
LEGENDRIAN WEAVES

– N-GRAPH CALCULUS, FLAG MODULI AND APPLICATIONS –

ROGER CASALS AND ERIC ZASLOW

Abstract. We study a class of Legendrian surfaces in contact five-folds by encoding their
wavefronts via planar combinatorial structures. We refer to these surfaces as Legendrian
weaves, and to the combinatorial objects as N -graphs. First, we develop a diagrammatic
calculus which encodes contact geometric operations on Legendrian surfaces as multi-colored
planar combinatorics. Second, we present an algebro-geometric characterization for the
moduli space of microlocal constructible sheaves associated to these Legendrian surfaces.
Then we use these N -graphs and the flag moduli description of these Legendrian invariants
for several new applications to contact and symplectic topology.

Applications include showing that any finite group can be realized as a subquotient of
a 3-dimensional Lagrangian concordance monoid for a Legendrian surface in (J1S2, ξst), a
new construction of infinitely many exact Lagrangian fillings for Legendrian links in (S3, ξst),
and performing Fq-rational point counts that distinguish Legendrian surfaces in (R5, ξst). In
addition, the manuscript develops the notion of Legendrian mutation, studying microlocal
monodromies and their transformations. The appendix illustrates the connection between
our N -graph calculus for Lagrangian cobordisms and Elias-Khovanov-Williamson’s Soergel
Calculus.
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Legendrian fronts arise naturally in several areas: in topology, as Cerf diagrams of families
of smooth functions; in differential equations, as Stokes diagrams of an irregular singular-
ity; and in analysis, as wavefront sets of distributions, generalizing the original context of
wavefronts in geometric optics. This article studies Legendrian surfaces through the combi-
natorics of their wavefronts and develops the theory of N -graphs, planar structures encoding
front singularities. The moduli space of simple sheaves microsupported on the Legendrian
surface becomes an incidence problem for flags of vector spaces, as dictated by the N -graph.
We exploit the connections between the combinatorics of N -graphs, algebraic geometry and
cluster algebras to obtain results in contact and symplectic topology.

1. Introduction

Legendrian knots in contact 3–manifolds [Etn05, Gei08] are central to the study of 3–
dimensional contact geometry [Ben83, Eli93, Gom98]. The study of Legendrian knot invari-
ants makes extensive use of their planar front projections, both in the context of Floer theory
[EGH00, Che02, Ng03] and microlocal analysis [KS85, GKS12, STZ17]. Higher-dimensional
Legendrian submanifolds have proven equally instrumental in the study of higher-dimensional
symplectic and contact topology, including the development of Legendrian Kirby Calculus
[Eli90, Gom98, CMP19] and Lagrangian skeleta [RSTZ14, Nad17a, Sta18].

In the case of 6–dimensional symplectic manifolds and their 5–dimensional contact boundaries
[CE12, CM19], spatial front projections for Legendrian surfaces are available [Ad90, AdG01].
First, this article develops a multi-colored planar diagrammatic calculus for the manipulation
of such Legendrian surfaces in 5–dimensional contact manifolds and their Lagrangian projec-
tions in 4-dimensional symplectic manifolds. This diagrammatic calculus is first used for the
efficient computation of microlocal Legendrian isotopy invariants, as we prove and illustrate
throughout the manuscript. Then we provide several new applications, including new re-
sults in higher-dimensional contact geometry and low-dimensional symplectic topology. We
also expect that this concrete description will prove itself useful for further results, such as
the computation of symplectic invariants of Weinstein manifolds [GPS19a, Section 6.4] and
homological mirror symmetry [Nad17b, TZ18], see also [CM19, Section 4.4] and Remark 6.1.

Finally, even if Legendrian weaves are a specific class of Legendrian surfaces, we can actually
use them to prove new results, such as Theorems 1.6 and 1.8 below, and the diagrammatic
calculus presented here is already being used successfully in a variety of recent developments
[CG20, Cas20, CGGS, CN20, GSW20a, GSW20b]. In studying this manuscript, we hope
that the reader will find these Legendrian surfaces as useful and fascinating as we have.
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1.1. Summary of Contributions. Let G be an N -graph1 drawn on a smooth surface C.
The notion of an N -graph, combinatorial in nature, is first defined in Section 2. In a nutshell,
our main contributions are as follows:

A. Diagrammatic Calculus and Legendrian Weaves. The construction of a Leg-
endrian surface Λ(G) in the five-dimensional jet space (J1C, ξst) associated to the
N -graph G, along with a description of Legendrian Surface Reidemeister moves in
terms of combinatorial N -graphs moves. Likewise, we show that Legendrian surgeries
and Legendrian mutations, which we introduce, can be reflected by the diagrammat-
ics of N -graphs. This is part of a general calculus of multi-colored planar diagrams
that, as we show, captures Legendrian surfaces and 3-dimensional Lagrangian cobor-
disms between them. The translation from five-dimensional contact topology to such
planar diagrammatics allows us to study contact topology through combinatorics and
graph theory. In fact, we use this combinatorial perspective to construct Lagrangian
and Legendrian surfaces that prove new results in contact topology.

B. The Microlocal Sheaf Theory of N-Graphs. A Legendrian surface Λ ⊆ (J1C, ξst)
specifies a category of constructible sheaves on C × R with singular support con-
strained by Λ. When Λ = Λ(G) for an N -graph G, we show that the moduli stack
of objects M(G) has a combinatorial description in terms of flag varieties, which we
introduce in Section 5. This space solves an incidence moduli problem for flags of
subspaces in an N -dimensional k-vector space V , with k a field, as dictated by the N -
graph G. This stack is typically an algebraic variety and can be studied by algebraic
geometric and representation-theoretic techniques. Following [GKS12, STZ17, TZ18],
this space is shown to be a Legendrian invariant for surfaces Λ(G) and can be used to
distinguish Legendrian isotopy types. In addition, we explicitly give formulas for the
microlocal monodromies along certain cycles of H1(Λ(G),Z) in terms of generalized
cross-ratios of flags, and their transformation under Legendrian mutations.

C. Applications of N-Graph Calculus. First, in Section 6 we use the diagrammatics
in (A) to study the flag moduli spaces M(G) in (B), including their rational point
counts over finite fields Fq. This allows us to distinguish many Legendrian surfaces,
up to Legendrian isotopy and, independently, show that for any finite group G, there
exists a Legendrian surface in (R5, ξ) whose 3-dimensional Lagrangian concordance
monoid has G as a subquotient. Second, Section 7 explains how to apply N -graph
calculus to systematically study Lagrangian fillings of Legendrian links in (S3, ξst).
In particular, we use Legendrian mutations to give new families of Legendrian links
which admit infinitely many Lagrangian fillings.

Finally, given N -triangulations (C, τ) of the smooth surface C, we construct N -
graphs G(τ) such that the Lagrangian projections of the Legendrian surfaces Λ(G(τ))
relate to the Goncharov-Kenyon conjugate surfaces [GK13, Section 1.1.1] associated
to an N -triangulation.2 In Section 3 we provide the construction of G(τ). In Sec-
tion 8, we provide an example of how Hitchin’s non-Abelianization map is described
from this viewpoint. This provides a context for the symplectic study of the cluster
structures associated to moduli spaces of framed local systems of Fock-Goncharov
[FG06a, FG06b], and certain classes of Gaiotto-Moore-Neitzke’s spectral networks
[GMN10, GMN13, Nei14, GMN14]. In particular, the microlocal sheaf theory of

1Informally, an N -graph G ⊆ C is a collection of trivalent graphs on C decorated with labels i ∈ [1, N ] such
that graphs with successive labels can only intersect at hexavalent vertices, where the six radiating half-edges
on the surface must interlace. See Definition 2.2 for details, and note that a 2-graph is simply an embedded
trivalent graph.

2See also [Gon17, Section 2.1], and [STWZ19, Section 4.2] describes the conjugate surface as a Lagrangian.
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Λ(G(τ)) connects, through the moduli space M(G(τ)) in (B), with their spaces of
flag configurations [Gon17, Section 3].

1.2. Main Results. We now elaborate upon these topics and state our results.

(23)

(12)
(23)

(12)

(34)

Figure 1. 3-graph (left) and 4-graph (right) on the 2-sphere S2. These cor-
respond to Legendrian surfaces in the contact 5-space (J1S2, ξst), respectively
of genus 3 and 4. The geometric meaning of these two figures is explained in
detail in Section 2, in Subsections 2.1 and 2.3.

Diagrammatic Calculus and Legendrian Weaves. Weinstein manifolds [CE12, CE14,
CM19], the symplectic counterpart of Stein manifolds, place Legendrian submanifolds at
the forefront of higher-dimensional contact and symplectic topology. In this manuscript, we
define and study a new class of Legendrian surfaces Λ(G) in contact 5-manifolds, associated
to an N -graph G, building on our previous works [CM18, TZ18]. Prior work on Legendrian
surfaces [ENS18, She19] has focused on the class of Legendrian tori ΛK ⊆ (T∞S3, ξstd) arising
as the conormal torus of a smooth knot K ⊆ S3. The Legendrian surfaces Λ(G) we study
provide a second infinite family of Legendrian submanifolds whose contact topology and sheaf
invariants can be understood. Their geometry is governed by the combinatorial data of the
N -graph G. Figure 1 depicts two examples of N -graphs, representing Legendrian surfaces of
genus 3 (left) and 4 (right).

We study three geometric operations for Legendrian surfaces in 5-dimensional contact man-
ifolds. These are Legendrian isotopies [Ad90, CE12, Gei08], exact Lagrangian cobordisms
[Ad76, BST15, EHK16], and Legendrian mutations, which we define in Section 4. Lagrangian
cobordisms of indices 1 and 2 correspond to Legendrian 0- and 1-surgeries. We establish a
correspondence between each of these three types of geometric operations and the combi-
natorics of N -graphs. In addition, we describe a combinatorial stabilization of an N -graph,
which can be understood as a five-dimensional analogue of the Markov stabilization of a
Legendrian braid [Rol76, PS97]. Part of these results are summarized in the following two
theorems (see Section 4 for details), which are developed in the text:

Theorem 1.1 (Diagrammatics for Legendrian Weave Calculus I). Let G be a local N -graph.
The combinatorial moves in Figures 2 and 3 are Legendrian isotopies for Λ(G). �

Theorem 1.2 (Diagrammatics for Legendrian Weave Calculus II). Let G be a local N -
graph. The combinatorial moves in Figure 4 are Legendrian surgeries, of indices 0, 1 and 2,
Legendrian mutations and connected sums with the standard and Clifford tori. �
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Figure 2. Combinatorial Moves for Legendrian Isotopies of Surfaces Λ(G).
Moves I–V are local Legendrian isotopies in the 1-jet space (J1R2, ξst). Move
S in the lower right is local in (J1S2, ξst) after satelliting to the Legendrian
unknot Λ0 ⊆ (R5, ξst). See Section 2 for precise details on the geometric
concepts represented by these pictures.

Figure 3. Combinatorial Moves for Legendrian Isotopies of Surfaces Λ(G).
These are homotopies of spatial wavefronts involving A3-swallowtail singular-
ities. Section 2 explains the geometric meaning of these pictures.

Theorems 1.1 and 1.2 provide an efficient diagrammatic calculus to manipulate the Legen-
drian surfaces Λ(G) associated to N -graphs G. We refer to the Legendrian surfaces Λ(G) as
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Figure 4. Table of Combinatorial Moves for Surfaces Λ(G) corresponding to
Legendrian Surgeries, mutations and tori connected sums. See Section 2 for
details.

Legendrian weaves, due to the resemble of their Legendrian fronts to a weaving pattern – see
Definition 2.7. Theorems 1.1 and 1.2 are geometric in nature and are proven by manipulating
Legendrian fronts for Legendrian surfaces in five dimensions. This is the content of Section
4, as part of our study of generic three-dimensional front singularities and their homotopies.
In addition, Section 3 provides several combinatorial constructions of Legendrian surfaces
Λ ⊆ (S5, ξst) which are used in our applications in Sections 6, 7 and 8.

