds if we fix P and move K
by a negative isotopy. Indeed, [GPS20, Lemma 3.26] proves this for K,P having compact horizon-
tal support; for K an exact Betti Lagrangian, the same argument works because of the existence
of uniform diameter bounds, as discussed in the proof of Proposition 6.1. Thus we can and do
implicitly switch between continuation elements and continuation maps.

In general, the wrapped Floer cohomology groups defined in [GPS20, Section 3.4] are given as
the direct limit

HW ∗(P,K) := lim−→
(P⇝Pw)+

HF ∗(Pw, K)

over (cofinal) sequences of positive isotopies. Our task is to choose a suitable such cofinal sequence,
which we explicitly present as a sequence P0 ⇝ P1 ⇝ P1 ⇝ · · · of Lagrangians. We often denote
HF ∗(P,K) = HW ∗(P,K) when it is clear by context that wrapping must be taken: we always
consider a positive wrapping of P , in the sense above, though one can equivalently negatively wrap
K. To define our cofinal sequence, it is convenient to introduce the following notation:

Definition 6.5 (Wrapped fibres and fibre wrappings). A cylindrical Lagrangian F ⊂ (T ∗S, ωst) is
said to be a wrapped fibre if there exists a point z ∈ S and a positive isotopy T ∗

z S ⇝ F supported
on the complement of the unit disk bundle D∗S. In this case, the point z ∈ S is said to be the
base point of F . By definition, a positive isotopy {Ft}t is called a fibre wrapping if Ft is a wrapped
fibre for each t, and {Ft} are uniformly cylindrical and have uniform horizontal support. In this
case, the path of base points of {Ft} in S is said to be its support arc. □

In order to prove Theorem 6.3 we need a cofinal sequence that relates to minimal geodesics:
intuitively, we will consider a cofinal sequence given by fibre wrapping such that the associated
continuation elements map to the minimal geodesics. For that, we need to cover T ∗S by sectorial
covers, as defined in [GPS24b, Section 12.5], and we achieve that by modifying the given metric
(S, g), as follows. Given the spectral network W ⊂ S adapted to (S, g), we consider a finite good
cover {Uα} of S such that each Uα contains at most one vertex of W, and the open sets Uα have
their closures contained in S, except for a distinguished open set for each puncture of S, which
we choose to be contained in the region where the metric is conical. We call the open sets of the
former type the “internal” open sets. Then, we choose a collar neighborhood of each ∂Uα ⊂ S
with a diffeomorphism to S1 × (0, 1) such that:

- ∂Uα is mapped to S1 × {1/2},
- ∂Uη, η ̸= α, and the edges of W intersect the neighborhood S1 × (0, 1) of ∂Uα as an arc of
the form {p} × (0, 1), p ∈ S1 a point.

With this cover chosen, we modify the metric (S, g) near each such collar of ∂Uα so it is of the
form gS1 + dt ⊗ dt, where gS1 is the standard round metric on S1. This can be achieved by an
arbitrarily C0-small compactly supported perturbation of g in a manner that W ⊂ S stays in-
variant, up to smooth isotopies supported away from the boundaries of these disks Uα. Note that
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for two W-adapted points z, w ∈ Wc, the length of the second shortest geodesic will be bounded
below by the minimal injectivity radius inj(g) of this perturbed metric. For the rest of this section,
we assume the metric (S, g) has been modified as just described, and still denote this perturbed
metric by (S, g).

The sequence of fibre wrappings that we use to prove Theorem 6.3, whose continuation elements
limit to the minimal geodesics, is constructed in (the proof of) the following result:

Proposition 6.6 (Fibre wrappings and minimal geodesics). Let Fz, Fw ⊂ (T ∗S, ωst) be wrapped
fibres based at z, w ∈ S, two close enough generic points.Then, there exists a sequence of fibre
wrappings

Fz ⇝ F1 ⇝ F2 ⇝ . . .

with the base point of F1 equal to z such that:

(1) HW ∗(Fz, Fw) ∼= lim
i→∞

HF (Fi, Fw),

(2) the image in HW 0(Fz, Fw) of the continuation elements in HF 0(Fi, Fw) is the class [αzw] ∈
C0(Ωz,w) represented by the minimal geodesic αzw between z, w.

Proposition 6.6.(2) is the part that requires a new type of argument, whereas Proposition 6.6.(1)
can be reasonably obtained by modified existing arguments in the literature, as the proof will
show, cf. Lemma 6.8 and 6.9 below.

6.2.2. Proof of Proposition 6.6. First, we need to introduce the following notion of cofinality:

Definition 6.7. Let Pt ⊂ (T ∗S, ωst) be a positive isotopy of cylindrical Lagrangians, t ∈ [0,∞),
and {St} a nested family of truncations of S such that Pt ⊂ St and ∪St = S. By definition, a
such a pair (Pt,St) is said to be ind-cofinal if:

(1) For any isotopy P0 → Pw, there exists some t ∈ R+ and a positive isotopy Pw ⇝ Pt

such that the composition of P0 → Pw with Pw ⇝ Pt is homotopic to a positive isotopy
P0 ⇝ Pt. Furthermore, both the isotopy and the homotopy can be taken to be supported
in the interior of T ∗St.

(2) Any two positive isotopies P0 ⇝ Pt coincide, up to homotopy, after composing with Pt →
Ps, for some large s > t. Furthermore, the homotopy (of positive isotopies) can be taken
to be supported in the interior of T ∗Ss.

A positive isotopy Pt is said to be ind-cofinal if there exists {St} such that (Pt,St) is ind-cofinal.□

As in the non-limit case, the ind-cofinality in Definition 6.7 of a positive isotopy Pt can be guaran-
teed by forcing the boundaries ∂∞Pt to move fast enough in a Reeb direction in the ideal contact
boundary of (T ∗S, ωst). In precise terms:
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Lemma 6.8. Let Pt ⊂ (T ∗S, ωst) be a positive isotopy. Then, Pt is ind-cofinal if there exists a
contact form α on the unit sphere bundle, coinciding with the restriction of λst outside a compact
set, such that ∫ ∞

0

inf
∂∞Pt

α(∂t(∂∞Pt))dt = ∞.(34)

In particular, the time-t the geodesic flow at infinity applied to a Lagrangian P ⊂ (T ∗S, ωst) gives
an ind-cofinal family.

Proof. It suffices to modify [GPS20, Lemma 3.29]. Since the metric is conical at infinity, the as-
sociated geodesic flow is complete. By the hypothesis Eq. (34), we can reparametrize the family
Pt in the t-variable such that αst(∂t(∂∞Pt)) ≥ 2, αst being the restriction of λst to the ideal con-
tact boundary, and the horizontal support of Pt is contained in St = Ur>f(t)

25 for some function
f : R+ → R+ such that f(t) > 3t.

Since αst(∂t(∂∞Pt)) ≥ 2, then
P 0 ⇝ ϕ−t(P

t)

is a positive isotopy because αst(∂t(∂∞(ϕ−tPt))) ≥ 1, where ϕt is the geodesic flow. Independently,
we can use the geodesic flow on the inverse isotopy Pw → P 0 to also make it positive and, since
the metric is conical at infinity, we can ensure ϕt(T

∗Ss) ⊂ Ss+t. Now that Pw → ϕt(P
0) has been

made positive, note that
ϕt(P

0)⇝ (ϕt ◦ ϕ−t)(P
t) = P t

is positive because P 0 ⇝ ϕ−t(P
t) is positive. This establishes property Definition 6.7.(1). For

Definition 6.7.(2) the argument is the same as GPS, with the truncation being preserved. □

Lemma 6.8 gives an ind-cofinal sequence, as in Definition 6.7, and the first part Proposi-
tion 6.6.(1) is then a consequence of the following lemma:

Lemma 6.9. Let P and K be Lagrangians in T ∗S with compact horizontal support. Let {Pj} be
an ind-cofinal sequence with P0 = P , then

HW (P,K) = lim
j→∞

HF (Pj, K).

Proof. The sequence Pi regarded as a decorated poset is cofinal in the sub-poset of the final
decorated poset Pfinal given by those Pp that belong to the wrapping category of P0, c.f. [GPS20,
Section 3.4]. Therefore, the natural map HF (Pj, K) → HW (P,K) is an isomorphism in the
limit. □

Let us now focus on establishing Proposition 6.6.(2). The difficulty here is naming the necessary
geometric objects in a homotopically coherent manner. To wit, we must be able to describe the
geodesic generator αz,w within the framework of sectorial coverings of [GPS20], which is itself a

25Here r is the one over the distance to the puncture, so puncture corresponds to r = ∞.
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highly non-explicit setting. For that, consider the finite good cover from Section 6.2.1 and the
correspondingly perturbed metric (S, g). Then the Liouville sectors {T ∗Uα}α form a sectorial
covering of T ∗S26 and we can consider the associated wrapped Fukaya categories W(T ∗Uα) on
each of these sectors. In this particular case, using the argument similar to [GPS24a, Section 5.6],
we can directly compute wrapped chain complexes as follows. For an internal open set Uα, and
each z ∈ Uα, we consider a cofinal fibre wrapping Fz,t of T

∗
z S with the support arc given by z,

such that for t large enough, the ideal boundary of Fz,t is given by some inward push-off of the
conormal of ∂Uα. These Fz,t give an explicit description of W(T ∗Uα) since

HF ∗(T ∗
z S, T

∗
z′S) = HF 0(T ∗

z S, T
∗
z′S)

∼= Z[γzz′ ], ∀z, z′ ∈ Uα.

In particular, we can identify HF ∗(T ∗
z S, T

∗
z′S) with the unique path homotopy class in π1(Uα; z, z

′).
Furthermore, if z, z′, z′′ ∈ Uα, then the A∞-structure map is

µ2 : HF
∗(T ∗

z S, T
∗
z′S)⊗H∗(T ∗

z′S, T
∗
z′′S) → H∗(T ∗

z S, T
∗
z′′S), µ2([γzz′ ], [γz′z′′ ]) = [γzz′′ ].

Note also that we have inclusion functors (iα)∗ : W(T ∗Uα) → W(T ∗S) and [GPS24b, Theorem
1.35] implies that the natural functor

(36) hocolim(iα)∗ : hocolimα1,...,αk
W

(
T ∗Uα1...αk

)
→ W(T ∗S)

is a pre-triangulated equivalence, where Uα1,...,αk
:= Uα1 ∩ . . . ∩ Uαk

and the homotopy category of
the homotopy colimit is naturally identified with the fundamental groupoid of S.

Proof of Proposition 6.6. As said above, Part (1) follows from Lemma 6.8. For Part (2), let x, y ∈
Uα such that y is within the distance 1

20
inj(g) from x. By the prior discussion, we have a generator

[γxy] that represents the minimal geodesic in the homotopy colimit 36. We must now compute
the image of [γxy] under the functor hocolim(iα)∗ and show that, for careful choices, the minimal
geodesic generator indeed gets preserved. First, we claim that there are fibre wrappings {Fk}k of
T ∗
xS such that

(i) the generators of CF (Fk, T
∗
y S) correspond to geodesics between T ∗

xS and T ∗
y S,

(ii) the wrapping continuation map CF (Fk, T
∗
y S) → CF (Fk+1, T

∗
y S) preserves the minimal

geodesic element.

Intuitively, these can be obtained by considering globally positive Hamiltonians Hk that are linear
at infinity but quadratic in a large compact part of the cotangent bundle and using them to flow
T ∗
xS. Part (2) follows from the existence of such fibre wrappings, so let us prove the claim, as

26Using the product decomposition near the boundary, we obtain the projection structure

NbhZ(∂T ∗(Uα)) ≃ T ∗(∂Uα)× T ∗[0.5, 1)(35)

where we identify T ∗[0.5, 1) ≃ C0.5≤Re(z)<1. Unlike the setting in [GPS20], here we equip C with the Liouville
structure obtained from C ≃ T ∗R. The argument [GPS20, Lemma 2.41] that prevents pseudo-holomorphic curves
from escaping off the boundary applies for almost complex structures on C obtained from the conically deformed
Sasaki metric on T ∗R coming from the Euclidean metic. Therefore, we may impose the constraint that the almost
complex structure on T ∗Uα coincides with Jcyl near the boundary.
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follows.