Remark 1.3. The Legendrian weaves Λ(G) ⊆ (J1C, ξst) associated to an N -graph G ⊆ C
admit spatial wavefronts π(Λ(G)) ⊆ C×R with front singularities solely of types3 A2

1, A3
1 and

D−4 , following V.I. Arnol’d’s notation [Ad76, Ad90]. That said, their satellites ι(Λ(G)) ⊆
(Y, ξst) typically acquire A2, A2A1 and A3 singularities. Satellites will be introduced and
discussed in Section 4.2; as an example, the satellite of Λ(G) along the standard Legendrian
unknot Λ0 ⊆ (R5, ξst) necessarily develops A2-singularities. In addition, the standard 5-
dimensional Legendrian Reidemeister surface moves include the creation of A3 singularities,
and the interaction of A2 and A3 singularities yield a D+

4 singularity. These Legendrian
singularities and 3-dimensional Reidemeister moves will also be discussed in Section 4. �

The Microlocal Sheaf Theory of N-Graphs. The relationship between sheaf theory
and contact and symplectic geometry [NZ09, Nad09, GKS12, GS14] provides invariants of
Lagrangian and Legendrian submanifolds up to Hamiltonian and contact isotopies [STZ17,
STWZ19, CG20]. These invariants are an alternative to the more analytical Floer-theoretic
methods [EES05b, EENS13a, EENS13b], and have recently been shown to contain equivalent
data [GPS19a, GPS19b, GPS19c].

Let G be an N -graph on C, Λ(G) ⊆ J1(C) its Legendrian surface, and C(G) the category
of simple constructible sheaves on C × R microlocally supported along Λ(G). In Section

3The A2
1-singularity corresponds to a crossing, and the A3

1-singularity is given by three planes intersecting
transversely at a point. The A2-singularity corresponds to a simple cusp, A3-singularities are swallowtails,
and A2A1-singularities are obtained by intersecting a cusp with a linear space.
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5, we describe the moduli space of objects in C(G) in terms of the combinatorics of G.
Specifically, we define the flag moduli space M(G) of an N -graph G ⊆ C, an algebraic stack
– often a variety – as being described by explicit relations among elements in the flag variety
GL(N, k)/B, where B is the Borel subgroup of upper triangular matrices. Already when
N = 2, the number of rational Fq-points of M(G), for a finite field Fq is, up to a factor, the
chromatic polynomial of the dual graph evaluated at q + 1 = |(GL(2,Fq)/B)(Fq)| [TZ18],
and hence the moduli stack M(G) geometrizes a familiar graph-theoretic construction.

For general N , this algebraic space M(G) is the moduli space of an incidence problem
between flags and their stabilizing monodromies. It has two particular virtues. First, M(G)
changes explicitly under certain combinatorial moves of the N -graph G — thus, each time
we can simplify G with our moves from Theorems 1.1 and 1.2, we get closer to solving the
moduli problem via purely diagrammatic techniques. Second, M(G) is an invariant of the
Legendrian isotopy class of Λ(G) ⊆ J1(C). In short, M(G) is defined purely in terms of the
combinatorics of the N -graph G, in a manner we understand, and we show it geometrically
describes the following invariant:

Theorem 1.4. Let C be a closed, smooth surface and G ⊆ C an N -graph. The flag moduli
space M(G) is isomorphic to the moduli space of microlocal rank-one sheaves4 on C × R
microlocally supported along Λ(G) ⊆ (J1C, ξst). �

After the work of Guillermou-Kashiwara-Schapira [GKS12], which constructs an equivalence
of sheaf categories from a Legendrian isotopy, we conclude that the algebraic isomorphism
type of the moduli stack M(G) is a Legendrian isotopy invariant of the Legendrian surface
Λ(G) ⊆ (J1C, ξst). In fact, it will remain a Legendrian isotopy invariant for certain satel-
lites along C ⊆ (R5, ξst), yielding a Legendrian invariant for Λ(G) ⊆ (R5, ξst). Theorem 1.4,
proven in Section 5, is a generalization to N ≥ 2 of [TZ18, Section 4] and the 2-dimensional
surface analogue of the results in [STZ17, STWZ19], where the computation of the moduli
space of microlocal rank-1 sheaves for 1-dimensional Legendrian braid closures in R3 is ex-
pressed in algebraic combinatorial terms.

Applications of N-Graph Calculus. Sections 6, 7 and 8 exhibit a gallery of computations
and uses of the flag moduli space M(G), including the study of M(G) as a complex variety
and its finite Fq-counts. For instance, our techniques readily prove the following sample
result:

Theorem 1.5 (Flag Moduli for Ladder Graphs). Let Ln ⊆ S2 be the (2n)-runged ladder
3-graph of Figure 5, and let Fq a finite field. Then the flag moduli space M(Ln) has orbifold
point count

|M(Ln)(Fq)| =
q2n−3 − qn−2 + qn−1 + q − 1

(q − 1)2

In particular, the Legendrian 3-links of 2-spheres Λ(Ln) and Λ(Lm) are Legendrian isotopic
if and only if n = m. �

The infinitely many Legendrian surfaces Λ(Ln) in Theorem 1.5, n ∈ N, are pairwise smoothly
isotopic. The distinct finite Fq-counts of their flag moduli spaceM(Λ(Ln))(Fq) give a direct
proof that they are not Legendrian isotopic as Legendrian surfaces in (R5, ξst). Also, adding
the ladder 3-graphs in Theorem 1.5 into a face of an arbitrary N -graph G typically changes
the flag moduli space of M(G) and thus produces another Legendrian surface, smoothly
isotopic but not Legendrian isotopic to Λ(G).

4Microlocal rank-one sheaves are also called microlocally simple or just simple [KS85, Chapter 7].
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In general, the computation of these Legendrian invariants translates into an incidence moduli
problem, which can itself be simplified with our diagrammatic techniques, and then possibly
solved with methods from algebraic geometry. In particular, we will understand the effect
of combinatorial moves for N -graphs G on the Legendrian invariants M(Λ(G)). This will
frequently allow for the computation of this moduli stack and distinguish Legendrian weaves
up to Legendrian isotopy. This yields a wide range of results in the vein of Theorem 1.5, as
we will illustrate. From this perspective, Legendrian weaves, which are in general surfaces of
any genus, constitute an attractive complement to the family of knot conormals.

Figure 5. The bipartite Ladder 3-Graph Ln, where the right and left sides
are identified after 2n rungs.

We now illustrate a second application of our flag moduli stacks, detailed in Section 6. Let
Λ ⊂ (S5, ξst) be an embedded Legendrian surface and let L(Λ) be the space of embedded Leg-
endrian surfaces which are Legendrian isotopic Λ, with base point Λ. Let L(Λ) be the monoid
of 3-dimensional exact Lagrangian concordances in the symplectization (S5×R(t), etλst), up
to Hamiltonian isotopy, based at Λ. The flag moduli spaces M(G) will be used to show the
following result:

Theorem 1.6. Let G be an arbitrary finite group. Then there exists a Legendrian surface
ΛG ⊆ (S5, ξst) such that

(i) G is a subquotient of the fundamental group π1(L(ΛG)),
(ii) G is a subquotient of the 3-dimensional Lagrangian concordance monoid L(ΛG).

In fact, the latter is the image of the former via the graph map gr : π1(L(Λ)) −→ L(Λ).

Theorem 1.6 essentially states that the study of the 3-dimensional Lagrangian concordance
monoid can be as complicated as any finite group. The proof of Theorem 1.6 will exhibit
the advantage of using combinatorial constructions on an N -graph G to extract contact
and symplectic information in 5- and 6-dimensions. Note that for 1-dimensional max-tb
Legendrian torus links, T. Kálmán provided finite cyclic subgroups of the 2-dimensional
Lagrangian concordance monoid [K0́5], and J. Sabloff and M. Sullivan provided5 finite cyclic
subgroups of the 3-dimensional Lagrangian monoid for certain Legendrian surfaces [SS16].
Sections 5, 6 and 7 contain several computations and applications of the flag moduli spaces
M(G).

Remark 1.7. The Legendrian DGA of a Legendrian knot in (R3, ξst) can be computed
algorithmically. The computation of Floer-theoretic invariants of general Legendrian sub-
manifolds in arbitrary higher-dimensions represents a challenge [DR11, EES05a, EES05b] —
see [RS19a, RS19b] for progress in this direction. The class of Legendrian 2-tori arising as
knot conormals is understood [Ng11, ENS18, She19] and our results, in line with Theorem
1.5 and Theorem 1.6, aim at achieving both a geometric and sheaf-theoretic understanding
for the class of Legendrian weaves Λ(G). �

5The results of [SS16] are stronger in higher-dimensions, but for Legendrian surfaces the only finite sub-
groups of the special orthogonal group SO(2) must be cyclic – see [SS16, Remark 4.7].
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For a third class of applications, consider an N -graph G ⊆ D2 with boundary. The La-
grangian projection of the Legendrian weave Λ(G) yields6 an exact Lagrangian filling of a
Legendrian link in (S3, ξst), associated to ∂G. In Section 7 we will construct different N -
graphs G1, G2 with ∂G1 = ∂G2, and explain how microlocal monodromies can be used to
show that the Lagrangian projections of the Legendrian weaves Λ(G1) and Λ(G2) are not
Hamiltonian isotopic relative to their 1-dimensional Legendrian boundaries. In fact, N -graph
calculus, in combination with Legendrian mutations, allows us to construct infinitely many
distinct embedded Lagrangian fillings for certain Legendrian knots. The following family of
Legendrian links is studied in detail in Subsection 7.3:

Theorem 1.8. Let Λs,t = Λ(βs,t) ⊆ (S3, ξst) be the Legendrian link given by the standard
satellite of the positive braid

βs,t = (σ3
1σ2)(σ3

1σ
2
2)sσ3

1σ2(σ2
2σ

3
1)t(σ2σ

3
1)(σt+1

2 σ2
1σ

s+2
2 ), s, t ∈ N, s, t ≥ 1.

Then Λs,t ⊆ (S3, ξst) admits infinitely many embedded exact Lagrangian fillings in (D4, λst)
realized as 3-graphs Gs,t ⊆ D2 and their Legendrian mutations.

The 3-graphs representing the infinitely many Lagrangian fillings in Theorem 1.8 are dia-
grammatically interesting, with their complexity increasing as we geometrically realize the
iterates in an infinite sequence of quiver mutations. For instance, Figure 6 depicts an ex-
ample of a Lagrangian filling associated to such a 3-graph, obtained after five mutations.
Fortunately, the local mutations rules that we develop in Section 4.9 will allow us to control
certain infinite sequences of N -graphs mutations and construct infinite sequences of pairwise
distinct Lagrangian fillings.

1

2

3 4

5

6

(x3)

(x2) (x2)

(x2)(x2)

Figure 6. The 3-graph for one of the infinitely many Lagrangian fillings of
the Legendrian link Λ1,1 ⊆ (S3, ξst), as featured in Theorem 1.8. Iterative
3-graph mutations will yield new 3-graphs G ⊆ D2 representing pairwise non-
Hamiltonian isotopic Lagrangian fillings of Λ1,1.

6A combinatorial criterion for embeddedness, which will be useful, is described in Lemma 7.4.
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Theorem 1.8 is an appropriate complement to the recent results [CG20], as the construction
of the infinitely many Lagrangian fillings in Theorem 1.8 is obtained directly by Legendrian
mutations.7 In more generality, Section 7 develops the relation between the cluster algebra
associated to the intersection quiver of a Lagrangian filling and the Legendrian mutations
from Section 4.8. In particular, N -graph calculus can serve as an effective tool to show that
a given Legendrian link admits infinitely many Lagrangian fillings, in case the quiver is of
infinite mutation type8 and its vertices are represented by mutable 1-cycles in the N -graph
G. In fact, any Legendrian link Λ(β) ⊆ (S3, ξst) associated to a positive braid β ∈ Br+

N

admits a Lagrangian filling – oftentimes many – given by an N -graph G ⊆ D2.