Let {ℓi} → +∞ be an increasing sequence of positive real numbers, with ℓ1 > 2, such that no
ℓi is in the length spectrum of geodesics between x and y and the minimal geodesic is the only
geodesic with length less than ℓ1. (This is possible because we normalized so that inj(g) > 2.) For
each k ≥ 0, consider δk ∈ R+ such that [ℓk − δk, ℓk + δk] is disjoint from the length spectrum and,
for each δk, choose a smooth increasing positive function Hk : [1,∞) → [0,∞) such that

- H ′
k(r) = 0 on [1, 1 + 1

80
],

- Hk(r) =
1
2
r2 on r ∈ [1 + 1

40
, ℓk − δk],

- Hk(r) = ℓk · r for r ∈ [ℓk,∞).
- With respect to k, Hk is fixed on [1, ℓ1] and the derivatives of Hk form an increasing
sequence of functions.

These Hamiltonians Hk are linear at infinity and quadratic on large compact part. We then declare
the sequence of fibre wrappings {Fk} to be time-1 image of T ∗

xS under the Hamiltonian flow of Hk.
The family {Fk} is cofinal because under a (large) compactly supported deformation, it becomes
the linear Hamiltonian ℓkr and thus the cofinality criterion Lemma 6.8 applies. Let us argue that
it satisfies (i) and (ii).

By the observation in [Sei08a, Section 3(c)], the Hamiltonian chords of Hk between T ∗
xS and

T ∗
y S are of the form (r, x(ℓs)), where x is the sphere bundle lift of a unit-speed geodesic, ℓ is its

length, and r > 0 is such that H ′
k(r) = ℓ. By our condition inj(g) > 2, given a non-minimal

geodesic of length ℓ we must have ℓ > 1. Since the interval [ℓk− δk, ℓk+ δk] is disjoint to the length
spectrum, the Hamiltonian chords lie on the interval where Hk is quadratic and are thus in one-
to-one correspondence with non-minimal geodesics of length bounded above by ℓk. Furthermore,
there is a unique Hamiltonian chord [γxy] representing the minimal geodesic in the region [1, ℓ1].
This concludes (i). For (ii), consider the continuation map CF (Fk, T

∗
y S) → CF (Fk+1, T

∗
y S). Since

Hk is fixed on [1, ℓ1], the minimal geodesic element gives a constant continuation strip: let us
argue that this is the only continuation strip. Indeed, let u be a homogeneous continuation strip
for CF (Fk, T

∗
y S) → CF (Fk+1, T

∗
y S) mapping a geodesic x− of length ℓ to the minimal geodesic

γ. By the geometric energy formula and global positivity of the Hamiltonians, we must have
A(x−) ≥ A(γ). In contrast, [Sei08a, Section 3(c), Eq.(3.12)] implies that the action of the first non-
minimal geodesic is −1

2
ℓ2, so A(x−) = −L2/2, and we had

∣∣A(γ)∣∣ < L2/2. This is a contradiction
and thus the only strip must be constant, hence the minimal geodesic [γxy] is preserved under
wrappings. □

6.2.3. Continuation maps for fibre wrappings. In order to continue our proof of Theorem 6.3, we
need to compute µ1|1(c, ·), where c is a continuation element. To employ the family Floer techniques
from Section 5.2, we use the following facts to relate the maps µ1|1(c, ·) with continuation maps
(c.f [GPS20, Lemma 3.26]). First, an analogue of Theorem 4.2 for fibre wrappings:
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Lemma 6.10. Let F be a wrapped fibre whose base-point is contained in the complement of W.
Then there exists ε0(F ) ∈ R+ such that there are no non-constant Jcyl-holomorphic strips between
F and εL if ε ∈ (0, ε0(F )).

Proof. Let z be the base-point of F , then since F = T ∗
z S on D∗

1S, the action of the intersection
points are of size O(ε). Therefore, monotonicity tells us that the Jcyl-holomorphic strips cannot
escape D∗

1S. □

The analogue of Proposition 5.30 for fibre wrappings reads as follows. For brevity, we suppress
the discussion on the necessity to make the right choice of the elongation functions.

Proposition 6.11. Let {Ft}, t ∈ [0, 1], be a fibre wrapping and W ⊂ S a spectral network.

(1) If the support arc of {Ft} lies outside W, then there exists a family J(s, t) of almost com-
plex structures such that the moduli space of (Ft, L)-continuation strips is cobordant to the
moduli space of trivial strips.

(2) If the support arc of {Ft} intersects W at an ij-wall, then there exists a family J(s, t) of
almost complex structures such that the moduli space of (Ft, L)-continuation strips that do
not travel from the jth sheet to the ith sheet is cobordant to that of trivial strips.

Proof. Proposition 5.30 implies that there exists ε0({Ft}) ∈ R+ such that for all ε ∈ (0, ε0({Ft}))
there are no non-constant Jcyl-holomorhic strips between εL and Ft. We can then apply the
Gromov compactness argument as in the proof of Proposition 5.26 to conclude that the moduli
space of continuation strips is cobordant to the moduli of trivial strips. □

Since the scaling parameter ε in Lemma 6.10 only depends on the base point, a consequence of
Proposition 6.11 is that wrappings at infinity do not affect L. That is, if F ⇝ F ′ is a fibre wrapping
with the same base point, then the continuation map CF (F,L) → CF (F ′, L) is the identity map.
This is an analogue of the invariance statement in Proposition 5.12.

6.2.4. Concluding Theorem 6.3 and Corollary 6.4. For Theorem 6.3, it suffices to show that Y(L,V )

is the the non-abelianization module, as a module over the cohomology subcategory generated by
the wrapped fibres, which we identify with the fundamental groupoid. For that, note that given
any W-adapted minimal geodesic, Proposition 6.6 and Proposition 6.11 guarantee the upper-
triangular form of Y(L,V )([αzw]). Then the same argument as in the proof of Theorem 5.24 and the
wall-crossing formula imply that the parallel transport map must be equal to that of ΦW(V ).

For Corollary 6.4, Lemma 5.13 implies that L is Maslov 0 and thus the chain complex Y(L,V )(F )
for a wrapping fibre F must be cohomologically concentrated in degree zero. By homological
perturbation, comparing to the non-abelianization modules, we can perturb Y(L,V ) to be defined
over the subcategory of the wrapping fibres. Since the latter subcategory generate the wrapped
Fukaya category, the statement follows from Theorem 6.3. □
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6.3. Cylindrized Betti Lagrangians and spectral networks. As discussed in Section 6.1, a
Betti Lagrangian L ⊂ (T ∗S, ωst) does not give an element of the wrapped Fukaya categoryW(T ∗S),
nor its partially wrapped modification W(T ∗S,Λ). The reason is the asymptotic behavior of L
at infinity, which is not compatible with the definitions of these categories. In Section 6.1, we
showed that a Betti Lagrangian, endowed with V ∈ Loc(L), does nevertheless give an A∞-module
Y(L,V ) over W(T ∗S) which behaves as if it was the Yoneda module of an object in W(T ∗S), and in
turn we related the µ1|1-maps of such A∞-modules to the non-abelianization framework of spectral
networks, cf. Theorem 6.3. An alternative approach to comparing Betti Lagrangians and Fukaya
categories to spectral networks is to allow ourselves to modify the Betti Lagrangian L ⊂ (T ∗S, ωst)
at infinity so that in fact it defines an object in a Fukaya category. The present section develops this
approach, defining such cylindrizations and showing that the non-abelianized parallel transport
from spectral networks is captured by µ2-map of the A∞-structure associated to such cylindrization.

Specifically, Section 6.3.1 explains how to deform L to a cylindrical Lagrangian L◦ ⊂ (T ∗S, ωst)
with boundary on the Legendrian links associated to the Betti surface (S,m,Λ). Denote by
W(T ∗S,Λ) the partially wrapped Fukaya category of (T ∗S, ωst) partially stopped at Λ, as con-
structed in [GPS24b]. By construction, the cylindrization L◦ defines an object in W(T ∗S,Λ) once
endowed with a local system V ∈ Loc(L). We denote by

Y(L◦, V ) : W(T ∗S,Λ) → modk

its associated Yoneda A∞-module and consider its component

µ2 : HW (T ∗
z S, T

∗
wS)⊗HW (T ∗

z S, L◦) → HW (T ∗
wS, L◦),

where HW (T ∗
z S, T

∗
wS) = HomW(T ∗S,Λ)(T

∗
z S, T

∗
wS) are now morphisms in W(T ∗S,Λ), not W(T ∗S).

That said, given a W-adapted pair z, w ∈ S, we had the minimal geodesic αzw which defined a class
in HomW(T ∗S)(T

∗
z S, T

∗
wS). In order to transfer it to a class in HomW(T ∗S,Λ)(T

∗
z S, T

∗
wS), we consider

a subset Sint ⊂ S such that the front projections of the Legendrian links in Λ are all contained in
S \ Sint and S retracts to Sint: we obtain Sint by removing a sufficiently large disk neighborhood
of each marked point. Then there a natural inclusion functor i∗ : W(T ∗Sint) → W(T ∗S,Λ), and
we can consider the image i∗[αzw] of (the class defined by) αzw under this functor.

For the cylindrized Betti Lagrangian L◦, now in the context of the partially wrapped Fukaya
category W(T ∗S,Λ), the relation between the A∞-structure and non-abelianized parallel transport
for spectral networks is as follows:

Theorem 6.12. Let (S, g) be a Betti surface, L ⊂ (T ∗S, ωst) a Betti Lagrangian, V ∈ Loc(L),
W ⊂ S an adapted spectral network and z, w ∈ S an W-adapted pair. Then the minimal geodesic
αzw ∈ Ωz,w satisfies

(37) µ2(i∗[αzw], ·) = ΦW(V )(αzw)
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Theorem 6.12 is momentarily proven in Section 6.3.2, after describing L◦ in Section 6.3.1. A
consequence of Corollary 6.4 and Theorem 6.12 is the relationship between Y(L,V ) and Y(L◦,V ),
which reads as follows:

Corollary 6.13. There is a homotopy

Y(L◦,V ) ◦ i∗ ≃ Y(L,V )

of A∞-modules over W(T ∗S).

6.3.1. Cylindrization of Betti Lagrangians. Let L ⊂ T ∗S be a Betti Lagrangian on a Betti surface
(S,m,Λ), we want to modify L near infinity (around the punctures of S) to obtain a Lagrangian
L◦ ⊂ T ∗S which is a Lagrangian filling of the Legendrian link in (T∞S, ξst) defined by Λ and
defines an object in W(T ∗S,Λ). The cylindrization procedure is in line with the modification for
weave fillings in [CL22].

From a symplectic topological viewpoint, without taking W into account, the cylindrization
process is as follows. Choose a collection S of circles in S, one circle per puncture chosen so that
it encloses the puncture and is sufficiently close to it. The positive conormal lift of such collection
S is a Lagrangian submanifold that cleanly intersects the zero section of T ∗S. Let C ⊂ T ∗S
be the Lagrangian surgery resolving that clean intersection, which is an exact Lagrangian that
coincides with the zero section away from the punctures, and with the positive conormal lift of the
circles near the punctures. Since C ⊂ T ∗S is Lagrangian and cylindrical at infinity, there exists a
Weinstein neighborhood icyl : D

∗C → T ∗S for a small enough disk bundle D∗C, which coincides
with the disk bundle of T ∗S away from the punctures. Since C is diffeomorphic to S, the Betti
Lagrangian L ⊂ T ∗S can be identified with a homonymous Lagrangian L ⊂ T ∗C which can be
assumed to belong to D∗C.

Definition 6.14. The cylindrization L◦ of L is defined to be icyl(L) ⊂ (T ∗S, λst). □

To incorporate compatibility with a given spectral network W for L, we require that the circles in
S are chosen enclosing each puncture close enough such that:

(1) W is transverse to the circles,
(2) each circle is contained in the trapping neighborhood, cf. Lemma 2.26, for the corresponding

puncture,
(3) no vertex of W gets mapped in the cylindrical region between each circle and its corre-

sponding puncture.

This can be ensured by choosing the circles in S close enough to the punctures and generically.
Note that Lemma A.2 implies that L is uniformly bounded with respect to g, and so any (Fz, L)-
disk for z away from the circles must have its image contained in a similar region, truncated away
from the punctures.
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Remark 6.15. Note that we had to scale L down so that L ⊂ D∗C lied inside the Weinstein
neighborhood. This is possible while being compatible with W because the metric is of the form
r2dθ2 + dr2 near the punctures. □

The cylindrization L◦ in Definition 6.14 defines an object in W(T ∗S,Λ) after applying a small
positive push-off at infinity. We always implicitly understand a Lagrangian filling of a Legendrian
Λ in T∞S as giving an object in W(T ∗S,Λ) in this manner.

6.3.2. Proof of Theorem 6.12 (Floer µ2 is spectral transport). The argument is in line with the
family Floer techniques developed in Section 5 and follows the same steps as Section 6.2, now
suitably modified in the partially wrapped setting. Let S(S) denote the unique compact connected
component of the complement in S of the circles in S. First, by geometric boundedness, the
following locality lemma holds:

Lemma 6.16. Let Fz be a wrapped fibre, with basepoint z ∈ S(S), whose boundary does not inter-
sect Λ. Then, any (L◦, Fz)-disk belongs to a region of the form T ∗S(S′), for S′ another compatible
collection of circles. Similarly, the same statement holds for any small enough negative push-offs
of L◦ whose boundary stays disjoint to ∂Fz. □

Lemma 6.16 implies that the remainder of the proof of Theorem 6.12 can be the same as the
proof of Theorem 6.3, except for the fact that the cohomology module is now defined as the direct
limit of CF (T ∗

z S, L
i
◦) as i→ ∞. We thus need to take into consideration of wrapping morphisms

CF (T ∗
z S, L

i
◦) → CF (T ∗

z S
w, Li

◦), CF (T ∗
z S, L

i
◦) → CF (T ∗

z S, L
i+1
◦ ).

This does not affect the computations overall, as a combination of the argument in Lemma 6.16
with the Gromov compactness used in Proposition 6.11 implies the following fact:

Lemma 6.17. There exists a sequence of positive push-offs {Li
◦}i, {F j

z }j such that:

(1) For z ∈ S(S) and for i− 1 > j, the continuation maps

CFΛ(F
j
z , L

i
◦) → CFΛ(F

j+1
z , Li

◦), CF (F j
z , L

i
◦) → CFΛ(F

j
z , L

i+1
◦ )

are the identity map.

(2) HFΛ(Fz, L) = lim
j→∞

HF (F j
z , L) = lim

i→∞
HF (Fz, L

i)

Here we denoted CFΛ when morphisms are in W(T ∗S,Λ), i.e. partially stopped at Λ. □

The remaining ingredient for the proof of Theorem 6.12 is a description of the image morphisms
i∗(HW (T ∗

xS, T
∗
y S)) under the inclusion i∗ : W(T ∗S) → W(T ∗S,Λ). It is provided by the following

proposition:

Proposition 6.18. Let x, y ∈ S(S) be two generic points at distance less than 1
20
inj(g). Then the

inclusion map
i∗ : HF

∗(T ∗
xS, T

∗
y S) → HF ∗

Λ(T
∗
xS, T

∗
y S)
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is an isomorphism. In fact, for [αxy] the representative of the minimal geodesic, i∗[αxy] = [αxy].

Proof. In brief the core of the proof is using an action filtration argument combined with the fact
that, since the metric is conical near the punctures, geodesics in the truncated region S(S) that
enter the neighborhood of the punctures cannot leave.27 Let us provide the details of the argument.

First, we must construct a contact form α for (T∞S, ξst) whose Reeb chords correspond to
geodesics between x and y while being stopped at Λ, so as to be consistent with the partial
wrapping inW(T ∗S,Λ). In precise terms, we claim that there exists a contact 1-form α ∈ Ω1(T∞S)
for ξst = kerα such that:

(i) The Reeb flow of α is complete,
(ii) α = λst|T∞S outside a small standard neighborhood of Λ,
(iii) α-Reeb chords between ∂T ∗

xS and ∂T ∗
y S are in bijection with λst-chords from ∂T ∗

xS to
∂T ∗

y S.

The neighborhood in (ii) is referred to as the stop region of α. Let us argue that such α exists, as
follows. By construction, Λ lies in a small neighborhood of the positive conormal of the circles in S.
In such a neighborhood, the geodesic flow for (S, g) points outward, transverse to the boundary of
S(S). By [GPS20, Lemma 3.29], there exists a contact form satisfying (i),(ii) with the stop region
lying in this neighborhood. For this choice of neighborhood, (iii) also holds. Indeed, an α-Reeb
chord from x to y is a geodesic chord away from the stop region. Now, on the one hand, if it entered
such neighborhood of Λ, the geodesic must enter the boundary in the transverse direction and then
the conical metric structure implies that the original geodesic could not have returned to y. On
the other hand, for the α-Reeb chord to return to y, it must leave the stopping region but the only
way the chord can leave it is by exiting the neighborhood of the positive conormal of S. In that
case the geodesic flow would further send the chord off to infinity. Therefore, geodesics between x
and y could not have entered such neighborhood of the stop boundary and no α-Reeb chord could
have done the same. Thus (iii) holds and we can choose a contact form α with the properties above.

Second, we proceed with an action filtration argument, in line with Proposition 6.6. By our
choice of contact form above, the α-Reeb chords are in bijection with geodesics between x and y.
By genericity of x, y, we can assume that the length of the geodesics are all distinct, the energy
functional on the path space is Morse, and all the geodesics stay outside the stop collar region.
We now consider two variations on the family of Hamiltonians from the proof of Proposition 6.6,
one for CF ∗ and one for CF ∗

Λ.

(1) For CF ∗, the wrapped case with no stop at Λ, let hS : T∞S(S) → R be a smooth, non-
negative function on the unit sphere bundle of S(S) with ∇hst supported on the stop region, such
that hSλst|T∞S has complete Reeb flow. Let Hn, ℓn be as in the proof of Proposition 6.6, consider

27Also, there is no conceptual importance to the factor 1/20: it is just there for action estimates.
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the linear-at-infinity Hamiltonians hS · Hn and let Fn denote the time 1-image of T ∗
y S under the

corresponding Hamiltonian flows. The Hamiltonian chords of hS · Hn all lie outside the stop re-
gion, and so the argument in Proposition 6.6 implies that the Hamiltonian chords correspond to
non-minimal geodesic of length ℓ less than ℓn, and their actions are given by −ℓ2/2.

(2) For CF ∗
Λ, write the contact form α above as α = hstopλst and let F stop

n be the time-
1 image of T ∗

xS using the quadratic Hamiltonians hstop · Hn. By construction, the inequality
hS ≤ hstop holds and so there is a positive isotopy Fn ⇝ F stop

n and an induced continuation map
CF ∗(Fn, T

∗
y S) → CF ∗(F stop

n , T ∗
y S). By Property (iii) above, these two groups coincide as vector

spaces. Since the actions are given by −ℓ2/2, and the length spectrum is discrete, we can consider
a basis [γ1], [γ2], . . . , [γk], by ordering by length the geodesics of length bounded by ℓn.

The last step is to argue that the continuation map is upper-triangular with respect to the basis
[γ1], [γ2], . . . , [γk]. Indeed, let [γi] be a generator of CF ∗(Fn, T

∗
y S) and consider the image

∑
nj[γj]

under the continuation map. By the geometric energy formula, we have A(γi) ≤ A(γj) if i ≤ j
and a continuation strip from γi to itself must be constant. Therefore, the action formula implies

that this image must be of the form [γi] +
∑
j<i

nij[γj]. Thus the continuation map CF (Fn, T
∗
y S) →

CF (F stop
n , T ∗

y S) is upper-triangular, with identity on the diagonal, and so it must be a quasi-
isomorphism. Furthermore, the following diagram commutes, up to chain homotopy:

CF (Fn+1, T
∗
y S) CF (F stop

n+1 , T
∗
y S)

CF (Fn, T
∗
y S) CF (F stop

n , T ∗
y S).

In consequence, the induced map WF (T ∗
xS, T

∗
y S) → WFΛ(T

∗
xS, T

∗
y S) must also be a quasi-

isomorphism. Finally, the minimal geodesic generator is preserved under these maps by arguing
as in the proof of Proposition 6.6. □

Proof of Theorem 6.12. By Proposition 6.18, i∗ is cohomologically fully faithful, and the minimal
geodesic elements are preserved under the inclusion functor. Consider the cohomology module
of Y(L◦, V ) over i∗ restricted to the subcategory given by the cotangent fibres which is istelf
identified with the fundamental groupoid. The cohomology module Y(L◦, V ) with the parallel
transport morphisms is defined by the direct limit

lim
i→∞

CF (T ∗
z S, L

i).

By Lemma 6.17, such wrappings induce identity maps on the Floer chain complexes CFΛ(F
j
z , L

i)
along arcs away from the spectral networkW. So the local system given by (the cohomology module
of) Y(L◦, V ) has trivial parallel transport over arcs that do not cross W. The same argument as in
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Proposition 6.11.(2) implies that the associated parallel along an arc crossing W must be as in the
wall-crossing formula for non-abelianized local systems. The statement then follows by applying
the argument used for Theorem 6.3. □

Proof of Corollary 6.13. By Theorem 6.12, Y(L◦, V ) ◦ i∗ ≃ Y(L) over the cohomology subcate-
gory of cotangent fibres. Since the inclusion functor i∗ is cohomologically fully faithful, and the
cotangent fibres generate W(T ∗S), the statement follows from the same argument as the proofs of
Theorem 6.3 and Corollary 6.4. □

6.4. Wrapping up the description of Y(L◦,V ). In Section 6.3 we introduced the Yoneda A∞-
module Y(L◦,V ) : W(T ∗S,Λ) −→ modk associated to the cylindrization L◦ ⊂ (T ∗S, λst) of a Betti
Lagrangian L. In a nutshell, Theorem 6.12 and Corollary 6.13 give a description of this A∞-
module on the A∞-subcategory given by the image of the functor i∗ : W(T ∗Sint) −→ W(T ∗S,Λ),
which is generated by the internal cotangent fiber. The goal of this section is to complete
the description of the A∞-module Y(L◦,V ) on W(T ∗S,Λ). In order to describe the whole of
Y(L◦,V ) : W(T ∗S,Λ) −→ modk, we construct in Proposition 6.19 a set of generators of W(T ∗S,Λ),
containing the internal cotangent fiber, where we can compute the values of Y(L◦,V ).

6.4.1. Generation by interior and infinity fibers. Let (S,m,Λ) be a Betti surface, and denote by
Λi ⊂ (T∞S, ξst) the Legendrian link associated to the marked point mi ∈ m. For simplicity, we
shall henceforth assume that Λi has finitely many Reeb chords, each at a different angle, and
that it is Reeb-positive (for instance, in the case of Stokes Legendrians without multiplicities
Proposition 2.25, or the positive braid links described in Remark 2.2). This includes many of the
most important classes, including the case where each Legendrian in Λ is isotopic to the cylindrical
closure of a positive braid. We consider the following Lagrangians in T ∗S, all of which yield objects
in W(T ∗S,Λ) once appropriately decorated and partially wrapped:

(1) An internal cotangent fiber T ∗
z S, for some point z ∈ S,

(2) The cotangent fiber Fmi
near the puncture corresponding to mi. It is given by the cotan-

gent fiber at any point in S arbitrarily close to the marked point mi ∈ S such that the
geodesic between that point and mi does not intersect Λi, i.e. it is the cotangent fiber at
infinity of mi, past the Legendrian link Λi. We denote Fm := {F1, . . . , F|m|} the set of such
fibers at the punctured infinity of S.

(3) The collection of linking disks Di associated to the Legendrian Λi. That is, each Di :=
{Di,1, . . . , Di,ci} is the disjoint union of the linking disks of Λi, as in [GPS24b, Section 5.3],
ci = |π0(Λi)|, one for each component of the Legendrian link Λi. See Figure 14.
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Figure 14. A front for the Legendrian Λi: in this picture we assume Λi has three
components, one per strand. The three linking disks Di,1, Di,2 and Di,3 for Λi are
depicted, with the short Reeb chords between them highlighted in purple. The large
linking disk D, homologically obtained from coning the small linking disks along the
short Reeb chords, is depicted in orange to their right.