A final application of N -graph calculus for Legendrian weaves develops the connection of
symplectic topology to V. Fock and A. Goncharov’s cluster varieties of framed local systems
[FG06b] (see also [Gon17, STWZ19]), and should relate to the spectral networks of Gaiotto-
Moore-Neitzke [GMN10, GMN13, GMN14]. For that, consider N ∈ N and τ an ideal N -
triangulation of the smooth punctured surface C. In Section 3, we present a new construction
that associates an N -graph G(τ) to an ideal N -triangulation (C, τ). In particular, each ideal
N -triangulation τ yields a Legendrian surface Λ(G(τ)) ⊆ (J1C, ξst). In general, different
N -triangulations lead to smoothly isotopic Legendrian surfaces which are not Legendrian
isotopic, and they are distinguished by their flag moduli space M(G(τ)). This also relies on
the connection between microlocal monodromies and cluster algebras.

Figure 7. The Legendrian weave associated to a 4-triangle (left) and to a
5-triangle (right). The open Legendrian surface for the 4-triangle has genus
one and two boundary components. The Legendrian surface for the 5-triangle
has genus two and three boundary components. �

The N -graph G(τ) and the Legendrian weave Λ(G(τ)) are both constructed with a local
model on an N -triangle. Figure 7 depicts a Legendrian weave associated to the 4- and 5-
graphs dual to 4- and 5-triangles. We will prove that their local flag moduli space is a complex
torus by using Theorem 1.1 and the flag moduli space results from Section 5. The precise
statement, proven in Section 8, reads as follows:

7In contrast, the construction for torus links given by the first author in [CG20] uses Lagrangian concor-
dances of infinite order. In that context, see also the upcoming work [GSW20a] which will show that the
square of the Donaldson-Thomas transformation [GS18] is a Lagrangian concordance, oftentimes of infinite
order.

8This is generically the case.
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Theorem 1.9. Let G(tN ) be the N -graph associated to an N -triangle tN , and let k a field.

The flag moduli space of G(tN ) is a
(
N−1

2

)
-dimensional complex torus, i.e.

M(tN , G(tN ); k) ∼= (k∗)(
N−1

2 ).

The combinatorial number
(
N−1

2

)
appears geometrically as the rank of the first homology

class of the Legendrian weave Λ(G(tN )). Now, the class of Legendrian weaves Λ(G(τ)) aris-
ing from ideal N -triangulations τ of punctured surfaces is of central interest in the study
of moduli spaces of framed local systems for the Lie group GL(N,C) [FG06b]. Indeed, the
Legendrian surface Λ(G(τ)) is a compactification of the Legendrian lift of the Goncharov-
Kenyon Lagrangian conjugate surface Lτ ⊆ (T ∗C, λst), see [Gon17, STWZ19]. Thus, the
non-Abelianization technique, expressing higher-rank local systems in S in terms of rank-one
local systems on Lτ , can also be recovered by studying these Legendrian weaves Λ(τ) – see
Section 8.2 for an explicit computation. In particular, the set of Legendrian surfaces {Λ(τ)}τ
provides a symplectic geometric realization of the set of cluster charts in this moduli spaces
of framed local systems. This parallels the work of [STWZ19] on conjugate surfaces. See
Section 8 for details.

Basic Notation and Color Code. The germs of singularities of caustics and wavefronts
are referred to according to the classical notation from the theory of singularities, following
V.I. Arnol’d [Ad90]. Given a subset X ⊆ Y of a smooth manifold Y , we denote by Op(X)
an arbitrarily small but fixed open neighborhood of it, following M. Gromov [Gro86].

Regarding colors, the two colors blue and red are associated to edges with adjacent transposi-
tions, i.e. edges with consecutive transpositions (i−1, i), (i, i+1), for a choice 2 ≤ i ≤ N −1.
The same holds for colors red and yellow used together. The three colors blue, red and yel-
low together denote edges labeled by three consecutive transpositions (i− 1, i), (i, i+ 1) and
(i + 1, i + 2), respectively, for a choice 2 ≤ i ≤ N − 2. In a diagram with the two colors
blue and yellow, without red, these two colors denote any edges with disjoint transpositions.
The color orange will exclusively be used to denote cusp edges, corresponding to edges of
A2-singularities. Finally, we use purple dots (or black dots) for D−4 singularities, yellow dots
for A3

1 singularities and orange dots for A3-swallowtail singularities. �
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ing of the initial version of this manuscript, and Honghao Gao, Eugene Gorsky and Harold
Williams for many valuable comments. We also thank the referees for their suggestions and
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tations, and to Ben Elias for discussions on Soergel calculus. We also thank J. Etnyre, O.
Lazarev, I. Le, L. Ng, J. Sabloff, L. Traynor and D. Treumann for discussions, questions
and interest in this work. R. Casals is supported by the NSF grant DMS-1841913, a BBVA
Research Fellowship and the Alfred P. Sloan Foundation. E. Zaslow is supported by the NSF
grant DMS-1708503. �

2. N-graphs and Legendrian Weaves

In this section we introduce the notion of an N -graph G and construct the Legendrian surface
Λ(G) associated to it. The interaction between the combinatorics of G and the contact
geometric invariants of Λ(G) is the starting focus of this article. The reader is referred to
[BM08, Die17] for introductory material on graph theory and to [Etn05, Gei08] for the basics
of contact topology.
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2.1. N-graphs. Let C be a smooth surface and N ∈ N a natural number. An embedded
graph G ⊆ C is said to be trivalent if all its vertices have degree three. Such a vertex is
depicted on the left in Figure 8.

Figure 8. Trivalent vertex (left) and Hexagonal Point (right).

Definition 2.1. Let J and K be two trivalent graphs embedded in C, having an isolated
intersection point at a common vertex v ∈ J ∩K. The intersection v is said to be hexagonal
if the six half-edges in C incident to v interlace, i.e. alternately belong to J and K. �

The right diagram in Figure 8 depicts a hexagonal vertex, where the graph J is labeled
(i − 1, i) in blue and K is labeled (i, i + 1) in red. These hexagonal intersection points will
be referred to as hexagonal (i, i+ 1)-points.

Definition 2.2. An N -graph G on a smooth surface C is a set G = {Gi}1≤i≤N−1 of N − 1
embedded trivalent graphs Gi ⊆ C, possibly empty or disconnected, such that Gi is allowed
to intersect Gi+1 only at hexagonal points, 1 ≤ i ≤ N − 2. �

Two examples of N -graphs on the plane C = R2 are depicted in Figure 1. The (trivalent)
vertices are depicted by purple or black dots and the hexagonal intersection points by yellow
dots. Note that Gi, Gj ⊆ C are allowed to intersect (anywhere) if j 6= i, i± 1, and they may
intersect non-transversely.

Remark 2.3. We can think of an N -graph as an immersed graph with colored edges, the
color i corresponding to the graph Gi, 1 ≤ i ≤ N − 1. Edges labeled by numbers differing
by two or more may pass through one another (hence the immersed property, which is
met generically), but not at a vertex. In particular, a 3-graph is a bicolored graph with
monochromatic trivalent vertices and interlacing hexagonal vertices. �

Consider τ(N) := {(i, i+ 1) ∈ SN : 1 ≤ i ≤ N − 1} ⊆ SN the subset of simple transpositions
and denote τi := (i, i+ 1). We label the edges of an N -graph G = {Gi} which belong to the
graph Gi with the transposition τi, as we have done in Figure 1. These edges will also be
referred to as τi-edges, or i-edges. By definition, the trivalent vertices belonging to the graph
Gi have three incident τi-edges. The hexagonal points in Gi ∩ Gi+1 have six edges incident
to it, alternately labeled with the transpositions τi and τi+1 in τ(N). Figure 8 depicts the
local model for the trivalent vertices of the cubic graph Gi−1 and a hexagonal intersection
point in Gi ∩Gi−1. Observe that a 2-graph is, by definition, an embedded trivalent graph.

The study of N -graphs brings the combinatorial ingredients of the article, and we provide
in Section 3 several combinatorial constructions of N -graphs. For now, we introduce its
geometric counterpart, the Legendrian surface associated to an N -graph.

2.2. Singularities of wavefronts. The Legendrian surface Λ(G) associated to an N -graph
G ⊆ C is an embedded Legendrian in the 1-jet space (J1C, ξst). The Legendrian surface Λ(G)
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is described by using germs of Legendrian wavefronts [Ad90, Section 3.1] in the Darboux chart
(R5, ξst), where the contact 4-distribution ξst is defined as

ξst = kerαst, where αst := dz − y1dx1 − y2dx2,

and (x1, x2, y1, y2, z) ∈ R5 are Cartesian coordinates in R5. This is the local model for
any contact 4-distribution in the neighborhood of a point [Gei08, Theorem 2.5.1]. Since
λst = y1dx1 + y2dx2 is the Liouville form of the cotangent bundle (T ∗R2, ωst), this Darboux
chart (R5, ξst) is contactomorphic to the 1-jet space (J1R2, ker{dz − λst}).
The Legendrian fibration π : R5 −→ R3, π(x1, x2, y1, y2, z) = (x1, x2, z) allows us to assign
a smoothly embedded Legendrian surface Λ(Σ) ⊆ R5 in the domain of π to certain singular
surfaces Σ ⊆ R3 in its target. The coordinates (y1, y2) of the Legendrian Λ(Σ) assigned to Σ
are

y1 = x1-slope of the tangent plane T(x1,x2,z)Σ,

y2 = x2-slope of the tangent plane T(x1,x2,z)Σ.

In a local parametrization σ : R2 −→ R3 of Σ, σ(u, v) = (u, v, z(u, v)), this reads

y1 = ∂uz(u, v), y2 = ∂vz(u, v).

This assignment is dictated by the vanishing of the contact 1-form αst along Λ = Λ(Σ).
The three-dimensional case is explained in detail in [Gei08, Section 3.2], the general case
is discussed in [AdG01, Chapter 5], [EES05a, Section 3.2] and [CM19, Section 2]. The
germs of singularities of Σ that lift to an embedded Legendrian Λ, and equivalently, the
singularities of the map π|Λ, are restricted. These are known as singularities of fronts, or
equivalently, Legendrian singularities [AdG01]. By definition, singular surfaces Σ obtained
as the image of an embedded Legendrian submanifold via a Legendrian mapping are referred
to as (wave)fronts.

Remark 2.4. The classification of generic singularities of spatial fronts Σ ⊆ R3 is stated in
[AdG01, Theorem 3.1.1], and that of generic singularities of a 1-parametric family of spatial
fronts Σ ⊆ R3 is explained in [AdG01, Theorem 3.4.2]. �

The main spatial wavefronts Σ that we use in the course of this article use three different
germs of singularities of Legendrian fronts: A2

1, A
3
1 and D−4 , which we now describe. We

emphasize that these are singularities of the wavefront projections only: the corresponding
local Legendrian surfaces are all smooth.

2.2.1. The A2
1 germ. This germ is obtained as a product of a 2-dimensional planar front

times an interval. It is described by the germ of the singular surface

Σ(A2
1) = {(x1, x2, z) ∈ R3 : (x2

1 − z2) = 0}

at the origin. This wavefront is informally called an A2
1-crossing, or a crossing, and the

set of points {(x1, x2, z) ∈ Σ(A2
1) : x1 = 0, z = 0} is referred to as an edge, or segment,

of A2
1-crossings. This spatial front is depicted on the left in Figure 9. Its Legendrian lift

Λ(Σ(A2
1)) ⊆ (R5, ξst) consists of two disjoint embedded Legendrian 2-disks.

2.2.2. The A3
1 germ. The wavefront A3

1 is given by the germ at the origin of the singular
surface

Σ(A3
1) = {(x1, x2, z) ∈ R3 : (x1 − z)(x1 + z)(z − x2) = 0} ⊆ R3,

This spatial front is depicted in the center of Figure 9. Considered as a germ, the origin is
the A3

1-wavefront singularity, and the codimension-1 singular strata consists of six half-lines
of A2

1 singularities. The Legendrian lift Λ(Σ(A3
1)) of the A3

1 germ to (R5, ξst) consists of three
disjoint embedded Legendrian 2-disks.
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2.2.3. The D−4 germ. The third germ Σ(D−4 ) = Im(δ−4 ) ⊆ R3 of a Legendrian singularity
that we use is given by the germ at the origin for the image of the map

δ−4 : R2 −→ R3, δ−4 (x, y) =

(
x2 − y2, 2xy,

2

3
(x3 − 3xy2)

)
.