By [GPS24b, Theorem 1.14], the set of Lagrangians {T ∗
z S,D1, . . . ,D|m|} generates W(T ∗S,Λ). By

Section 6.3, the spectral network W allows us to describe Y(L◦,V ) at the generator T
∗
z S, by choosing

z ∈ Wc and using that the inclusion induces a fully faithful functor W(T ∗S) → W(T ∗S,Λ). The
value of Y(L◦,V ) at the linking disks in Di is

Y(L◦,V )(Di) = Z.
Indeed, since ∂∞L◦ = Λ, Di intersects L◦ once. Since the same holds for a small enough positive
push-off L+

◦ at the puncture mi, CF
∗(Di, L

+
◦ ) = Z. Nevertheless, the value of Y(L,V ) on morphisms

HomW(T ∗S,Λ)(Di,j, Di,k) between such linking disks, even for j = k, contains subtler information,
encoding augmentations of Reeb chords at infinity which, in terms of W, correspond to augmented
D−

4 -trees.
28 In contrast, Y(L◦,V ) vanishes at the fibers Fm at infinity. Therefore, a description of

Y(L◦,V ) will follow if we can prove that W(T ∗S,Λ) is generated by {T ∗
z S, Fm}. This is the content

of the following Floer-theoretical result, which is independent of spectral networks:

Proposition 6.19 (Generation by internal and infinity cotangent fibers). Let (S,m,Λ) be a
Betti surface, W(T ∗S,Λ) the associated partially wrapped Fukaya category, L ⊂ (T ∗S, ωst) a Betti
Lagrangian and V ∈ Loc(L). Then W(T ∗S,Λ) is generated by {T ∗

z S, Fm}.
Proof. Let T ∗

z S ⊂ T ∗S be an internal cotangent fiber and choose a puncture m ∈ m with its
associated fiber Fm and Legendrian link Λm. Denote by Dm := {Dp1 , . . . , Dpn} a collection of
linking disks chosen such that Dpi locally links Λm at the point pi ∈ Λm and the ordered points
p1, . . . , pn ∈ Λm are located one per each strand of Λm and all in the same angle.29 Consider the

28These morphism groups between linking disks can themselves be difficult to describe.
29We can and do assume that there is no Reeb chord at that angle.
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large linking disk Dm associated to Λm, which is defined as in Figure 14. The wrapping exact
triangle in [GPS24b, Theorem 1.10] gives the exact triangle

(38) T ∗
z S → Fm → Dm

inW(T ∗S,Λ). Eq. (38) implies that {T ∗
z S, Fm} generate the same category as {T ∗

z S,Dm1 , . . . ,Dm|m|}.30

The next step is to show that this latter collection {T ∗
z S,Dm1 , . . . ,Dm|m|} generates W(T ∗S,Λ),

which we do by comparing the large linking disk Dm to the linking disks Dp1 , . . . , Dpn at Λm. This
comparison is obtained by iterating the wrapping exact triangle for short Reeb chords, which gives
the homological description of Dm as

Dm
∼= cone(. . . cone(cone(Dp1 → Dp2)[−1] → Dp3)[−1]) . . .→ Dpn)[−1].

as objects in the dg-category Tw(W(T ∗S,Λ)) of twisted complexes of W(T ∗S,Λ). Here the mor-
phisms Dpi → Dpi+1

being coned are given by the short Reeb chords, see e.g. Figure 14. In fact,
by Lemma 6.21.(1) and (2), we actually have a quasi-isomorphism

(39) Dm
∼= Dp1 ⊕Dp2 ⊕ . . .⊕Dpn ,

again in Tw(W(T ∗S,Λ)). Indeed, this is a consequence of functoriality of mapping cones and homo-
logical perturbation, as follows. By [Sei08b, Lemma 3.30], exact triangles are sent to exact triangles
and in Section 3(e) of ibid., given a different cocycle representative with the same cohomology class,
a non-canonical isomorphism is constructed between the abstract mapping cones, that are identi-
fied with Yoneda modules of mapping cones. Thus given an A∞-equivalence f : CF (Dm,Dm) →
H0(Dm,Dm) which induces an isomorphism Tw(f) : Tw(CF (Dm,Dm)) → Tw(H0(Dm,Dm)), we
can directly use the functoriality of mapping cones to conclude that

Tw(f)(cone(r)) = cone(Tw(f)1(r)),

where r is the short Reeb chord and use that the morphism Tw(f)1(r) vanishes.
By [GPS24b, Theorem 1.14], Tw(W(T ∗S,Λ)) is generated by the interior fiber T ∗

z S and the
objects Dp1 ⊕Dp2 ⊕ . . .⊕Dpn , taken over all Λm ranging over the marked points m ∈ m. Therefore
Eq. (39) implies that the large linking disks Dm, ranging over the marked points m ∈ m, along
with the interior fiber T ∗

z S, also generate Tw(W(T ∗S,Λ)). □

Remark 6.20. In Proposition 6.19, generation is defined as having quasi-equivalent categories of
modules over twisted complexes, as in e.g. [GPS20; GPS24a]. Given our use of cones, we must
work in a triangulated framework, and we use the enhancement of twisted complexes; see also
[Sei08b, Chapter 1]. □

Note that there is no canonical choice of grading for the linking disks Dpi . By definition, we refer
to the grading on Dpi as the geometric grading if CF ∗(Dp, L◦) is concentrated in degree 0. For a
Legendrian knot and a linking disk, this geometric grading is the grading that is invariant under

30It also follows from Eq. (38) that Y(L◦,V )(Dm) ∼= Zn.
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contact isotopies of (the boundary of) the linking disk around the Legendrian.

Let us summarize useful properties of the linking disks. Intuitively, these follow from the fact
that the surgery models in [BEE12, Section 6.1] and [ENS18, Lemma 6.4] show that the dynamics
around a (punctured) handle can be taken to be the geodesic flow inside of the handle and the
given Reeb flow outside. In more detail:

Lemma 6.21 (Properties of linking disks). In the notation above, the following properties hold:

(1) (Locality) Let m1,m2 be two distinct punctures with Legendrian links Λm1 ,Λm2 and D1, D2

corresponding linking disks. Then HW ∗(D1, D2) ∼= 0.

(2) Let D be a collection of linking disks for the Legendrian links Λ, each equipped with the
geometric grading. Then its endomorphism algebra HW ∗(D,D) is concentrated in non-
negative degree and, if links are Reeb-positive, then it is concentrated in the zero degree.

(3) Let Dpi , Dpi+1
be two linking disks at the same puncture, as above. Then the short Reeb

chords Dpi → Dpi+1
have cohomological grading 1.

Proof. Part (1) Locality follows from the fact that the geodesic flow near the positive unit conormal
cannot escape the neighborhood of the punctures. For Part (2), we translate the surgery partial
wrapping introduced in [EL23] to the partial wrapping in [GPS20]. That is, we consider an
open Liouville sector WΛ obtained by attaching the disk cotangent bundle of Λ × [1,∞), the
sectorial analogue of a punctured handle attachment. The Reeb chords of cotangent fibres in
WΛ are computed using [EL23, Lemma 88], up to some action cut-off, from which it follows
that the Reeb chords all have non-negative degrees.31 This open Liouville sector WΛ can be
truncated to give a closed Liouville sector WΛ(T ) given by attaching the disk cotangent bundle of
Λ× [1, T ] instead, for a large enough T ≫ 1. The inclusion functor induced from the inclusion of
Liouville sectorsWΛ(T ) → WΛ(T

′), T < T ′, is cohomologically fully faithful for T sufficiently large
enough. Therefore, it suffices to compute the wrapped Floer cohomology in WΛ(T ). Now, WΛ(T )
is deformation equivalent to the closed Liouville sector obtained by removing a standard 1-jet
neighborhood of Λ in the boundary, c.f. [GPS20, Example 2.15], the wrapped Floer cohomology of
which is isomorphic to the partially wrapped Floer cohomology in [GPS20], by [GPS24b, Corollary
3.9]. Therefore, partially wrapped Floer cohomology must also be concentrated in non-negative
degrees.

31Strictly speaking, the form of the metric used in ibid. is f(r)dθ2+dr2 for some smooth, positive function f(r),
with the properties as in the discussion in Section B.3 in ibid., in order to ensure that the geodesics do not travel
arbitrarily deep into infinity. In our case, the boundary is a circle and so using the conical metric is sufficient.
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For Part (3), we first present the full argument for the rank 2 case. Define the grading on Dp2

so that the short Reeb chord lies in hom0(Dpi , Dp2). For this grading

hom(cone(Dp1 → Dp2)[−1], L) = hom(Dl, L)

with the large linking disk Dl, connecting sum Dp1 and Dp2 , being equipped with the geometric
grading. In particular, Dp2 [−1] is the graded Lagrangian object equivalent to the linking disk at
p2 equipped with the geometric grading. Therefore, since

hom∗(Dp1 , Dp2 [−1]) = hom∗−1(Dp1 , Dp2)

the short Reeb chord is a degree +1 element in hom∗(Dp1 , Dp2 [−1]), as claimed. The higher rank
case follows from the exactly same argument. □

6.4.2. A concluding remark. There are more topological descriptions of W(T ∗S) and W(T ∗S,Λ),
not involving pseudo-holomorphic curves. As stated above, W(T ∗S)-modk is quasi-equivalent to
the category of local systems Loc(S) and thus perfect modules Perf(W(T ∗S)) is equivalent to its
compact objects Locc(S). More generally, [GPS24a, Theorem 1.1] shows that the category of per-
fect modules Perf(W(T ∗S,Λ)) is equivalent to the category Shc

Λ(S) of compact objects in ShΛ(S),
the category of sheaves with singular support contained in Λ. Independently, since S is a surface
in the study of Floer theory and spectral networks, one can also approach the generalization from
W(T ∗S) to W(T ∗S,Λ) as the generalization from local systems to Stokes local systems. We refer
to [Boa21] for a detailed description of the latter.

We conjecture that the relation between partially wrapped Fukaya categories and spectral net-
works, as discussed above, is compatible with Stokes local systems. In an admittedly unimpressive
degree of detail, we briefly sketch what we expect, as follows. Given a Betti Lagrangian L ⊂ T ∗S
and a compatible spectral network W ⊂ S, we expect the existence of the following commutative
diagram:

(40)

W(T ∗S,Λ)

Locc(L)

St(S,Λ)

Y

ΦSt
W

M

where the notions in the diagram are:

(1) St(S,Λ) is the category of Stokes local systems, as described in [Boa21, Section 8], with
the Stokes diagrams given by Λ.32 Technically, ibid. defines Stokes local systems given
irregular data – which is naturally algebraic – but the same definitions allow for the notion

32The category might be needed to be dg-enhanced, derived and consider compact objects to fit the diagram
above, but all meaningful content is in ibid.
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of a Stokes local system associated to any Legendrian link isotopic to (the lift of) a front
given by the cylindrical closure of a positive braid.

(2) The Yoneda functor Y is given by V 7→ Y(L◦,V ), as discussed in Section 6.3 and Section 6.4.1
above.

(3) The functor ΦSt
W is essentially the functor ΦW constructed and studied in Section 5. The

only difference is that ΦW(V ) was described as a local system, and ΦSt
W(V ) should be a

Stokes local system. As discussed in [GMN12; GMN13a], the non-abelianization process
actually produces a Stokes local system, so this adjustment on the codomain is obtained
by the same methods.

(4) The functor M can be described explicitly as follows. Given a Stokes local system VSt ∈
St(S,Λ), the A∞-module M(VSt) : W(T ∗S,Λ) −→ modk is determined by

M(VSt)(T
∗
z S) = Vz, M(VSt)(F∞) = 0,

where T ∗
z S is an internal fiber, F∞ any fiber at infinity and V is the underlying local system

of VSt. By Proposition 6.19, this determines M on objects. Note that for any z, w ∈ S two
W-adapted points, we will also have M(VSt)(i∗[αzw]) = V ([αzw]).

The commutativity of Diagram (40) is a categorical analogue of the results in Section 5, comparing
the non-abelianiation functor ΦW to the Family Floer functor F.

Remark 6.22. (1) Note that [Boa21] establishes equivalent descriptions of St(S,Λ), comparing to
Stokes graded and Stokes filtered local systems. The category of Stokes filtered local systems is much
closer to ShΛ(S). In contrast, the Floer-theoretic context has generators that directly give a grad-
ing, provided by the Lagrangian intersections, and not just the filtration more naturally associated
to ShΛ(S). Therefore, the passage from ShΛ(S) to W(T ∗S,Λ) provides, in a sense, a symplec-
tic topological viewpoint on the splitting result [Boa21, Theorem 1.1], which produces a canonical
Stokes grading from the filtration.

(2) It would be desirable to also have a conceptual description of M, not given in terms of explicit
generators of W(T ∗S,Λ). Specifically, we expect M to be an equivalence and its inverse should be
given by an enhancement of the Family Floer methods in Section 5.2. □

By Theorem 6.12, Diagram (40) commutes if the Legendrian Λ at infinity is Reeb-positive. This
is the case, for instance, if the Legendrian links at infinity are all cylindrical closures of positive
braids, which includes the case of any irregular data with no multiplicities. In this Reeb-positive
case, it also follows that the non-abelianization functor is injective on objects: it injectively sends
local systems on L to Stokes local systems on S, which was conjectured by the original works
[GMN12; GMN13a]. Indeed, given V, V ′ ∈ Loc(L), wrapped cohomology HW ∗((L◦, V ), (L◦, V

′))
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is isomorphic to the Morse cohomology of L twisted by V ∗ ⊗ V ′ coefficients. In particular, its
degree-0 group is non-zero if and only if V and V ′ are isomorphic, from which injectivity follows.