The D−4 -singularity of the spatial wavefront Im(δ−4 ) is at (0, 0, 0) ∈ R3. The front Im(δ−4 )
itself also has three half-lines of A2

1-crossings, intersecting at the origin. This is depicted in
the right of Figure 9. The Legendrian lift Λ(Im(δ−4 )) ⊆ (R5, ξst) of the D−4 spatial front is an
embedded Legendrian 2-disk. We refer the reader to [Ad90, TZ18] for more descriptions —
see also Remark 2.5 below.

Figure 9. The A2
1 spatial front (left), the germ of the A3

1 Legendrian singu-
larity (center) and the D−4 Legendrian wavefront (right).

The connection of the above three Legendrian singularities with the Weyl groups, justifying
their nomenclature, can be found in [AdG01, Section 3.3]. It might be relevant to notice
that D−4 is not the germ of a singularity for a generic Legendrian wavefront, but still a valid
singularity for a given spatial wavefront. In addition, it is known that the singularity D−4 is
generic in 1-parameter families of Legendrian fronts [Ad90, Section 3.3]. As a result, most
of the Legendrians we construct are non-generic, in their isotopy class, with respect to the
fixed Legendrian projection. This rigidification simplifes the analysis and combinatorics.

Remark 2.5. The D−4 Legendrian singularity has the property that its singular strata,
excluding A2

1 singularities, is a point, which lies in real codimension 2. This is not the case
for the majority of Legendrian surface singularities, such as the Legendrian A3-swallowtail,
cusp-edges A2A1 and the purse wavefront D+

4 , the former two even being generic. (These
singularities feature in Section 4.) The geometric reason for this codimension-2 phenomenon
is the existence of the holomorphic Legendrian surface singularity

t : C −→ (J1(C,C), ker{dw1 − w2dw3}), (w1, w2, w3) = t(w) =

(
w2, w,

2

3
w3

)
,

whose real part is the real Legendrian singularity D−4 . This holomorphic map is the com-
plexification of the real simple cusp singularities appearing in generic front projections of
embedded Legendrian knots in a Darboux chart (R3, ξst). �

We also use the A2, A2A1 front singularities, geometrically represented by a simple cusp
in R2 times an interval, and its intersection with a 2-plane. These A2-singularities do not
directly arise from an N -graph G ⊆ C, but rather from satelliting the smooth surface C to
a Legendrian surface in a contact 5-manifold (Y, ξ), typically (S5, ξst).

2.3. Legendrian Weaves. Let G ⊆ C be an N -graph, as introduced in Subsection 2.1
above. The principle that associates a Legendrian Λ(G) to the N -graph G is that G dictates
the configuration of A2

1 singularities (crossings) of its Legendrian wavefront. This is possible
15



because the singularities introduced in Subsection 2.2 are uniquely determined by their A2
1

front singularities. Let us explain the construction in detail.

First, we choose the ambient contact manifold, where the embedded Legendrian surface Λ(G)
belongs, to be the 1-jet space of the smooth surface C. That is,

Λ(G) ⊆ (J1C, ξst) = ({(x, z) ∈ T ∗C × R}, ker{dz − λst}),
where λst ∈ Ω1(T ∗C) is the Liouville form [Gei08, Section 1.4], and see [Ad90, Example 2]
and [Gei08, Example 2.5.11] for details on the 1-jet space. The local germs described in
Subsection 2.2 above and the Legendrian front projection π : (J1C, ξst) −→ C × R allow us
to assign a Legendrian Λ(Σ) ⊆ (J1C, ξst) to a spatial wavefront Σ ⊆ C × R in the target, as
follows.

The construction of the front Λ(G) ⊆ (J1C, ξst) is obtained by gluing local wavefront models
in Ui × R, i ∈ I, Ui ∼= D2, which are the targets of front projections in the Darboux charts
(J1Ui, ξst) ∼= (J1D2, ξst), for i ∈ I. This is formalized in the following definition:

Definition 2.6. Let DN = D2 × {1} ∪ . . . ∪ D2 × {N} ⊆ D2 × R. We consider DN as a
disconnected, horizontal wavefront. Let P ⊆ D2 × {0} be one of the following four local
models of an N -graph G ⊆ D2:

1. A unique i-edge in D2, as drawn at the bottom of the second column in Figure 10.
2. A unique trivalent i-vertex, as shown at the bottom of the third column in Figure 10.
3. A unique hexagonal (i, i+ 1)-point, depicted in the fourth column in Figure 10.
4. The empty set.

Here, recall that an i-edge is an edge belonging to the graph Gi ⊆ G of the N -graph G ⊆ D2,
for 1 ≤ i ≤ (N − 1). By definition, the Legendrian wavefront DN (P ) ⊆ D2 ×R associated to
P is obtained as follows:

- If P is a i-edge, insert an A2
1-intersection along the two sheets D2×{i} and D2×{i+1}

of the wavefront DN . This A2
1 intersection must be inserted such that the image of

the A2
1 singular locus coincides with P under the projection D2 × R −→ D2 onto the

first factor.

- If P is a trivalent i-vertex, introduce a D−4 -singularity between the two sheets D2×{i}
and D2×{i+ 1} in the wavefront D2

N . This D−4 singularity must be introduced such
that, under the projection D2 × R −→ D2 onto the first factor, the image of the A2

1-
crossings coincides with the three edges of P and the D−4 singular point is mapped
to the unique trivalent vertex of P .

- If P is a hexagonal (i, i+ 1)-point, insert an A3
1-intersection along the three disjoint

sheets D2 × {i},D2 × {i+ 1} and D2 × {i+ 2} of the wavefront D2
N . The pattern for

the A3
1-wavefront must be inserted such that, under the projection D2 × R −→ D2

onto the first factor, the origin in the A3
1-singularity maps to the unique vertex of P ,

and the six half-lines of A2
1-crossings map to the six edges emanating from the vertex.

These wavefronts are depicted in Figure 10. For P empty we use the front D2 × {1} ∪ . . . ∪
D2×{N} ⊆ D2×R. We refer to the wavefronts DN (P ) as being obtained from the wavefront
DN by weaving according to the pattern P . �

Definition 2.6 describes how to weave the wavefont DN ⊆ D2 × R, which we have fixed,
according to a pattern P ⊆ D2 × {0}. To glue models, let {Ui}i∈I be a finite cover of C
by open 2-disks Ui ∼= D2, refined as necessary so that each Ui contains no more than one
non-empty feature P of the N -graph G. Now, let us consider two 2-disks U1, U2 ⊆ C and two
corresponding patterns P1, P2 therein.
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Figure 10. The leftmost wavefront is DN , then from left to right we find
DN (P ) where P is an edge, a trivalent vertex and a hexagonal vertex.

Suppose that the patterns P1 and P2 coincide along the intersection U1 ∩ U2. Then we say
that P1 ∪P2 defines a pattern in U1 ∪U2. By definition, the wavefront Σ(P1 ∪P2) associated
to P1 ∪ P2 is obtained by considering the set-theoretical union of DN (P1) and DN (P2) in
(U1 ∪ U2) × R. For brevity of notation, we will say that Σ(P1 ∪ P2) is obtained by weaving
D2
N ∪ D2

N ⊆ (U1 × R) ∪ (U2 × R) according to the pattern P1 ∪ P2. Finally, the Legendrian
surface associated to an N -graph is defined as follows:

Definition 2.7. Let C be a smooth surface and G ⊆ C an N -graph, the Legendrian weave

Λ(G) ⊆ (J1C, ξst)

is the embedded Legendrian surface whose wavefront Σ(G) ⊆ C × R is obtained by weaving
the wavefront C × {1} ∪ . . . ∪ C × {N} ⊆ C × R according to the pattern G ⊆ C. �

Let {ϕt}t∈[0,1] ⊆ Diffc(C), ϕ0 = Id, be a compactly supported isotopy of the smooth surface

C. Then the Legendrian surfaces Λ(ϕt(G)) ⊆ (J1C, ξst), as described in Definition 2.7, are
Legendrian isotopic, relative to their boundaries. Hence, for the purposes of this article, our
N -graphs G ⊆ C are considered up to such planar isotopies. Similarly, Legendrian fronts in
R3 are to be considered up to homotopy of fronts.

Thanks to Definition 2.7, the wealth of contact topology invariants [EGH00, EES05a, GKS12,
STZ17, CM19] can be used to define algebraic structures associated to N -graphs G ⊆ C. For
instance, the articles [CM18, TZ18] show that the chromatic polynomial of (the dual of) a
trivalent graph G – which is a 2-graph – is contained in the Floer-theoretical invariants of the
Legendrian weave Λ(G). Conversely, from a contact topology perspective, the connection to
combinatorics and algebraic geometry provides a new tool for computing contact invariants of
higher-dimensional Legendrian submanifolds. This will be the focus of subsequent sections.

Remark 2.8. The one-dimensional analogue of a Legendrian weave is a Legendrian braid,
i.e. a positive braid. Indeed, an N -graph in a one-manifold I is defined to be a set of points,
each point labeled with a permutation in τ(N) ⊆ SN . The only planar front singularity
that we can use is A2

1, corresponding to a crossing, necessarily positive. Thus, 1-dimensional
weaving consists of introducing positive crossings to the N strands

D1
N = I × {1} ∪ . . . ∪ I × {N} ⊆ I × R

and concatenating them side by side. This is precisely the front for an N -strand positive
braid [PS97], which lifts to a Legendrian link in (J1S1, ξst) [Gei08, Section 3.3.1]. The
Legendrian weaves introduced in Definition 2.7 are thus the Legendrian surface generalization
of Legendrian braids. �
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2.4. Smooth Topology of Weaves. Let G be an N -graph in a surface C, in this subsection
we address the smooth topology of the Legendrian surface Λ(G) ⊆ (J1C, ξst).

9 The smooth
invariants of Λ(G) are the first homology H1(Λ(G),Z), in particular its genus g(Λ(G)) ∈ N,
and the number of boundary components |∂Λ(G)|. For simplicity, we assume that C is a
closed surface, and thus ∂Λ(G) = ∅. We also assume that G is a connected N -graph, i.e. the
union of the graphs Gi, i ∈ I, is a connected topological subspace of C.

The surface Λ(G) is a branched N -fold cover over C simply branched over the trivalent
vertices of G. Indeed, the image of Λ(G) by the projection J1C −→ T ∗C along the Reeb R-
direction yields an immersed surface L(G) ⊆ T ∗C, and the canonical projection T ∗C −→ C
restricts to L(G) as an N -fold branched cover. The branch set is the image of the set of D−4
singularities. As a result, the genus of Λ(G) is provided by the Riemann-Hurwitz formula

χ(Λ(G)) = Nχ(C)− v(G), i.e. g(Λ(G)) =
1

2
(v(G) + 2−Nχ(C))

where v(G) is the number of (trivalent) vertices of G.

Remark 2.9. If the surface C has boundary, each boundary component of ∂C contributes
to a piece of the boundary ∂Λ(G) of the Legendrian surface Λ(G) ⊆ (J1C, ξst). Let κ ∈ N be
the number of cycles in the (minimal length) factorization of the monodromy of the branched
cover along a given boundary component of ∂C. Then, that one boundary component of C
contributes to κ distinct boundary components for the Legendrian surface Λ(G). �

Example 2.10. The Legendrian weaves Λ(G1),Λ(G2) ⊆ (J1(S2), ξst) associated to the 3- and
4-graphs in Figure 1 are closed Legendrian surfaces of genus 3 and 4, respectively. Should
the graphs G1, G2 ⊆ R2 be considered in the 2-plane R2, instead of the 2-sphere S2, the
Legendrian surfaces Λ(G1),Λ(G1) ⊆ (J1(R2), ξst) have genus 3 and 4, with 3 and 4 boundary
components, respectively. �

Now, the Z2-monodromy of Λ(G) along a non-trivial 1-cycle of the base C is trivial, and thus
the contributions of the graph G to H1(Λ(G),Z), as expressed by the above formula, can
be considered by studying planar pieces. Let us then assume that g(C) = 0 and construct
1-cycles in H1(Λ(G),Z) in terms of the edges of the N -graph.