7. Spectral networks and weaves

Weaves were introduced in [CZ22], in the context of contact and symplectic topology. Since
then, they have also been productively used in the study of cluster structures, see e.g. [Cas+23;
CW24; Cas+25].The object of this section is to present a first relation between weaves and spectral
networks, in particular discussing Theorem 5. The necessary ingredients on weaves are presented in
Section 7.1, and the combinatorial construction of a spectral networkWw from a Demazure weavew
is given in Section 7.2. We then conclude with Section 7.3 presenting a number of explicit examples
and computations. Note that, given the rigorously established bridge between weaves and cluster
algebras, cf. [Cas+25], this construction ofWw provides a precise account on how cluster coordinate
arise in spectral networks, in line with some predictions from supersymmetric computations, see
e.g. [Nei14]. In addition, since [Cas+23; CW24; Cas+25] give explicit descriptions of Donaldson-
Thomas transformations in terms of weaves, this connection between weaves and spectral networks
therefore gives a direct method to compute the BPS spectrum generator.

7.1. Weaves on Betti surfaces. Let (S,m,Λ) be a Betti surface of rank n and let βi be a
positive (cyclic) braid word in n-strands whose cylindrical closure gives the link Λi at the puncture
mi ∈ m, i ∈ [1, |m|]. The definition of a weave in [CZ22] is adapted to the context of Betti
surfaces as follows:

Definition 7.1 (Weaves). A weave w in (S,m,Λ) is a properly embedded graph in S with edges
decorated by permutations in W (G) ∼= Sn such that:

(1) There are only three types of vertices for w, as depicted in Figure 15:

Figure 15. The three types of vertices allowed in a weave w. (Left) Trivalent
vertex, where all edges are decorated with the same permutation si ∈ W (G). (Cen-
ter) Hexavalent vertex, with the edge decorations alternating between si, sj with
|i − j| = 1. (Right) Tetravalent vertex, with edge decorations as drawn with
|i− k| > 1.
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(2) The asymptotics of the graph w at a puncture mi ∈ m are such that the permutations
decorating its edges coincide with the corresponding positive cyclic braid word βi, for all
i ∈ [1,m]. □

The asymptotic condition in Definition 7.1.(2) is drawn in Figure 16. In figures, we often adopt
the convention that colors blue and red are adjacent, and blue and green are not adjacent, see
e.g. Fig. 15. By convention, when drawing in small rank n ∈ N, we typically use blue for s1, red
for s2 and green for s3.

Figure 16. A weave w near a circle ∂Si around a puncture mi ∈ m, according
to Definition 7.1.(2). The decorations on the edges of w are written as sij , and we
use colors to emphasize that they might be different. The cyclic braid word being
spelled is βi = si1si2si3 . . . siℓ .

In this section, we focus on the case of the Betti surface (S2, {∞}, βδ(β)) given by a once punc-
tured 2-sphere S = S2, with the braid around the unique puncture {∞} being the form βδ(β).33 In
higher rank G = SLn, these Betti surfaces already lead to many interesting cases, including Bers-
Nevins-Roberts [BNR82] and all braid varieties [Cas+25], thus all double Bruhat cells, positroids
and double Bott-Samelson cases. To study weaves and spectral networks in (S2, {∞}, βδ(β)), we
use the class of Demazure weaves introduced in [Cas+24, Section 4], cf. also [Cas+25, Section 4].
Recall that a Demazure weave w : β −→ δ(β) for β = σi1 · · ·σiℓ is a weave in R2 drawn vertically
top-to-bottom such that

(i) There are two types of semi-infinite edges: north and south. The northern semi-infinite
edges coincide with the vertical upwards semi-rays {j} × R+ outside of a compact set,
j ∈ [1, ℓ], and the souththern semi-infinite edges coincide with the vertical downwards

33We can and will assume that δ(β) = w0, see e.g. [Cas+25].
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semi-rays {k} × R+, k ∈ [1, ℓ(δ(β)).

(ii) The weave w is never tangent to the horizontal lines R× {y}, y ∈ R.

(iii) The only vertices of w are as literally as drawn in Fig. 15 when w is scanned top-to-bottom.
That is, the trivalent vertex cannot go from si on top to sisi at the bottom: it must always
go from sisi at the top to si at the bottom.

Here we identify S2\{∞} ∼= R2 via a diffeomorphism and choose Cartesian coordinates (x, y) ∈ R2.
Demazure weaves are a diagrammatic description of a sequence of braid words where the only
allowed moves are braid moves and the nil-Hecke type move σ2

i → σi, the sequence starts with β,
corresponding to a horizontal slice in positive large y-height, and ends with δ(β), corresponding
to a horizontal slice in negative large y-height. For the purpose of constructing spectral networks,
we use the following modification of a Demazure weave:

Definition 7.2 (Bending of Demazure weaves). Let w : β −→ δ(β) be a Demazure weave, as
depicted in Figure 17 (left). By definition, the right bending of w is the weave in R2 drawn as in
Figure 17 (right). □

Figure 17. (Left) A general Demazure weave w : β → δ(β). (Right) The right
bending of w. The use of the bent weave, as depicted on the right, is that it can be
seen as an embedded exact Lagrangian filling of the (−1)-closure of βδ(β).
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The relevance of Definition 7.2 is that the bent Demazure weave represents a spatial wavefront
whose Legendrian lift is such that its Lagrangian projection in (R4, ωst) an exact embedded La-
grangian filling of the (−1)-closure Λβδ(β) ⊂ (R3, ξst). This follows from the original construction
of weaves in [CZ22] and the observation that bending a Demazure weave w does not introduce any
Reeb chords. It is the starting idea behind many recent results connecting symplectic topology and
cluster algebras, cf. e.g. [CL22; Cas+23; Cas+25; Cas+24]. In short, the bending of a Demazure
weave w ⊂ R2 describe an exact Betti Lagrangian Lw for the Betti surface (S2, {∞}, βδ(β)).

Remark 7.3. (1) The need for bending is to ensure there are no concave ends. A Demazure weave
w, without bending, would naturally yield an exact embedded Lagrangian cobordism from Λδ(β), in
the concave end, up to Λβ, in the convex end. The bending effectively fills the concave end, yielding
a Lagrangian filling of Λβ. We plan to study non-empty concave ends in future work as well.

(2) The theory of weaves, as developed in [CZ22], works in an arbitrary Betti surface. For instance,
[CZ22, Section 3.1] builds weaves from N-triangulations of surfaces, whose spectral networks will
match (and generalize) the level N lift spectral networks from [GMN14]. Although it is possible to
define a generalization of Demazure weaves to any Betti surface, with higher genus and punctures,
the wealth of Demazure weaves in S2×{∞} and their associated spectral networks, as momentarily
built in Section 7.2, already covers many interesting examples and applications, so we focus on
those. □

7.2. Spectral networks for Demazure weaves. By Section 7.1, bending a Demazure weave
w ⊂ R2 gives an exact Betti Lagrangian Lw ⊂ (T ∗R2, λst) for the Betti surface (S2, {∞}, βδ(β)).
The goal is to construct a Morse spectral network Ww ⊂ R2 for Lw from the data of the weave w.

Definition 7.4 (Augmentation forest of w). Let w ⊂ R2 be the right bending of a Demazure
weave with ℓ trivalent vertices. By definition, the augmentation forest Ww ⊂ R2 of w is the
spectral network built as follows:

(1) Start with an empty prespectral network F0 = W0 = ∅. Scan the trivalent vertices of w
bottom-to-top, indexing by i ∈ [1, ℓ] in this bottom-to-top order for the vertices: at the ith
trivalent weave vertex vi of w, create three directed flowlines as in Figure 18.(1).

(2) Flow each of the three edge flowlines in Figure 18.(1) from vi as follows. Flowlines (a) and
(b) continue following the weave edges up until their reach the top of the weave. These
flowlines go straight through both 4 and 6-valent vertices and continue up on the left of
a trivalent, as depicted in Figure 18.(2); the permutation labels of the flowline change by
conjugation with the labels of the weave lines. The flowline (c) is extended to the right,
through weave edges, changing its labeling accordingly, until it reaches a weave edge whose
permutation label coincides with that of the flowline (at that stage). Right before that point
(to its left), the edge (c) is extended upward following that weave edge until it reaches the
top. The result of these extensions is a prespectral network Fi, which is obtained by adding
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these flowlines to the spectral network Wi−1.

(3) Consider the prespectral network Fi and add additional flowlines to create a consistent
extension of Fi. The only new flowlines that need to be created appear at the intersection
of the (new) flowlines both at vi with the flowlines of Wi−1. Then declare Wi to be the
resulting spectral network.

(4) Declare Ww to be Wℓ, the result of applying the above process to all trivalent vertices of
w, scanned bottom to top. □

Figure 18. (1) The local model of the flowlines in the augmentation forest Θw ⊂ R2

near a trivalent vertex. (2) The local models for the flowline behaviour near trivalent
vertices and hexavalent vertices north of their source trivalent vertex.

The spectral network Ww ⊂ R2 in Section 7.2 is constructed combinatorially from w, it is just
a directed graph with labels, a priori without any analytic meaning or relation to D−

4 -flowtrees.
The adiabatic degeneration results in Section 3 along with the spatial front associated to a weave
w, as described in [CZ22], imply that Ww is in fact obtained by adiabatically degenerating the
pseudoholomorphic strips associated to the augmentation induced by the Lagrangian filling Lw of
the (−1)-closure of βδ(β). We record this fact as follows, which implies Theorem 5:

Proposition 7.5. Let w : β → w0 be a Demazure weave for a braid word β with δ(β) = w0.
Consider the associated embedded exact Lagrangian filling Lw ⊂ T ∗R2 of Λβw0 and the induced
augmentation εw : A(Λβw0) −→ k[H1(Lw)] for its Legendrian contact dg-algebra. Then, the spectral
network Ww ⊂ R2 is the union of all the D−

4 -trees obtained by adiabatically degenerating the rigid
pseudo-holomorphic strips contributing to εw. □

Definition 7.4 and Proposition 7.5 provide a wealth of interesting spectral networks directly re-
lated to Floer theory. In particular, given the rigorously establish existence of and weave calculus
for cluster structures, they yield a versatile set of tools for computing BPS states. For instance, the
Donaldson-Thomas transformations for Demazure weaves are explicitly described in [Cas+25, Sec-
tion 8.3], cf. also [CW24, Section 5.4], which readily yield the BPS spectrum generator, a.k.a. BPS
monodromy, for the associated physical system.
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Remark 7.6. (1) In the meromorphic case, some of the D−
4 -trees in Ww with a positive puncture

at a Reeb chord in Λ∂w align with the BPS solitons described by the (non-degenerate) open finite
webs in [GMN13b, Section 3.2].

(2) The Lusztig cycles of a Demazure weave w are introduced in [Cas+25, Section 4], see also
[CW24, Section 3]. Intuitively, in the meromorphic case, the mutable Lusztig cycles relate to Ww

in that they should correspond to finite webs representing 4d BPS states, as in [GMN13b, Section
3.1], for a degenerate spectral network related to (but in a different phase than) the non-degenerate
network Ww. This relation remains to be explored in detail. □

7.3. Explicit computations of spectral networks from Demazure weaves. In this sub-
section, we discuss several cases of Definition 7.4 and Proposition 7.5 in detail, establishing the
comparison between the flowlines of spectral networks and the adiabatic degenerations of pseudo-
holomorphic strips.

7.3.1. A 2-stranded example in detail. Consider the braid word β = σ6
1 in 2-strands and the

Legendrian dg-algebra Aβ of the (−1)-closure of βδ(β). Let us denote its degree-0 Reeb chords
by the variables z6, z5, z4, z3, z2, z1, w1, read left-to-right, with w1 corresponding to the crossing of
δ(β) = σ1. This labeling is drawn in Figure 19. Consider the Demazure weave w : β −→ δ(β)
depicted in Figure 19 (left). In the language of pinching sequences, the Lagrangian filling Lw is
obtained by pinching the crossings in the Lagrangian projection associated to z1, z3, z4, z5, z2, in
this order. A computation, as in [CN22], shows that Lw gives the augmentation

εw : Aβ −→ k[H1(Lw, T )]

uniquely determined by its non-zero values:

εw(z6) =
1

s2s23s
2
4s

2
5

− 1

s5

εw(z5) = s5 −
1

s4

εw(z4) = s4 −
1

s3
εw(z3) = s3

εw(z2) = s2 −
1

s1
− 1

s3
+

1

s23s4
− 1

s23s
2
4s5

εw(z1) = s1

εw(w1) =
1

s21s2
− 1

s1

εw(t1) = − 1

s1s2s3s4s5
εw(t2) = s1s2s3s4s5.

where t1, t2 are marked points T = {t1, t2} at the (right at the) right of w1, ti in the ith strand,
counting from the bottom, and si ∈ H1(Lw, T ) is the relative cycle Poincaré dual to the trivalent
vertex whose associated top-right edge corresponds to zi.