(i,i+1)

(i+1,i+2)

(i,i+1)
2

3

2 1
1

1

1
2

1

Figure 11. Two combinatorial descriptions of 1-cycles in H1(Λ(G),Z).

There are two direct descriptions of 1-cycles γ ∈ H1(Λ(G),Z):

1. Each edge e of the graph G connecting two trivalent vertices defines a 1-cycle γ(e) ∈
H1(Λ(G),Z). The projection of this 1-cycle onto the pattern P with two trivalent
vertices is depicted in orange on the left of Figure 11. In order to construct γ(e)
from the orange curve, lift a point in the orange curve to the annulus Λ(P ), to either

9This is necessary for our applications, especially in the study of microlocal monodromies and Lagrangian
fillings in Section 7 and the non-Abelianization map in Section 8.
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one of the two sheets, and uniquely follow the lift along the orange curve. Since
the lift is isotopic to one of the boundary components of the annulus, it generates
H1(Λ(P ),Z) ∼= Z. The 1-cycle γ(e) is drawn directly in the wavefront projection
in Figures 12. We refer to this type of 1-cycles as monochromatic edges or (short)
I-cycles.

1

2

3

4

5

6

1 2 3 4 5 6

Figure 12. The first type of 1-cycle γ(e) drawn in the wavefront (left) and
in a vertical slicing (right). Each slice on the left is labeled by a number. The
1-cycle γ(e) appears as five-pointed stars in each slice as shown on the right.

There is a simple extension of this construction, depicted in Figure 13. Consider
a trivalent vertex v ∈ Gi and a linear chain of edges e1, e2, . . . , ek in G such that e1

connects v to a hexagonal vertex, ei connect two hexagonal vertices for 2 ≤ i ≤ k− 1
and ek connects the free hexagonal vertex in ek−1 to a trivalent vertex. Suppose
further that ej and ej+1 meet at opposite rays of the hexagonal vertex between them,
1 ≤ j ≤ k − 1. Then the orange curves in the patterns all lift to 1-cycles which are
essential10 in the surfaces Λ(P ) for the corresponding patterns P . These 1-cycles are
referred to as long edges or long I-cycles.

(i,i+1)(i+1,i+2) (i,i+1)(i+1,i+2)

...

(i,i+1)
(i+1,i+2) (i+2,i+3)

Figure 13. Descriptions of 1-cycles in H1(Λ(G),Z) of the first type, gener-
alizing γ(e) on the left of Figure 11. The lift of the orange curves generate
the first homology H1(Λ(P ),Z) ∼= Z for the corresponding patterns P .

2. Three edges e1, e2, e3 of a graph Gi connecting a hexagonal vertex with three trivalent
vertices in Gi defines a cycle γ(e1, e2, e3) ∈ H1(Λ(G),Z). This is depicted on the right
in Figure 11. The 1-cycle γ(e1, e2, e3) is drawn in the wavefront projection in Figure
14. We refer to this type of 1-cycles γ(e1, e2, e3) as a Y-cycle.

We can also combine the above two constructions to associate a 1-cycle to any tree with
leaves on trivalent vertices that passes directly through any hexagonal vertices, i.e. entering

10The topology of Λ(P ) is that of an annulus union disjoint 2-disks.
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Figure 14. The second type of 1-cycle γ(e1, e2, e3) drawn in a slicing of the
wavefront associated to the pattern on the left.

and exiting along opposing edges, see Figure 100 for an example. For such a tree, we refer
to the pieces corresponding to edges as I-pieces, or edges, and the pieces that go through
a hexagonal vertex as Y-pieces. In addition, we can decorate such 1-cycles with a number,
indicating higher multiplicity11. If we require the curves in the Legendrian surface to be
connected, then higher multiplicity in general requires these curves to be immersed.

Remark 2.11. Let Λ(G) ⊆ (J1C, ξst) be a connected surface, and G ⊆ C a connected N -
graph. The trivalent vertices of the N -graph G ⊆ C can be assumed to belong to G1. This
follows once we impose certain equivalence relations on the set of N -graphs, which is done
in Section 4. �

2.5. Combinatorial Homology. Let G ⊆ C be an N -graph. We present a combinatorial
model for the (chain-level) simplicial homology of Λ(G). This can be achieved in general,
but for this subsection we assume that G is a planar 3-graph, i.e. C = S2 and N = 3. We
will think of G as bicolored — see Remark 2.3. This will ease notation, while containing the
essential idea for higher N ∈ N and higher-genus C. Note that the results in this subsection
will not be used in the rest of the manuscript, we have included them for completeness.

The edges, faces and vertices of G lift to edges, faces and vertices of the Legendrian surface
Λ := Λ(G). Let us suppose that G and Λ are connected, and that the faces of G define a
polyhedral decomposition (F,E, V ) of the sphere. This decomposition lifts to a polyhedral
decomposition of Λ, as follows. Each face, edge and hexagonal vertex of G has three lifts to
Λ; each trivalent vertex has two lifts. This yields

χ(Λ) = 3 · 2− v,
where v = |V (G)| is the number of trivalent vertices. For a point P ∈ S2, we write P1, P2, P3

for the (up to) three pre-images in non-decreasing order of the z-coordinate. If P is on G,
we must choose a nearby point to define the ordering of z coordinates of sheets. If P is a
trivalent vertex with label (12), in blue, then P1 = P2 while P2 = P3 for a label (23), in red.
Lifts of edges and faces are labeled analogously. The chain complex C• associated to this
polyhedral decomposition of Λ computes the homology H∗(Λ;Z). There is a simplified chain
complex that computes H1(Λ;Z), which we now explain.

Lift each edge e = (P,Q) labeled (i, i + 1) to a one-chain as follows (here i = 1 or 2). In
the (any) orientation of the plane, if A is the sheet with lower z value in the region to the
left of PQ and B is the sheet with lower z value to the right of PQ then lift e to the chain
PBQB − PAQA; this only depends on e and not the ordering of P and Q. Write ê for this
lift of e. Extending by linearity, we get a map ZE → C1.

The embedded bicolored graph G is the union G = GB ∪ GR of embedded blue and a red
graphs intersecting at hexagonal vertices, where GB = (FB, EB, VB), FB denotes the number
of faces of the graph GB, and EB the number of edges and VB the number of vertices.
(Similarly for GR = (FR, ER, VR).) We define a complex A• as follows. A2 := ZFB ⊕ ZFR ,

11Higher multiplicities will rarely feature in this manuscript, only in relation to Theorem 7.14.
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A1 := ZE = ZEB ⊕ ZER , and A0 is the image ∂Â1, where Â1 is the image of A1 in C1 under
e 7→ ê. A monochromatic face f ∈ ZFB ⊂ A2 has a lift to C2 as f1−f2, whereas f ∈ ZFR ⊂ A2

lifts to f2 − f3. Summarizing, we have

C2
// C1

// C0

A2

OO

A1

OO

// A0
?�

OO ,

where the map A1 → A0 sends e to ∂ê. The missing differential A2 → A1 is defined as follows.
For a monochromatic face f ∈ ZFB or ZFR ⊂ A2,

∂f =
∑

boundary edges

e−
∑

interior edges

e,

which we extend by linearity.

Proposition 2.12. A• is a chain complex and A• −→ C• is a chain map.

Proof. Let f ∈ A2 be a blue face. A similar argument will work for red faces. We need to
check that A• is a chain complex, i.e. the differential squares to zero. This reads∑

boundary edges

∂ê−
∑

interior edges

∂ê = 0,

for a face f . The left hand side of this equality is a (formal) sum of some of the vertices of
the graph, some trivalent, some hexagonal. Thus, this imposes a condition at all the interior
and exterior vertices of f . In fact, the condition is null at an interior vertex, since it must
be monochromatic and hence trivalent, and ∂ê is zero over any trivalent vertex. Likewise
for an exterior trivalent vertex, there is nothing to check and it remains to discuss exterior
hexagonal vertices. For an exterior hexagonal vertex, a local study is needed, as follows.

Let h be a hexagonal vertex and let us study the differential restricted to it. Let e1, e2, e3

be three attached blue half-edges, with e4 = e′1, e5 = e′2, e6 = e′3 the opposite red half-edges,
respectively. Let h1, h2, h3 be the three preimages of h. We can restrict the differential
A1|h → A0|h to edges intersecting h and points over h, and in the chosen basis it takes the
form

(2.1) ∂|h =


−1 0 1
1 −1 0
0 1 −1
1 0 −1
−1 1 0
0 −1 1

 .

The kernel is generated by e1 + e′1, e2 + e′2, e3 + e′3, e1 + e2 + e3. Note that the last generator
could also have been taken to be e1 +e2−e′3. The first three represent long two-colored edges
passing straight through the hexagonal vertex, while the last is a monochromatic Y shape.
In more detail, the element e1 + e′1 of the kernel is, diagramatically, given by a (bi-colored)
edge passing through the hexagonal vertex. Similarly for e2 + e′2 and e3 + e′3, they represent
straight edges passing through the hexagonal vertex, starting blue and then turning red, or
viceversa. The element e1 + e2 + e3 of the kernel is given by the Y-shaped union of the three
blue edges coming out of a hexagonal vertex. The element e1 + e2 − e′3 also belongs to the
kernel, and it represents two blue edges and the red edge in between (with a minus sign).
The terms arising in ∂2f which involve a boundary hexagonal vertex are given by the image
of such configurations in the kernel, and thus they must (and do) vanish. This concludes the
calculation that (A•, ∂) is a chain complex.
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To check that A• → C• is a chain map, we must show that for f ∈ ZFB ⊂ A2, we have

∂f1 − ∂f2 =
∑

e exterior

ê−
∑

e interior

ê.

This is shown by direct calculation.

�

Let us now prove the following lemma before showing that A• is quasi-isomorphic to C• in
degree one, and thus computes the first homology H1(Λ;Z).

Lemma 2.13. In the notation above, H2(A2) = 0.

Proof. This says that ∂ : A2 → A1 is injective. Suppose ∂f = 0. Let h be a hexagonal vertex,
which must exist since both Γ and Λ are assumed connected. Label the edges adjacent to h
by e1, e2, e3, e4 = e′1, e5 = e′2, e6 = e′3 as in the proof of Proposition 2.12. For 1 ≤ c ≤ 6, let
fc be the unique (opposite color) monochromatic face containing ec in its interior, and again
we notate f4 = f ′1, etc. Now for i = 1, 2, 3, write i, j, k for cyclically ordered elements of
{1, 2, 3}, i.e. j = i+ 1 mod 3, etc. Then ei is an exterior edge of f ′j and f ′k and by definition

an interior edge of fi. If we write f =
∑3

i=1 aifi + a′if
′
i + · · · , then we must have ai + aj = a′k

for all i, and therefore
∑
a′i = 2

∑
ai. By the same token,

∑
ai = 2

∑
a′i, and therefore all

ai and a′i are zero.

The faces fc with coefficients ac 6= 0 must therefore have no hexagonal vertices on their
boundary or interior. That said, the union U of such faces must have a boundary, and
therefore the coefficient of any face on the boundary of U must be zero. By iterating this
argument, all coefficients are zero. �

The 3-graphs associated to a 3-triangulation, and the 3-graph moves named candy twists
and push-through, will be defined in Section 4. We will use them now just in this particular
proposition as part of this isolated subsection.12 Now we establish the point of this subsection:

Proposition 2.14. Let Γ be a 3-graph for a 3-triangulation, or any graph related by candy
twists or push-through moves. Then

H1(A•) ∼= H1(C•) ∼= H1(Λ;Z).

Before the proof, a warning: H1(A•) � H1(C•) in general. Here is an example of a weave
with topology of the twice-punctured plane.

Despite b1 = 2, there is only one 1-cycle in H1(A•), represented by the tree with four leaves –
the sum of edges ê darkened in the picture. A choice for another generating 1-cycle is clear:
it is a branch cut connecting the two trivalent vertices in the top (or bottom) – pictured as
a dotted black curve. This class can be represented in C•, but the chain connecting the two
hexagonal vertices is not in A•. One could accommodate such chains with further notational
complexity, but we will not require them for our applications.