By construction, εw counts rigid pseudo-holomorphic strips and records their (relative) homology
classes. Therefore, there ought to be a precise correspondence between the non-zero terms in εw(zi),
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and εw(w1), and the rigid flowtrees of the spectral network Ww for Lw which are asymptotic to
zi, and w1. This is indeed the case: Ww is drawn in Figure 19 (right), and each term of εw above
exactly corresponds to such flowtrees. For instance, the flowtrees in the spectral network that are
coloured not black correspond to the terms of

εw(z2) = s2 −
1

s1
− 1

s3
+

1

s23s4
− 1

s23s
2
4s5

,

as they are asymptotic to the Reeb chord z2. Specifically, the green flowline gives the term −s−1
3 ,

the yellow gives s−2
3 s4, the orange −s−2

3 s−2
4 s−1

5 , the purple gives s2 and the rightmost cardinal
flowline −s−1

1 .

Figure 19. (Left) A Demazure weave w for β = σ6
1, with its Reeb chords at the

(top) boundary marked with a pink dot and labeled. (Right) The spectral network
Ww compatible with Lw, as built above.

7.3.2. Mutation in 2-strands. Similar to the example above, this correspondence between terms of
the augmentation εw and the flowlines in Ww works in the same lin for other 2-stranded braids and
their Demazure weaves. The mutation in spectral networks can be analyzed in the local model of
β = σ3

1. The two sides of a weave mutations are depicted in Figure 20, w1 on the left and w2 on
the right.

If we label the degree-0 Reeb chords associated to the crossings of βδ(β) = σ4
1 by z3, z2, z1, w1,

reading left-to-right, and use T = {t1, t2} as above, the two augmentations

εwi
: Aσ3

1
−→ k[H1(Lwi

, T )], i = 1, 2,
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Figure 20. The two sides of a weave mutation, w1 and w2, and their associated
spectral networks Ww1 and Ww2 .

are given by

εw1(z3) =
1

s1s22
− 1

s2
εw1(z2) = s2

εw1(z1) = s1 −
1

s2

εw1(w1) = − 1

s1

εw1(t1) = − 1

s1s2
εw1(t2) = −s1s2.

εw2(z3) = − 1

s2

εw2(z2) = s2 −
1

s1
εw2(z1) = s1

εw2(w1) =
1

s21s2
− 1

s1

εw2(t1) = − 1

s1s2
εw2(t2) = −s1s2.

Note that in the z-coordinates of the braid variety X(σ3
1), the mutable cluster variable A1 for the

torus chart Tw1 ⊂ X(σ3
1) associated to Lw1 is A1 = z2, and the frozen is z2z3 − 1. The quiver Qw2

has a unique arrow from the frozen to the mutable. After mutation, the mutable cluster variable
A2 for the torus chart Tw2 ⊂ X(σ3

1) associated to Lw2 is A2 = z3, and the frozen z3z2 − 1. The
quiver Qw1 has a unique arrow from the mutable to the frozen. By the mutation formula, we must
have that the mutated variable A′

1 of A1 = z2 is such that

A1A
′
1 = 1 + (z2z3 − 1)

and thus indeed A′
1 = A2 = z3. The corresponding mutation in the spectral networks Ww1 and

Ww2 , i.e. its change in the flowtrees, is drawn in Figure 20. The change in the flowlines, seen as
adiabatic limits of pseudo-holomorphic strips, matches the difference in the augmentation εw1 and
εw2 and, using z-coordinates, it becomes the standard cluster mutation.

7.3.3. The Berk-Nevins-Roberts spectral network. The remarkable article [BNR82] first introduced
the new Stokes lines, born at certain intersections of two ordinary Stokes lines and studied them
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Figure 21. (Left) The weave wbnr obtained by considering the front of the Legen-
drian lift of the real part of the Bers-Nevins-Roberts spectral curve Σbnr. (Right)
The spectral network Wwbnr

according to Section 7.2.

in the context of the WKB asymptotics, c.f. Example 2.12. These flowlines only appear at higher
rank n ≥ 3, and mark a crucial difference between the rank-2 case and higher ranks. The specific
example studied in [BNR82] corresponds to the spectral curve

Σbnr := {(z, w) ∈ T ∗C : w3 − 3w + x = 0}.
The weave wbnr associated to its real part Re(Σ) is depicted in Figure 21 (left). It is already
depicted with the bending, so that it is apparent that can be seen as a bent Demazure weave
for the braid word β = σ2σ1σ2σ1σ2. Note that the associated spectral network Wbnr, depicted in
[BNR82, Figure 1] was analyzed in [Kat+15, Section 5] from the perspective of harmonic maps to
buildings.

From the Floer-theoretic perspective, we label the Reeb chords of βδ(β) = σ2σ1σ2σ1σ2(σ1σ2σ1)
as in Figure 21: z1, z2, z3, z4, z5 correspond to the crossings of β, reading right-to-left, and w1, w2, w3

to those of δ(β), also reading right-to-left. The spectral network Wwbnr
associated to wbnr accord-

ing to Section 7.2 is depicted in Figure 21 (right). We have also drawn Wwbnr
on its own in Figure

22, where the two new Stokes lines, born at creation vertices, are depicted in purple. Here we
can readily see that the spectral network Wwbnr

obtained by adiabatic degeneration of pseudo-
holomorphic strips coincides with the original spectral network Wbnr from [BNR82] associated to
Σbnr.
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Figure 22. The spectral network Wwbnr
, which indeed coincides with the spectral

network Wbnr from [BNR82]. In this figure, the two new Stokes line are highlighted
in purple, and the two trivalent D−

4 -vertices are circled in dashed yellow.

7.3.4. An example of a cancellation pair. Let us consider a local model for a cancellation pair
coming from applying a Reidemeister III move twice to β = σ2σ1σ2. This corresponds to the
sequence of braid words σ2σ1σ2 → σ1σ2σ1 → σ2σ1σ2. First, we will consider one Reidemeister III
move σ2σ1σ2 → σ1σ2σ1 on its own, as realized by the weave wR3 in Figure 23. This is understood
as a local move that can be inserted anywhere in a weave where there is a subword σi+1σiσi+1.

Figure 23. The four degenerations of pseudoholomorphic strips contributing to
the dg-algebra morphism induced by a Reidemeister III move on a Legendrian front.
In (4), the bifurcation occurs as a creation vertex from the flowlines in (1) and (2),
the traces of which are drawn in dashed gray in (4).

The embedded exact Lagrangian cobordism associated to wR3 gives a dg-algebra morphism ΨR3

between the Legendrian contact dg-algebra of the convex end, which has the piece σ2σ1σ2, to the
concave end, which contains σ1σ2σ1. Denote by z1, z2, z3 the Reeb chords next to the crossings
associated to σ2σ1σ2, and keep the same notation for those in σ1σ2σ1, as depicted in Figure 23.(1).
This morphism ΨR3 is computed in [CN22, Section 4.1.2] and, locally in this model, reads as
follows:

ΨR3(z1) = z3, ΨR3(z3) = z1, ΨR3(z2) = z2 ± z1z3,
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where we do not specify the sign, cf. [CN22] for the choices that give precise signs. Each of these
four terms exists because of a pseudoholomorphic strip. Their adiabatic degenerations, in the
form of flowtrees, are depicted in Figure 23. Namely, Figure 23.(1) explains ΨR3(z3) = z1, 23.(2)
explains ΨR3(z1) = z3, 23.(3) is the tree corresponding to the term z2 in ΨR3(z2) = z2 ± z1z3 and
the D−

4 -tree in 23.(4) corresponds to the term z1z3.

Let us now perform two consecutive Reidemeister moves, inverses of each other. The corre-
sponding weave wc is depicted in Figure 24.(1). By the candy twist move in [CZ22, Figure 19],
this weave wc is equivalent to the trivial weave with three strands labeled s1, s2, s1 and no crossings.
Therefore, by Hamiltonian invariance of the associated exact embedded Lagrangian cobordisms,
it must be that the induced dg-algebra map given by wc is the identity and there has to be a
cancelation account for the term z1z3 above appearing and disappearing.

Figure 24. (1) The weave corresponding to two consecutive Reidemeister III moves
σ2σ1σ2 → σ1σ2σ1 → σ2σ1σ2. (2) The associated spectral network, which coincides
with the adiabaticD−

4 -tree degeneration of the pseudoholomorphic strips correspond-
ing to the induce dg-algebra maps. (3) The spectral network on its own, with the
two canceling terms highlighted in purple. (4) The result of deleting the walls of the
spectral network in (3) that cancel each other. In this case, the interaction vertex
that is not creation would be of annihilation type. The actual spectral network in (3)
witnesses both canceling flowlines, and their cancelation is seen in the BPS index.
More intuitively, the D−

4 -tree corresponding to the upper purple flowline has a self-
intersection point, unlike the tree for the purple flowline, hence its sign is opposite.

This cancellation is indeed seen in the spectral network Wwc , which is depicted in Figure 24.(2).
The two flowlines, with the same asymptotic end, that cancel each other are highlighted in purple
in Figure 24.(3). In the physics literature, this configuration is sometimes depicted as in Figure
24.(4), where the parts of the walls of the canceling pair that have vanishing BPS index are not
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drawn: this is, with phases appropriately understood, related to the setting sunmodel in [GMN13b,
Section 7.4].

7.3.5. A more elaborate 3-stranded example. Consider the 3-stranded braid word β = (σ2σ1)
3σ2, so

that βδ(β) = (σ2σ1)
5σ2 and the (-1)-closure of βδ(β) is the max-tb (3, 2)-torus knot, i.e. the max-

tb trefoil presented in 3-strands. Consider its right inductive weave w, as depicted in Figure 25
(left), and its associated embedded exact Lagrangian filling Lw. This example illustrates how the
correspondence between the flowlines of the spectral network Ww and adiabatic degenerations of
the pseudoholomorphic strips contributing to the augmentation εw induced by Lw. It is particularly
helpful in understanding how terms can (and do) cancel, locally as in Section 7.3.4, in a globally
interesting example.

Figure 25. (1) The right inductive weave w for β = (σ2σ1)
3σ2. The four trivalent

vertices are labeled v1, v2, v3, v4, the Reeb chords associated to crossings in β are
denoted z1, . . . , z7 and those for δ(β) are denoted w1, w2, w3. (2) The first prespectral
network F1, consisting of the three flowlines starting at the trivalent D−

4 -vertex v1.
(3) The second prespectral network F2, consisting of the flowlines starting at the
two D−

4 -vertices v1, v2. Notice that it is not consistent, as there are 4-valent vertices
in F2 which should be creation vertices. A consistent extension is drawn in Figure
26.(4).
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First, from the Floer-theoretic side, we label the Reeb chords as in Figure 25 (left). In these
coordinates, the Lagrangian filling Lw gives the augmentation

εw : Aβ −→ k[H1(Lw, T )]

which determined by its non-zero values:

εw(z7) = − s3
s2s24

− 1

s4

εw(z6) =
s2
s1s23

− 1

s3
+

1

s1s3s4

εw(z5) =
s2s4
s1s23

− s4
s3

εw(z4) = s4

εw(z3) = s3

εw(z2) = s2 +
s3
s4

εw(z1) = s1 −
s2
s3

− 1

s4

εw(w3) =
s1
s2

− 1

s3

εw(w2) = − 1

s2

εw(w1) = − 1

s1

εw(t1) = − 1

s1s3

εw(t2) = −s1s3
s2s4

.

εw(t3) = −s2s4.

(41)

where t1, t2, t3 are marked points T = {t1, t2, t3} at the (right at the) right of w1, ti in the ith
strand, counting from the bottom. As above, si ∈ H1(Lw, T ) denotes the relative cycle Poincaré
dual to the trivalent vertex whose associated top-right edge corresponds to zi.

Second, independent of the Floer-theoretic computation, we consider the spectral network Ww

associated to the weave w, as built in Section 7.2. The final spectral network Ww is drawn in
Figure 28. The process to obtain it is depicted in several steps and described as follows:

(i) The first prespectral network F1 is depicted in Figure 25.(2), where the three walls of F1

are drawn, being born at the trivalent D−
4 -vertex v1.