12This subsection on combinatorial homology is included for completeness, but it will not be used in the
rest of the article.
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Proof. We need to prove the first equality only. Since A• → C• is a chain map, we need only
compare the dimensions of their first homology groups. We prove this first for the 3-graph
ΓT of a 3-triangulation T = (FT , ET , VT ), then show that the result is invariant under candy
twist and push-through moves.

By definition, ∂ : A1 → A0 is surjective, so since by the lemma, ∂ : A2 → A1 is injective, we
know dimH1(A•) = −χ(A•). On the other hand, we know χΛ = 6−v = 6−3|FT | = 2−h1(Λ),
or h1(Λ) = 3|FT | − 4. We recall that each face of T has three blue vertices. It also has one
hexagonal vertex which is a vertex of the blue and red graphs comprising ΓT . It similarly easy
to compute that |FB| = |VT |+ |ET |, |FR| = |VT |, |EB| = 2|ET |+ 3|FT |, |ER| = |ET |, |VB| =
3|FT |, |VR| = 0. Now |A2| = |FB|+ |FR| = 2|VT |+ |ET |, |A1| = |EB|+ |ER| = 3|ET |+ 3|FT |,
and |A0| = 2|FT | is computed by noting that each hexagonal vertex contributes two possible
dimensions to |A0| via the rank-two matrix in Equation (2.1), and these dimensions are
realized as boundaries, while each trivalent vertex contributes nothing. We get h1(A•) =
−χ(A•) = −2χT + 3|FT | = 3|FT | − 4 = h1(Λ), as claimed.

It remains to compute what happens after push-through or a candy-twist move. In fact,
since the result only depends on the Euler characteristic of A•, we only need to show that
this is invariant under candy twist and push-through. But these change the dimensions of
(A2, A1, A0) by (2, 6, 4) and (1, 3, 2), respectively: a local argument shows again that the two
possible dimensions that a hexagonal vertex contributes to A0 are in fact realized, and the
result follows. �

3. Combinatorial Constructions

In this section we introduce two combinatorial constructions for N -graphs, focusing primarily
on how to associate an N -graph to a given N -triangulation. The notion of an N -triangulation
was introduced in [FG06b, Section 1.15], and has since had an central role in higher Te-
ichmüller theory [Gon17, GS18]. Legendrian weaves associated to an N -triangulation, via
our construction, place contact topology in the context of the recent developments in exact
WKB analysis [GMN13, GMN14, Kuw20] and quiver Fukaya categories [BS15, Smi15].

3.1. N-Triangulations. Let N ∈ N be a natural number, and consider the triangle

tN := {(x, y, z) ∈ R3 : x+ y + z = N x, y, z ≥ 0}.
Subtriangulate this triangle tN with the planes

({x = s} ∪ {y = s} ∪ {z = s}) ∩ tN , 0 ≤ s ≤ N,
which we refer to as an N -subdivision of the triangle t1, following [FG06b, GMN14]. This
subtriangulation has N2 triangles.

Figure 15. The Legendrian weaves Λ(G(t3)), Λ(G(t4)) and Λ(G(t5)) associ-
ated to a 3-, 4- and 5-triangles.
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Now, let (C, T ) be a triangulation T of a smooth closed surface C and subdivide each triangle
t1 ∈ T according to the N -subdivision above. This yields a triangulation TN of the surface
C. By definition, an N -triangulation on C is any triangulation isotopic to TN for some
triangulation (C, T ).

3.2. Local Models. The N -graph associated to an N -triangulation is obtained by gluing
local models for the N -graph G(tN ) associated to each triangle tN . We provide a definition
of this local N -graph, in terms of the following construction. The reader content with using
Figure 15 as a definition is invited to defer reading these technical descriptions.

Construction. Consider the triangles in tN which point up, i.e. have a unique vertex with
highest z-value. For each of these

(
N
2

)
triangles, we insert a τ1-trivalent vertex dual to it —

that is, a trivalent vertex associated with the permutation (12) and such that the edges of
this piece of 2-graph intersects orthogonally with the edges of each triangle. By definition,
the rest of the N -graph G(tN ) is then uniquely determined by extending the edges from these
τ1 vertices such that wherever three τi-edges collide, we insert a hexagonal vertex with three
edges in τi and three edges in τi+1. That is, the two rules to generate the N -graph for an
N -triangulation are:

(i) Insert exactly one (12)-trivalent vertex at the center of each upward pointing triangle,
(ii) In the collision of three τi-edges, a (τi, τi+1) hexagonal vertex is inserted.

We stress that the original triangles are not part of the N -graph.

This construction of G(tN ) can be considered as a dynamical description, in contrast with
the static definition given by the second construction below Remark 3.1. Indeed, in this
first construction one starts by placing the τ1-vertices and lets the edges grow symmetrically
from these trivalent vertices, such that each edge intersects the interior edges of the N -
triangulation at the middle point. These edges must collide in the interior of the triangle,
and these collisions are resolved via the insertion of hexagonal vertices, creating τi+1-edges.
This insertion of hexagonal vertices is iteratively performed when the τi+1-edges collide,
creating τi+2-edges, and the process terminates when exactly three τN−1-edges are created
at a unique hexagonal vertex.

Thus, given the triangle tN , we obtain a local model for anN -graph. The boundary conditions
for this local model are such that the N -graphs associated to two N -triangles tN and t′N ,
which share an edge of the underlying t1 and t′1, match together.

Remark 3.1. This description, according to these two rules above, captures the properties
of the spectral network associated to the WKB singular foliation for an SU(2) quadratic
differential lifted via the unique N -dimensional irreducible representation of SU(2) — see
Sections 2 and 4 in [GMN14]. The dynamical component, induced by the growing of the
edges from vertices, corresponds with the time evolution of the differential equation defining
the WKB system. �

We can also give a second succinct description of G(tN ) as follows. Following Definition 2.2,
it suffices to describe the image of the graphs Gi, 1 ≤ i ≤ N − 1. The trivalent graph Gi will
be given by the vertices and edges of an hexagonal regular lattice: a finite number of vertices
lying inside the triangle tN = {x+ y + z = N − 1} and with external edges extending to the
boundary of tN . Let ϑi be the set of points of tN all of whose coordinates lie in Z≥0 + i/3.
Then the vertices of the trivalent graph Gi are precisely the points in ϑi∪ϑi+1. Note that the
intersection between Gi and Gi+1 is precisely given by the points in ϑi+1, and the trivalent
vertices are uniquely specified by the hexagonal lattice condition.

Remark 3.2. Both these constructions provide a Legendrian front for the Legendrian lift
of certain exact Lagrangian spectral curve for a local spectral network. In particular, this
shows that the BPS graphs studied in [GLPY17], introduced as an interpolation between
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spectral networks and BPS quivers, are in fact the set of A2
1 singularities of the Legendrian

front Σ(G(tN )) between the first two sheets. �

Note that the boundary of this local N -graph G(tN ) can be compactly described as follows.
Consider the permutation

∆N :=

N−1∏
i=1

 1∏
j=i

τj

 = τ1 · (τ2τ1) · (τ3τ2τ1) · . . . · (τN−1τN−2 · . . . · τ2τ1) ∈ SN ,

which is the projection to the Coxeter group SN of the Garside element of the braid group BN
in N -strands, i.e. a braid half-twist in N -strands. Then the edges of the N -graph associated
to tN along each of the three edges of t1 are precisely given by the ordered terms in ∆N .
That is, there exists an isotopy of the N -graph such that as one travels along an edge of t1,
the edges of the N -graph that we encounter are first τ1, then τ2 and τ1, then τ3, τ2, and τ1

and iteratively until reaching τ1 for the (N − 1)th time. This is equivalent to the association
τ(ri), i = 1, . . . , 2N − 3, in the construction of G(tN ) above.

For context, these permutations along the boundary are particularly relevant for the study
of Legendrian surface weaves with boundary, whose Lagrangian projections yield interesting
Lagrangian fillings of their Legendrian boundary links. The braid description of these Legen-
drian links is determined precisely by these permutations – see Section 7. We see again, confer
Remark 2.8, that it is useful to think of Legendrian weaves as two-dimensional Legendrian
braids: their one-dimensional boundaries are positive braids.

3.3. Global Model. Given that the boundary conditions for the N -graphs in the local
models for tN allow for gluing, we define the N -graph G ⊆ C associated to a global N -
triangulation of C to be the N -graph obtained by concatenating the local models G(tN )
along each triangle tN in the N -triangulation. We study the flag moduli space invariants for
these N -graphs and their associated Legendrian weaves in Sections 6 and 8. Note that the
genus of these Legendrian weaves increases as N ∈ N, or the number of triangles, increases.

Remark 3.3. Trivalent vertices are dual to triangulations of surfaces. In particular, trian-
gulations of surfaces with a large group of symmetries yield particularly interesting 2-graphs.
From this perspective, Riemann surfaces with a conformal automorphism group of large order
give rise to highly symmetric 2-graphs. For instance, Riemann surfaces associated to tilings
of the hyperbolic plane H2 with Schläfli symbol {n, 3} are highly symmetry, with {7, 3} being
the Klein quartic, {8, 3} giving Bolza’s surface and {12, 3} the M(3) surface. We expect the
flag moduli space associated to the Legendrian surfaces of these 2-graphs, as defined in Sec-
tion 5, to be algebraic spaces with correspondingly large symmetry. We begin an exploration
of this kind with our Theorem 6.3 in Section 6. �

3.4. Bicubic graphs. Here is a second construction of 3-graphs in a smooth surface C,
strictly disjoint from the class of 3-graphs arising from 3-triangulations.

By definition, a graph is bicubic if it is both trivalent (cubic) and bipartite. Now consider
an embedded bicubic graph G ⊆ C, and replace each vertex of G with a hexagonal vertex,
doubling the edges as in Figure 16.

The bipartite condition on the graph guarantees that these local models can be glued together,
uniquely up to isotopy, yielding a 3-graph in C. Note that this 3-graph is entirely built from
hexagonal vertices, and no trivalent vertex is used. As a result, the topology of the Legendrian
weave associated to such a 3-graphs is always that of a 3-component link of Legendrian 2-
spheres. We will study a family of such 3-graphs in Section 6.
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Figure 16. 3-graph associated to an edge in a bicubic graph.

Example 3.4. The bicubic graph G ⊆ S2 associated to the 1-skeleton of a 3-dimensional
cube, depicted in Figure 17, yields a 3-component Legendrian link Λ(G) ⊆ (J1(S2), ξst). The
flag moduli space M(G) will show that these three Legendrian spheres, even after satellited
to a Darboux ball (R5, ξst) are Legendrian knotted (and smoothly unknotted). �

Figure 17. 3-graph associated to the 1-skeleton of the cube and the 3-
component Legendrian link of 2-spheres.

Remark 3.5. Not every 3-graph which is exclusively formed by hexagonal vertices arises
from a bicubic graph, even up to candy-twist equivalence (see Section 4). In particular, two
vertices may have just a single edge connecting them, with no vertices connected by three
edges. Figure 18 shows such an example.

Figure 18. 3-graph with only hexagonal vertices which does not arise from
a bicubic graph, even up to Move I.

This example can be generalized in several ways: by adding more interior squares with one
edge connecting adjacent vertices and/or replacing the squares with 2n-gons. �

Example 3.6. (An Explosion of Examples.) Bicubic graphs can be readily generated as
follows. Let P ′ be a polytope, not necessarily regular, and G′ its edge graph, i.e. G′ is the
one skeleton of P ′. Suppose that P ′ has v′ vertices, e′ edges and f ′ faces. By definition, the
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explosion of the polytope P ′ is the polytope P formed by first truncating at the vertices and
then truncating the resulting polytope along the original edges of P ′. Then the 1-skeleton of
P is cubic and has a unique bipartite coloring, up to an overall black-white swap, so therefore
is bicubic. Note that P has v = 4e′ vertices, e = 6e′ edges, and f = v′ + e′ + f ′ faces.