(ii) The second prespectral network F2 is depicted in Figure 25.(3), where three additional
walls are born at the D−

4 -vertex v2, in addition to those for F1 are drawn.

(iii) Since the prespectral network F2 not consistent, we proceed by considering a consistent
extension F3, as drawn in Figure 26.(4). It is obtained by adding four flowlines to F2,
resulting in four creation vertices. The prespectral network F3 is consistent.

(iv) The next prespectral network F4 is depicted in Figure 26.(5), where the three flowlines
born in the D−

4 -vertex v3 are added. Such F4 is inconsistent, and thus we consider its
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Figure 26. Prespectral networks in the steps towards building Ww. In (4) we
added flowlines to make the network in Figure 25.(3) consistent. In (5) the flowlines
born from v3 are added and (6) depicts the associated consistent extension.

consistent extension F5, which is drawn in Figure 26.(6). The only flowline needed to be
added to F4 for consistency is depicted in pink, which itself is caused by the flowline born
in v3 highlighted in green interacting with a flowline born in v2.

(v) The final step is to add the three flowlines born at v4 and the additional flowlines to make
the resulting prespectral network consistent. The resulting spectral network is Ww, which
is drawn in Figure 27 (left), on top of the weave w. It is drawn on its own in Figure 27
(right).

The spectral network Ww, with all its flowlines, is drawn in Figure 27 (right), but some of these
flowlines cancel each other. That is, when considering counts of BPS states or pseudoholomorphic
strips, there are pairs of such flowlines where each of the two flowlines contributes the same term,
but they do so with opposite signs. Specifically, this occurs in this example in two cases: the two
pink flowlines in Figure 27 (right) cancel each other, and two of the yellow flowlines (the two ones
born lower than the third one) also cancel each other. We have depicted the spectral network
obtained by removing such flowlines in Figure 28, where the two canceling yellow lines are drawn
dashed and the two pink flowlines have been erased.
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Figure 27. (Left) The spectral network Ww on the weave w. (Right) The spectral
networkWw drawn on its own. The colors for some of the flowlines indicate that they
are creation flowlines: those that share a color are created by (repeated) intersections
of the same two flowlines. Some pairs of flowlines of the same color cancel each other,
e.g. the two pink flowlines cancel each other.

We conclude by noting that the flowlines for the spectral network Ww, as drawn in Figure 28,
indeed match with the terms of the augmentation εw as described in Eq. (41).
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Figure 28. The spectral network Ww associated to the weave w. The two dashed
flowlines, drawn in yellow, cancel each other. The (solid) flowlines in yellow, green
and blue are the flowlines born in creation vertices in the last step of the process,
after adding the flowlines born in v4 and making the resulting prespectral network
consistent.

Appendix A. Aspects of the geometry of pseudo-holomorphic curves

This appendix collects three technical results that are used in the manuscript: geometric bound-
edness of meromorphic spectral curves, a type of reverse isoperimetric inequality and a brief dis-
cussion on spin structures.

A.1. Geometric boundedness of meromorphic spectral curves. In this section, we show
that the meromorphic spectral curves that satisfy the O(−1)-end conditions are geometrically
bounded, in the sense of [GS16, Definition 2.7]. This is achieved by showing that the Cℓ-norm
of the second fundamental form is uniformly bounded. We use the Sasaki metric obtained from
metrics of the form |z|−2|dz|2 near the poles. This metric is geometrically bounded outside T ∗K
for some compact subset K ⊂ C, since the metric |z|−2|dz|2 is flat. This is used in Sections 4, 5
and 6. The precise result reads as follows:

Proposition A.1. Let Σ ⊂ T ∗C be a meromorphic spectral curve. Then the smooth sheets of the
scaled curves εΣ ⊂ T ∗C near infinity are uniformly geometrically bounded, uniformly with respect
to ε, for any ε ∈ R+.
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Proof. The argument is essentially finding an appropriate coordinate system where geometric
boundedness is apparent. First, by construction, the germ of Σ at infinity can be written as

z → (z, c1t
−k + c2t

−k+1 + . . .+ ck−nt
−n), for some n < k, tn = z.

Choose a branch cut for the logarithm and consider the flat conformal coordinate W :=
∫
z−1dz =

log(z); we can and do assume that |z| < 1, so that W has negative real part. Under this coordinate
transformation, the smooth sheets of the meromorphic spectral curve transform into

(W, c1 exp((−k/n+ 1)W ) + . . .+ ck).

Set m = k/n and note that
∣∣exp((−m+ 1)W )

∣∣ converges to +∞ as W → −∞ because m > 1.

Also, since the metric |z|−2|dz|2 transforms into |dW |2, the metric on C2
W,dW is the standard flat

metric. By denoting Q := exp(c1(−m + 1)W ), and using the branch cut, we can write log(Q) =
c1(−m+1)W . This coordinate Q is the one we will use to prove geometric boundedness, as follows.
Reparametrizing the sheets in the Q-coordinate we obtain

(b0 log(Q), b1Q+O(Q1/(k−1)))

for some 0 < α < 1 and non-zero constants b0, b1. We now show that curves in C2 of the form

(log(Q), Q)

are geometrically bounded over the entire complex plane, with the more general case with the
O(Q1/(k−1)) term follows similarly. Consider a curve of the form (log(Q), Q). If |Q| ≤ 1 then
re-write W = log(Q) so that |Q| ≤ 1 is equivalent to W having negative real part. The geometric
boundedness of the curve for |Q| ≤ 1 then follows from the geometric boundedness of the curve
(W, eW ) for Re(W ) < 0.

If |Q| ≥ 1, note that given a holomorphic curve of the form (f(z), g(z)) in C2, the tangent vectors

are given by (f ′(z), g′(z)), (if ′(z), ig′(z)) and the normal vectors are given by (−g′(z), f ′(z)) and

(−ig′(z), if ′(z)). Specializing to our case, the tangent vectors are given by (1/Q, 1) and (i/Q, i),
and the normal vectors are given by (−1, 1/Q̄) and (−i, i/Q̄). The induced metric on the curve is
(|Q|−2 + 1)|dQ|2. Therefore, the non-vanishing Christoffel symbols are given by

ΓQ
QQ = (1 +|Q|−2)−1(Q̄−1),

ΓQ̄

Q̄Q̄
= (1 +|Q|−2)−1(Q−1),

and the second fundamental form reads

B(∂z, ∂z) = [−Q−2/(1 +|Q|−1)3/2](−1, 1/Q̄).

A direct computation implies that the derivatives of the second fundamental form, the Christofell
symbols, and their derivatives are of the form O(|Q|−1). The norm of ∂z is uniformly positive, and
the derivatives are again O(|Q|−1). Therefore, Cℓ norm of the second fundamental form must
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be bounded as well. In addition, these bounds are uniform with respect to ε because we can
reparametrize (log(Q), ϵQ) = (log(P )− log(ϵ), P ) and use the boundedness of (log(Q), Q). □

A consequence of Proposition A.1 is the following a priori diameter estimate for pseudoholomor-
phic disks with boundaries on Betti Lagrangians and conormals:

Lemma A.2. Let S be a Betti surface and L ⊂ T ∗S a Betti Lagrangian. If L is not exact, suppose
that it is meromorphic near the punctures. Let K ⊂ S be a precompact submanifold of S containing
π(KL) in its interior. Then there exists ε0 = ε0(M, g, L,K) ∈ R+ such that for any ε ∈ (0, ε0) and
Jg-holomorphic half-disk u : (A1, ∂

+A1) → (D∗M,D∗(K)∪εL) with energy less than εE, the image
of u is contained in the disk bundle D∗NCE(K), where C ∈ R+ depends only on (M, g, L,K).

Proof. By Proposition A.1, smooth sheeets of εΣ are uniformly geometrically bounded near infinity.
Thus an argument as in [AL94, Chapter V] implies that that given any enery cut-off E ∈ R+, there
is a constant C0 ∈ R+ such that pseudo-holomorphic half-disks with boundary on a single smooth
sheet of εΣ satisfy the estimate. Since εΣ is multi-sheeted, we set C = max(ρ−1, 1) ·C0 and iterate.
For the monotonicity argument, we need to choose a small neighborhood of points on L such that
its intersection with εL is contractible and connected. The size of such a neighborhood will be ρε
and shrinking the size of the neighborhood affects the diameter given by monotonicity estimate by
ρ−1ε−1. Since ρ−1 is fixed, the diameter is bounded by CE, as required. □

A.2. Truncated reverse isoperimetric inequality. Reverse isoperimetric inequalities in the
context of pseudoholomorphic curves bounded by Lagrangians appeared in [GS14], cf. also [Duv16].
As pointed out in Section 4, we believe an inequality of this type is also required in the arguments
of [Ekh07] and, for completeness, we include a proof here.

Let X be a compact almost Kähler manifold and K a union of finitely many balls in X. Let
L ⊂ X be a Lagrangian submanifold and r0 the radial injectivity radius of L outside K. We
consider r0 to be small enough such that outside of K, the squared radial distance function h :=
ρ2 : D∗

r0
L→ R is strictly plurisubharmonic with respect to J . For δ ∈ R+, we write Nδ(K) for the

δ-neighborhood of K. The necessary reverse isoperimetric inequality reads as follows:

Theorem A.3. In the notation above, there exist a choice of δ ∈ R+ and a constant T ∈ R+ such
that any J-holomorphic curve

u : (S, ∂S) → (X,L ∪K) with energy
1

2

∫
|du|2 ≤ E

has boundary length outside N2δ(K) bounded above by TE.

Proof. At core, the argument uses the coarea formula to slice in terms of the level sets of the
distance function ρ and then use the Lagrangian boundary condition to study bounds for the
length. We have structured the proof in four steps: summarizing, we will choose an appropriate
bump function β around K and define functions a(r) which coarsely measures the area outside K.
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Then we show that the inequality

ra′(r) ≥ a(r)
1−Dr

1 + Cr
for some constants C,D ∈ R+ that only depend on (X,K,L, r0) but not on u. The required bound
on length will follows from that.

First, let us construct the support function β : X → R, which typically depends on u, though the
resulting constants C,D will not be affected. Fix a reference constant δ ∈ (0, r0/2) and δu ∈ (0, δ).
We then choose a non-negative smooth function β : X → R≥0 such that

(1) β vanishes on Nδ0(K),
(2) β is strictly positive on Nδ0(K)c − ∂Nδ0(K),
(3) β is equal to 1 outside N2δ(K).

Choose δu above generically enough so that u is transverse to ∂Nδ(K), and sufficiently close to δ
so that the corresponding bump function β has its derivative bounded above by Cδ−1, for some
constant C ∈ R+, independent of δu. The transversality condition is needed because in Step 3
below we will need u−1(∂Nδ(K)) to have finite length, although its length does not contribute to
our inequality.

SetN := Nδ0(K) for the δ0-neighborhood ofK and choose a strictly decreasing sequence δm → δu
so that ρ/β is Lipshitz on the δm-neighborhood Nm := Nδm(K). The functions a(r) and lβ(r) are
defined, for almost every real number, as follows.

a(r) :=

∫
{ρ≤βr}∩u∩Nc

dA am(r) :=

∫
{ρ≤βr}∩u∩Nc

m

dA(42)

lβ(r) :=

∫
{ρ=βr}∩u∩Nc

βdl. lβm(r) :=

∫
{ρ=βr}∩u∩Nc

m

βdl.(43)

Here, the integral is taken with respect to the induced metric on the image of u. The reason why
am(r) and l

β
m(r) are introduced is that we may apply the co-area formula. Since the integrand is

always non-negative, by the monotone convergence theorem, we can freely replace the integral and
limit.

Step 1. We show that the function am(r) is absolutely continuous and satisfies

am(r) ≥
∫ r

0

lβm(τ)

1 + τC
dτ and a′m(r) ≥

lβm(r)

1 + rC
a.e.(44)

We deduce Eq. (44) from the coarea formula, as follows. Since β is positive on the complement
N c, it follows that ρ/β is Lipschitz on N c

m for any m ∈ N. Applying the coarea formula, we obtain

am(r) =

∫
{ρ≤βr}∩u∩Nc

m

dA =

∫
{ρ≤βr}∩u∩Nc

m

1∣∣∇(ρ/β)
∣∣ ·∣∣∇(ρ/β)

∣∣dA =

∫ r

0

∫
{ρ=βτ}∩u∩Nc

m

1∣∣∇(ρ/β)
∣∣dldτ.

(45)
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Since |∇ρ| = 1, in the region ρ = τβ we have the estimate∣∣∇(ρ/β)
∣∣ ≤ 1

β
|∇ρ|+ ρ|β′|

β2
≤ 1

β

(
|∇ρ|+ τ

∣∣β′∣∣) ≤ 1 + τC

β
.(46)

Thus (44) follows from from (45) and (46). Since am(r) is a absolutely continuous non-negative
function with non-negative derivative, it follows that a(r) = limm→∞ a(r) is also absolutely con-
tinuous. Furthermore, by the monotone convergence theorem applied with respect to δm,

a(r) ≥
∫ r

0

lβ(τ)

1 + τC
dτ and a′(r) ≥ lβ(r)

1 + rC
a.e.(47)

Step 2. Recall that we denote h = ρ2 for the square of the distance function to L. Let us show
the inequality

rlβ(r) ≥ 1

2

∫
{ρ≤βr}∩u∩Nc

ddch.

The key observation is that, because β vanishes near ∂(Nδ(K)), we can suppress the contribution
to the length coming from u ∩ ∂(Nδ(K)). For almost every r, we have the following:

rlβm(r) =

∫
{ρ=βr}∩u∩Nc

m

rβdl ≥
∫
{ρ=βr}∩u∩Nc

m

1

2
⟨∇h, ν⟩dl(48)

=

∫
{ρ=βr}∩u∩Nc

m

1

2
dch =

1

2

∫
{ρ≤βr}∩u∩Nc

m

ddch−
∫
{ρ≤βr}∩u∩∂Nm

dch.(49)

Here we have parametrized the oriented smooth curve {ρ = βr} ∩ u ∩ N c
m} via l(t) and took its

unit normal ν(t) = −J(du ◦ l(t))
∣∣du ◦ l′(t)∣∣−1

. We are also using the fact that the critical points
of u do not lie on l(t) for generic r. For the inequality in (48), we use that |∇ρ| = 1 and, from
⟨∇h, ν⟩dl to dch, we used

⟨∇h, ν⟩dl = ⟨∇h, ν⟩
∣∣du(l′(t))∣∣ l′(t)dt = −l′(t)dh ◦ (J ◦ du ◦ ν(t)) = dch.

The critical points of u do not contribute because they are discrete, which is measure 0. The first
equality in (49) is more involved. For that, we first use Stokes’ theorem to obtain∫

{ρ≤βr}∩u∩Nc
m

ddch =

∫
{ρ≤βr}∩u∩∂Nm

dch+

∫
{ρ≤βr}∩∂u∩Nc

m

dch

+

∫
{ρ=βr}∩u∩Nc

m

dch.(50)

Here, dch = 0 on {ρ ≤ βr} ∩ ∂u since this set is contained in L. This explains why the second
term in (50) vanishes. We now need to show that the term

∫
{ρ≤βr}∩u∩∂Nm

dch converges to zero as

m → 0. For that, note that the set is contained in u−1(∂Nm) = u−1(∂Nδm(K)), whose length is
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uniformly bounded for sufficiently large m ∈ N. This is the only place where u being transverse
to ∂(Nδ(K)) is used. Therefore, we have∫

{ρ≤βr}∩u∩∂Nm

dch ≤
∫
{ρ≤βr}∩u∩Nc

m

1

2
⟨∇h, ν⟩dl ≤ sup

∂Nδm (K)

|β| r0 · Length(u−1(∂Nm(K))).(51)

Now, since sup∂(Nδm (K))|β| converges to zero as m → ∞, this term uniformly converges to zero

as m → ∞. The remaining term 1
2

∫
{ρ≤βr}∩u∩Nc

m
ddch in (49) converges to

∫
ρ≤βr∩u∩Kc dd

ch by

monotone convergence theorem, since ddch is J-plurisubharmonic that the integrand is necessarily
non-negative. In consequence, we obtained the claimed inequality

rlβ(r) = lim
m→∞

rlβm(r) ≥
1

2

∫
{ρ≤βr}∩u∩Nc

ddch.(52)

Step 3. Let us prove the inequality

1

2
ddch ≥ (1−Dr)ω, for some D ∈ R+.

Indeed, for each point p ∈ L, we can trivialize the metric and bring (X,L, J) to the configura-
tion (Cn

(x,y),Rn
x, J) such that h =

∑
i,j aijy

iyj + O(|y|3), aij(x) = δij + O(|x|2), J − i = O(|y|) and
g = gstd+O(|y|2)+O(|x|2). In particular, 1

2
ddch restricted to x = 0 is ωstd+O(|y|) and g restricted

to x = 0 is gstd+O(|y|2). It follows that ω = ωstd+O(|y|) and so ω = ddch+O(|y|). For sufficiently
small y, it follows that ddch ≥ (1−Dr)ω.

Step 4. Let us combine the inequalities thus far to show that

ra′(r) ≥ a(r)
1−Dr

1 + Cr

and conclude the proof of the truncated reverse isoperimetric inequality. Step 3 implies that
lim rlβ(r) ≥ (1 − Dr)a(r) for some D ∈ R+. Combining (47) and (48)–(49), we obtain the
inequality

ra′(r) ≥ a(r)
1−Dr

1 + Cr
.(53)

This implies the inequality

d

dr
log

(
a(r) · Cr + 1

r(1−Dr)

)
≥ 0,(54)

which implies that the function

r → a(r)

r(1−Dr)−(C+D)/D
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is non-decreasing. For r ≪ min (D−1, C−1) small enough, choose a constant T ∈ R+ greater than
(1−Dr)−(C+D)/D so that

T
a(r)

r
≥ lim

s→0

Area(u; {ρ ≤ s} ∩N2δ(K)c)

s

Cs+ 1

(1− sD)
.(55)

This implies a(r)T ≥ rl, as required. □

A.3. Local systems and twisted local systems. In Section 5 we directly work with twisted
local systems. Since [GPS20] is presented only for (untwisted) local systems, Section 6 is written
in the context of local systems. In the framework of Betti Lagrangians, being spin, there is an
equivalence between twisted local systems and local systems. To unify both approaches, we briefly
set up the non-abelianization functor ΦW in terms of spin structures and local systems, instead of
twisted local systems. The notation follows that of the manuscript. Let α ⊂ S be a path transverse
to W. The difference line bundle β = s̃− π∗s can be understood as a O(1;R)-local system on the
trivial bundle over L −KL. Such local systems are almost-flat, in that their monodromy along a
small loop encircling a point in KL is −Id.

As in Section 5.1 , we will define a functor

ΦV,β
W

: Loc1(L) −→ Locn(S).

We will adopt the same notational conventions as introduced in Section 5, using genuine paths. As
before, we will write αi to denote the cotangent lifts of the paths. The analogue of Definition 5.6
reads as follows.

Definition A.4. Let V ∈ Loc1(L) be a GL1(C)-local system on L and α : [0, 1] → S a path
transverse to W. Let s̃, s be spin structures on L and S, respectively, and β be their difference line
bundle.

(i) If α is represented by a free W-adapted path, then

ΦV,β
W (α) =

n∑
i=1

ΦV,β(αi)[αi],

where the sum runs over the n lifts αi to L, i ∈ [1, n].
(ii) If α is short and intersects W at z, and ρu the unit velocity sphere bundle lift, then

ΦV⊗β
W (α) =

n∑
i=1

ΦV⊗β(αi)[αi] +
∑

s(z;w)∈S(z;w)

µ(̊s(z))ΦV⊗β
(
π
(̊
s(ρu)))[π

(̊
s(ρu)

)
].

(iii) If α is given as a composition α = α1 ◦ α2 ◦ . . . ◦ αn, where each αi is either short or free,
then

ΦV,β
W (α) = ΦV,β

W (α1) ◦ ΦV,β
W (α2) ◦ · · · ◦ ΦV,β

W (αk).

□
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The spin structure s̃ can be seen as a fibrewise double cover s̃ : L̊→ L̊. Then the pull-back s̃∗V
has monodromy Id along H, and so using s̃ to choose a trivialization L̊ ≃ L̊× U(1)θ, and pulling

back s̃∗V by the U(1)-section Σ → L̊, we can regard s̃∗V as a local system on L. Conversely, given

a rank-1 flat connection ∇ on the trivial bundle of L, we can use s̃ to trivialize L̊ ≃ L × U(1)θ
and consider the twisted connection ∇ + πidθ. The pull-back under the fibrewise square map
gives ∇+2πidθ, which has trivial monodromy along the U(1) component. The same construction
recovers ∇.

Similarly, the spin structure s trivializes the sphere bundle on S. Let α be a W-transverse path,
and let ρs(α) be the lift of α via the trivialization s : S̊ ≃ S × U(1). By construction, ρs(α) is a
W-adapted path. We identify the stalk of s̃∗V , regarded as a local system on L, with that of V .
The relation with ΦW in Section 5 reads:

Proposition A.5. ΦW(V )(ρs(α)) = Φs̃∗V,β
W (α)

Proof. It suffices to verify the formula for free paths and short paths. For free paths,

Φs̃∗V⊗β
W (α) =

n∑
i=1

Φs̃∗V⊗β(αi)[αi] =
n∑

i=1

ΦV (ρs(α)i)[αi],

since β = s̃− π∗s. For short paths,

µ(̊s(z))Φs̃∗V⊗β
(
π
(̊
s(ρu))

)
[π
(̊
s(ρu)

)
] = µ(̊s(z))ΦV

(̊
s(ρs(α))

)
[π
(̊
s(ρ(α)

)
],

since s̊(ρu) and s̊(ρs(α)) differ by ⟨β, ∂̊s(ρu)⟩H modulo 2H. □

Finally, given a local system V ∈ Loc(L) and V ∈ Loc†(L) a twisted local system on L̊ such that
s̃∗V = V, we can define the non-abelianization of s̃∗V to be s∗ΦW(V ). This is consistent with the
main body of the manuscript by Proposition A.5.
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isbn: 978-2-84788-939-0.

[Gir20] Emmanuel Giroux. “Ideal Liouville domains, a cool gadget”. In: J. Symplectic Geom.
18.3 (2020), pp. 769–790. issn: 1527-5256,1540-2347. doi: 10.4310/JSG.2020.v18.
n3.a5. url: https://doi.org/10.4310/JSG.2020.v18.n3.a5.

[GLM15] Dmitry Galakhov, Pietro Longhi, and Gregory W. Moore. “Spectral networks with
spin”. In: Comm. Math. Phys. 340.1 (2015), pp. 171–232. issn: 0010-3616,1432-0916.
doi: 10.1007/s00220-015-2455-0. url: https://doi.org/10.1007/s00220-015-
2455-0.

[GMN12] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Wall-crossing in coupled
2d-4d systems”. In: J. High Energy Phys. 12 (2012), 082, front matter + 166. issn:
1126-6708,1029-8479. doi: 10.1007/JHEP12(2012)082. url: https://doi.org/10.
1007/JHEP12(2012)082.

https://doi.org/10.1090/amsip/002.1/23
https://doi.org/10.1090/amsip/002.1/23
https://doi.org/10.1090/amsip/002.1/23
https://doi.org/10.1007/s00220-016-2729-1
https://doi.org/10.1007/s00220-016-2729-1
https://doi.org/10.1007/s00220-016-2729-1
https://doi.org/10.1007/JHEP07(2017)032
https://doi.org/10.1007/JHEP07(2017)032
https://doi.org/10.1007/s10240-015-0073-1
https://doi.org/10.1007/s10240-015-0073-1
https://doi.org/10.1007/s10240-015-0073-1
https://doi.org/10.3842/SIGMA.2023.064
https://doi.org/10.3842/SIGMA.2023.064
https://doi.org/10.3842/SIGMA.2023.064
https://doi.org/10.4310/JSG.2020.v18.n3.a5
https://doi.org/10.4310/JSG.2020.v18.n3.a5
https://doi.org/10.4310/JSG.2020.v18.n3.a5
https://doi.org/10.1007/s00220-015-2455-0
https://doi.org/10.1007/s00220-015-2455-0
https://doi.org/10.1007/s00220-015-2455-0
https://doi.org/10.1007/JHEP12(2012)082
https://doi.org/10.1007/JHEP12(2012)082
https://doi.org/10.1007/JHEP12(2012)082


REFERENCES 145

[GMN13a] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Framed BPS states”. In:
Adv. Theor. Math. Phys. 17.2 (2013), pp. 241–397. issn: 1095-0761,1095-0753. doi:
10.4310/atmp.2013.v17.n2.a1. url: https://doi.org/10.4310/atmp.2013.v17.
n2.a1.

[GMN13b] Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. “Spectral networks”. In:
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