Even degenerate polytopes P ′ give interesting examples. For instance, if P ′ is the degenerate
polytope with two n-gon faces (v′ = n, e′ = n, f ′ = 2), then P is a 2n-gon prism (v = 4n, e =
6n, f = 2n + 2). The cube edge graph described in Example 3.4 is the bicubic graph which
arises when P ′ has just two bigon faces. �

4. Diagrammatic Calculus For Legendrian Weaves

Let G ⊆ C be an N -graph. The geometric objects that we are interested in are the Legendrian
weaves Λ(G) ⊆ (J1C, ξst) and their invariants up to Legendrian isotopy. In this section we
introduce a series of combinatorial operations that can be performed to an N -graph G, and
we show how they affect the Legendrian isotopy type of Λ(G). The geometric understanding
of the Legendrian isotopy type through this diagrammatic calculus allows us to significantly
simplify computations of algebraic invariants associated to Λ(G) in Section 5. Algebraic
computations, using the results in this section, are detailed in Sections 6 and 7. Let us begin
with the combinatorial moves in G that preserve the Legendrian isotopy type of Λ(G).

4.1. Surface Reidemeister Moves. Let Λ ⊆ (J1(C), ξst) be a Legendrian surface, a Leg-
endrian isotopy {Λt}{t∈[0,1]} will generically induce singularities of the Legendrian fibration

J1C −→ C × R. As a result, the front sets Σ(Λt) and their singularities will restructure
as the parameter t ∈ [0, 1] ranges along a 1-parameter family. These modifications of the
Legendrian fronts are referred to as perestroikas, or Reidemeister moves [Ad90, Chapter 3].

Remark 4.1. The three classical 1-dimensional Reidemeister moves have been the main
method of study for smooth knots in geometric topology, since first introduced [Rei27, AB27].
The corresponding seven moves for smooth surfaces are known as Roseman moves, after
[Ros98, Theorem 1]. The corresponding Legendrian Reidemeister, and Legendrian Roseman
moves, for Legendrian knots, and Legendrian surfaces, follow from the classification of (stable)
wavefront singularities in dimensions dim(Λ) ≤ 3 [Ad75, Theorem 13]. We will refer to
Legendrian Roseman moves as surface Legendrian Reidemeister moves. �

The combinatorial operations inducing surface Legendrian Reidemeister moves are the con-
tent of the following theorem. In the moves, the local pieces of the N -graphs are actually 3-
or 4-graphs. The color code follows our standard notation: blue and red are adjacent colors
(corresponding to adjacent transpositions), red and yellow are adjacent colors, and blue and
yellow are disjoint colors.

Theorem 4.2. Let G1, G2 be one of the pairs of N -graphs depicted in Figures 19, 20, 21,
22, 23, 24 and 25. Then the associated Legendrian surface Λ(G1) is Legendrian isotopic
to Λ(G2) relative to their boundaries. That is, Moves I, II, III, IV,V,VI and VI’ are local
surface Legendrian Reidemeister moves.
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Figure 19. (Move I) The first pair of local N -graphs G1, on the left, and G2

on the right. We refer to this move as candy twist.

Figure 20. (Move II) The second pair of local N -graphs G1, on the left, and
G2 on the right. We refer to this move as the push-through, since the trivalent
vertex gets pushed through the hexagonal vertex.

Figure 21. (Move III) The third pair of local N -graphs G1, on the left, and
G2 on the right. We refer to this move as the flop.

Figure 22. (Move IV) The fourth pair of local N -graphs G1, on the left,
and G2 on the right. Note we must have N ≥ 4. This moves implies the A3

generalized Zamolodzhikov relation depicted in Figure 106.

Proof. Let us start with Move I, the candy twist, as depicted in Figure 19. It illustrates
the method of proof for these surface Legendrian Reidemeister moves. There are essentially
three equivalent viewpoints: exhibiting the Legendrian isotopy as N -graphs, visualizing the
surface wavefronts explicitly in (J1R2, ξst), or studying these surface wavefronts as families of
(possibly singular) Legendrian links. In the first perspective, we need to justify that all the
N -graphs lift to embedded Legendrian surfaces. In the second, the challenge is visualizing
the actual front and ensuring that all the singularities lift to Legendrian embeddings. In
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Figure 23. (Move V) The fifth pair of local N -graphs G1, on the left, and
G2 on the right, with N ≥ 4. The blue and yellow colors are associated to
disjoint transpositions.

Figure 24. (Move VI) The sixth pair of local N -graphs G1, on the left, and
G2 on the right, with N ≥ 4.

Figure 25. (Move VI’) Variation on the sixth pair of local N -graphs G1, on
the left, and G2 on the right, with N ≥ 4.

the third perspective, visualization is simplified, with the trade-off of having to draw several
movies of links. The second perspective is the strongest, as it readily implies the other two.

The first perspective is drawn in Figure 26. The left and rightmost 3-graphs lift to Legendrian
weaves, yielding embedded Legendrian surfaces (with boundary). The diagram in the center
of Figure 26 does not immediately lift to an embedded Legendrian surface, as the six-valent
vertex is not a hexagonal vertex – the colors of the edges around it are not alternating, which
is the condition for the hexagonal vertices introduced in Section 2.

Figure 26. The 3-graph movie showing that the candy move - Move I - is
a Legendrian isotopy. The geometric meaning of the central picture (not a
3-graph) is explained in the text.
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Nevertheless, the center diagram in Figure 26 does in fact come from a Legendrian wavefront
whose Legendrian lift is an embedded surface. Indeed, we have depicted such a front in the
second front of Figure 27.

Figure 27. The homotopy of Legendrian wavefronts associated to Move I.

The movie of wavefronts in Figure 27 geometrically constructs the homotopy of Legendrian
fronts which lifts to the Legendrian isotopy corresponding to Move I. The three fronts in Fig-
ure 27 lift to embedded Legendrian surfaces, as the singularities are all Legendrian and there
are no vertical tangent planes. The singularities at the beginning of Figure 27 are segments
of A2

1-crossings, and two isolated A3
1 points. The singularities at the end of Figure 27 are just

segments of A2
1-crossings. The singularity in the middle of the movie, not corresponding to

an A2
1 segment, is not a stable front singularity, but it does lift to an embedded Legendrian

surface, and thus the homotopy of fronts actually represents a Legendrian isotopy. Indeed,
the tangent spaces at that singularity intersect transversely, and hence their lifts are disjoint.
This concludes that Move I combinatorially represents a surface Legendrian Reidemeister
move.

Remark 4.3. For completeness, in Figure 28 we have drawn the homotopy of surface fronts
from Figure 27 as a movie (of movies). It is thus a 2-homotopy of Legendrian links. These
three movies of links, one per each column, are obtained by slicing each of the respective
fronts in Figure 27 from left to right. This is the third viewpoint we mentioned above. �

Let us now justify Move II, where a D−4 -singularity pushes-through an A3
1-singularity. The

resulting front has a D−4 -singularity and two A3
1-singularities. The clearest proof that this

is a Legendrian isotopy comes from carefully drawing and examining the right homotopy of
fronts. In this case, the required movie of fronts is depicted in Figure 29. These Legendrian
fronts start with the front whose A2

1-singularities yield the 3-graph G1 on the left of Move II,
and end with the front whose A2

1-singularities yield the 3-graph G2 on the right of Move II.

These fronts describe a neighborhood R3 of a D−4 -singularity with a 2-plane Π ⊆ R3 which
starts away from the D−4 -singularity. This 2-plane Π is drawn with a tilt in its slope. The
homotopy of fronts consists of this 2-plane Π moving towards the D−4 -singularity and crossing
through it. There exists a unique moment in this isotopy in which the D−4 -singularity is
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Figure 28. The proof that Move I is a Legendrian isotopy by (transversely)
slicing each of the Legendrian wavefronts in Figure 27.

Figure 29. The homotopy of Legendrian fronts inducing Move II.

contained in the 2-plane Π. The A2
1-singularities right before that moment give rise to G1

for Move II, and right after this moment the A2
1-singularities give rise to G2 for Move II.

Since the 2-plane Π is not vertical, and the tangent 2-planes of the different branches at
the D−4 -singularity in all moments are distinct, each of the fronts in this homotopy lift to
embedded Legendrian surfaces. Thus, the movie of fronts in Figure 29 shows that there exists
a Legendrian isotopy with A2

1-singularities as dictated by Move II, and Λ(G1) and Λ(G2) are
Legendrian isotopic relative to their boundaries. This concludes Move II.

For Move III, we can proceed analogously by drawing a homotopy of fronts which lifts to
a Legendrian isotopy. Nevertheless, Move III can actually be deduced as a combination of
Moves I and II. We leave it as an exercise for the reader to visualize the spatial Legendrian
fronts, and instead explain how to deduce Move III from the previous two moves, as follows.
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Starting with one side of Move III, push both trivalent vertices through in the clockwise
direction using Move II. This is depicted in the first two steps of Figure 30.

Figure 30. Deducing Move III from Moves I and II. The first step pushes
a red trivalent vertex through a hexagonal vertex. The second step does the
same for the other red trivalent vertex. The third step is a simplification
undoing a candy twist. The dashed green lines indicate push-through moves
that are about to occur.

This creates additional hexagonal vertices and the two trivalent vertices do change color.
Perform Move II twice more, pushing-through these trivalent vertices again, and then cancel
two pairs of hexagonal vertices with a candy twist (Move I) to obtain the right hand side
of Move III. Alternatively, first undo the candy twist as in the third step of Figure 30: this
yields a 3-graph which is identical to a partial rotation of the initial 3-weave with red and
blue switched. Iterating this again, i.e. pushing the two blue trivalent vertices through, as
indicated by the dashed green lines in Figure 30, and undoing a candy twist yields the right
hand side of Move III.

Let us now show that Move IV is a Legendrian isotopy. The corresponding spatial wavefronts
consist of configurations of four 2-planes. The graph G1 on the left of Move IV is obtained
as the A2

1-singularities, i.e. intersections, of the union of the four 2-planes

πx = {(x, y, z) ∈ R3 : x+ 0.0001z = 0}, πy = {(x, y, z) ∈ R3 : y + 0.0001z = 0},
πz = {(x, y, z) ∈ R3 : z = 0}, π1 = {(x, y, z) ∈ R3 : x+ y + z = 1}.

These intersections and 2-planes are depicted, with the corresponding colors, in Figure 31.
Now consider the 2-planes πt = {(x, y, z) ∈ R3 : x+ y+ z = t}, t ∈ [−1, 1]. The homotopy of
spatial wavefronts is locally given by the union πx ∪ πy ∪ πz ∪ πt, t ∈ [−1, 1].

This homotopy is not relative to the boundary, as the 2-planes πt, t ∈ [−1, 1], change the
boundary conditions — but this is easily corrected by only pushing a compact piece of πt,
t ∈ [−1, 1] through the triple intersection point πx ∩ πy ∩ πz. The A2

1-singularity pattern of
the resulting spatial wavefront is precisely as in the right graph G2 in Move IV, as required.
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Figure 31. Front for the start of Move IV. The lines depict the intersections
of the union of the four 2-planes πx ∪ πy ∪ πz ∪ π1.

Let us now address Move V, which depicts the local transition between two 4-graphs G1, G2

in Figure 23. The corresponding spatial fronts consist of four 2-planes π1, π2, π3, π4 ⊆ R3,
where the only non-empty intersections are π1∩π2, corresponding to the blue segment in G1

(and G2), and π3 ∩ π4, corresponding to the yellow segment in G1, and G2.

The fact that the fronts giving G1 and G2 are homotopic as Legendrian fronts is proven in
Figure 32. Each of the columns in the figure represents a spatial surface front, with the
links in the columns corresponding to slices. The corresponding intersections, dictating the
A2

1-singularities, are marked with the same color as in Figure 23. The union of these slices in
Figure 32 yield spatial fronts which lift to embedded Legendrian surfaces, and thus the movie
of columns in Figure 32 exhibits a Legendrian isotopy from Λ(G1) to Λ(G2). Therefore, Move
V is a surface Legendrian Reidemeister move. Move VI in Figure 24 follows with the same
argument as for Move V, with a segment of A2

1-singularities passing above, and disjointly, a
D−4 -singularity — and likewise for Move VI’. This concludes the proof of Theorem 4.2. �

Remark 4.4. The Legendrian Reidemeister moves in Theorem 4.2 provide a symplectic
geometric realization of A-type Soergel calculus. Moves I and V should be compared to
[EW16, Figure 4.4]. Move II and Move VI are known as two-color associativity of type
A1 × A1, with Coxeter exponent mst = 2, and of type A2, with Coxeter exponent mst = 3,
and Move IV corresponds to the A3 relation [EW16, Figure 4.7]. It should be emphasized
that the notation in Soergel calculus follows the notation for (rank three) parabolic subgroup
of finite Coxeter groups, whereas we use the notation for Lie algebras whose irregular Weyl
orbits yield spatial wavefronts. See Appendix A for further details. �

Theorem 4.2 contains the Reidemeister moves that we use in the course of the article. They
are all the possible (generic) Legendrian surface moves with only D−4 and A2

1 Legendrian
singularities in the endpoints of the Legendrian isotopy. The complete set of surface Rei-
demeister moves [Ad90, Section 3.3] also includes the moves associated to the A4 and D+

4 -
singularities, which will require the interaction of A2-cusp edges A2 and A3-swallowtails.

Theorem 4.2 allows one to make local modifications to an N -graph G1 and obtain an N -graph
G2 such that the Legendrian surfaces Λ(G1) ∼= Λ(G2) ⊆ (J1C, ξst) are Legendrian isotopic.
For the case C = S2, we define in Subsection 4.7 an additional combinatorial move, which we
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Figure 32. Each column represent slices of a spatial front. The A2
1-

singularities of the left column gives rise to G1 in Figure 23, and the A2
1-

singularities of the right column gives rise to G2.

refer to as a stabilization, going from an N -graph G1 to a (N + 1)-graph G2. This requires
a discussion on satellite constructions for Legendrian weaves, which is useful on its own, and
also needed for Subsection 4.5.

4.2. Legendrian Satellite Weaves. Let G ⊆ C be an N -graph. The Legendrian surface
Λ(G) defined by the weaving construction lies in the contact 5-manifold (J1C, ξst). Now,
consider a contact 5-manifold (Y, ξ) and a Legendrian embedding ι : C −→ (Y, ξ). The
Weinstein Neighborhood Theorem [Wei71, Section 7] for Legendrian submanifolds gives a
contactomorphism

ι̃ : (J1C, ξst) −→ (Op(ι(C)), ξ|Op(ι(C))),

where Op(A) is a sufficiently small neighborhood of A ⊆ Y , and such that the restriction
to the zero section C ⊆ J1C is the initial Legendrian embedding ι. In particular, any
Legendrian Λ ⊆ (J1C, ξst) yields a Legendrian ι̃(Λ) ⊆ (Y, ξ). Thus, the contact 1-jet spaces
serve as local contact manifolds, and a Legendrian embedding of C in an arbitrary ambient
contact 5-manifold allows one to embed a Legendrian weave there as well. In this context, the
Legendrian surface ι̃(Λ) ⊆ (Y, ξ) is called the ι-satellite of Λ ⊆ (J1C, ξst) and the Legendrian
surface ι(C) ⊆ (Y, ξ) is called the companion. This terminology parallels the theory of
satellite knots, as introduced in [Sch53], and see also [NR13, EV18]. Notice that the smooth
topology of Λ and its satellite ι̃(Λ) is identical, only the ambient contact manifold (and thus
the Legendrian embedding type) are affected by this Legendrian satellite construction.
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Example 4.5. Let (Y, ξ) = (S5, ξst), C = S2, and let ι = ι0 be the Legendrian embedding of
the standard Legendrian unknot ι0 : S2 −→ S5. Given any Legendrian Λ ⊆ (J1S2, ξst), we
will refer to ι̃0(Λ) ⊆ (S5, ξst) as the standard satellite of Λ. Since (S5 \ {pt}, ξst) ∼= (R5, ξst),
and the image ι̃0(Λ) will avoid some point, this surface can be equivalently considered in
ι̃0(Λ) ⊆ (R5, ξst) ∼= (J1(R2), ξst). It can thereupon be described by its front projection to
R3 = R2 × R. This is depicted in Figure 33. �

Figure 33. A Legendrian surface Λ ⊆ (J1S2, ξst) drawn in the front projec-
tion S2 × R (Left). The satellite ι̃0(Λ) of Λ along the standard Legendrian
unknot ι0 : S2 −→ (R5, ξst), drawn in the front projection R2 × R (Right).
These pictures are schematic and ought to be rotated symmetrically along
their central vertical axis so that the wavefronts for Λ and ι̃0(Λ) are indeed
surfaces in a 3-dimensional ambient space.

In case no Legendrian embedding ι is specified and C = S2, the notation ι(Λ) will implicitly
refer to the standard satellite ι̃0(Λ) ⊆ (R5, ξst) as in Example 4.5 and Figure 33. It is often
the case that the Legendrians Λ(G) ⊆ (J1C, ξst) that we introduce in this work do not have
an a priori name nor they have been previously studied. Interestingly, for a certain variety
of graphs G ⊆ S2 we will see how their standard Legendrian satellites are actually related to
well-known Lagrangian surfaces, e.g. see Subsection 6.1.

In addition, and in line with Markov’s Theorem for smooth 1-dimensional braids [Bir74,
PS97], the satellite operation is also required for a meaningful stabilization operation. Finally,
note also that even if Λ(G) ⊆ (J1C, ξst) has no A2-cusp edges, the spatial wavefronts for its
standard satellite ι̃0(Λ(G)) will always have A2-cusp edges, as any front for the standard
Legendrian unknot Λ0 ⊆ (R5, ξst) must have A2-cusp edges. We now discuss A2-cusp edges
and A3-swallowtail singularites, which are required for such a stabilization operation and
Theorems 4.10 and 4.21 below, regarding Legendrian surgeries and Legendrian mutations.

4.3. Cusp Edges and Swallowtail Singularities. Let G ⊆ C be an N -graph, the Legen-
drian weave Λ(G) ⊆ (J1C, ξst) associated to G is determined by its front π(Λ(G)) ⊆ C × R.
By definition, these fronts only have D−4 , A

2
1 and A3

1 singularities. The latter two are stable,
i.e. a generic Legendrian isotopy Λt ⊆ (J1C, ξst), t ∈ [0, 1], such that Λ(G) = Λ0, will have
each of the A2

1 and A3
1 singularities of the front π(Λ0) persist for π(Λt), t ∈ (0, 1]. In contrast,

D−4 is not: the fronts π(Λt), t ∈ (0, ε], will not have any D−4 -singularity for ε ∈ R+ small
enough.

The generic (stable) singularities of fronts in 3-dimensional space areA2
1, A

3
1, A2, A2A1 andA3,

as shown in [Ad90, Section 3.2]. These singularities are depicted in Figure 35. The appearance
of A2, A2A1 and A3 singularities in a generic front forces us to extend our combinatorial
diagrammatics, as our Legendrian isotopies will (typically) be generic. In the figures for this
subsection, and only this subsection, we will draw edges around a hexagonal vertex with
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Figure 34. The Legendrian front of an A3-swallowtail singularity (left). The
planar diagrammatic depiction in our calculus (right).

the same color – this will simplify our diagrams, which are no longer N -graphs due to the
presence of A2-cusp edges.

Figure 35. The generic Legendrian singularities of wavefronts in 3-space.
The depicted A3-singularity is known as the A3-swallowtail, and the center
A2-singularity in the first row is referred to as the A3-cusp edge. Note that
the two D±4 -singularities are not generic.

We extend the diagrammatics with the following rule: orange segments will denote A2-cusp
edges of singularities, and orange dots will stand for A3-swallowtail singularities. Figure 34
depicts on its left a genuine spatial front for the A3-swallowtail singularity. The singularities
of this front consist of a segment of A2

1-crossings, shown in blue, two A2-cusp edges, in orange,
and a unique A3-swallowtail point. The planar diagram through which we represent this front
is shown on the right of Figure 34. It is simply a vertical view of the front (from above or
below) with the A2

1, A2 and A3-singularities marked.

Remark 4.6. For the same reasons that we label A2
1 singularities with transpositions, in

order to indicate which two sheets are crossing, we should label A2-cusp edges with the
corresponding information. This is necessary information in order to recover the actual
(homotopy type of the) Legendrian front, and thus the Legendrian itself. That said, in this
article, it should be clear from context where such A2-cusp edges lie, so these labels will be
omitted. �
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The D−4 -singularities are the central pieces in the construction of our Legendrian weaves
Λ(G) ⊆ (J1C, ξst). It is important to emphasize that D−4 is not a generic singularity of a real
spatial front, despite the fact that its complexification is a stable holomorphic Legendrian
singularity. In particular, in our upcoming study of Legendrian surgeries, we will need
generic Legendrian isotopies starting at Λ(G), whose fronts will break the non-generic D−4
into generic singularities of real spatial wavefronts.

The generic deformation of the D−4 -singularity is depicted in Figure 36 (left). It contains
three A3-swallowtails arranged in a triangle and connected by A2-cusp edges. Following our
convention above, the associated planar diagram is shown in Figure 36 (right).

Figure 36. The spatial wavefront for a generic perturbation of the D−4 -
singularity (left). The associated planar diagram for this stable spatial wave-
front (right). Note that the A2

1-edges around the hexagonal vertex all drawn
with the same color (blue), following the convention in this subsection.

4.4. Legendrian Front Calculus with Cusp Singularities. Let us continue our devel-
opment of a diagrammatic front calculus for Legendrian surfaces, this time including A2-cusp
edges and A3-swallowtails. Proposition 4.7 below is used to prove Proposition 4.9 and also
Theorem 4.10, in the upcoming Subsection 4.5.

Proposition 4.7. Let G ⊆ C be an N -graph, N ∈ N. The four moves in Figure 37 are
achieved by compactly supported Legendrian isotopies, relative to the boundary.

Proof. Moves VII and VIII, on the creation and fusion of two A3-swallowtails singulari-
ties are immediate from the 3-dimensional First Reidemeister Move R1. Indeed, the left-
to-right 1-dimensional Legendrian slices in Move VII correspond to a concatenation of R1
and its inverse, i.e. an R1 is performed, corresponding to the appearance of the leftmost
A3-swallowtail, and then the same R1 is undone, corresponding to the appearance of the
rightmost A3-swallowtail. This movie of 1-dimensional Legendrian slices can be isotoped to
a movie with no R1 fronts, whose (big) front corresponds to the right of Move VII, with
no swallowtails. For Move VIII, the R1 moves are performed in reverse order. That is, the
left-to-right 1-dimensional Legendrian slices correspond to the inverse of an R1 move (a pair
of cusps being undone) and then the exact same R1 move. This homotopy of 1-dimensional
Legendrian fronts can be itself homotoped to a constant homotopy, which the local N -graph
depicted in the right of Move VIII.

For Move IX, we proceed with our slicing techniques. The 1-dimensional vertical left-to-right
slices of the two fronts for Move IX are depicted in the left and right columns of Figure
38. In the left column, the Reidemeister R1 move is performed for the upper piece of the
1-dimensional Legendrian knot. In the right column, the R1 move is performed for the lower
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Figure 37. The five Legendrian front moves in Proposition 4.7. The moves
are referred to as Move VII (upper left), Move VIII (upper right), Move IX
(center left), Move X (center right) and Move XI (lower center).

piece of the 1-dimensional Legendrian knot. The homotopy of Legendrian surface fronts is
achieved by the center column in Figure 38, where both R1 are performed simultaneously.

Figure 38. The homotopy of surface fronts showing that Move IX is a Legen-
drian Reidemeister move. The left-to-right slices for the left diagram in Move
IX are depicted in the left column, whereas the slices for the right diagram in
Move IX are depicted in the right column.
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Since the homotopy of fronts preserves the boundary conditions, this lifts to a Legendrian
isotopy of embedded Legendrian surfaces, thus proving that Move IX is a Legendrian Rei-
demeister move. The fact that Move IX is a Legendrian Reidemeister move also follows
carefully from visualizing the critical fronts associated to the generating family

D+
4 : F (x, y, ξ1, ξ2, ξ3) = x2y + y3 + ξ1y

2 + ξ2y + ξ3x,

which leads to the above families in Figure 38.

Move X consists of a sliding for a A3-swallowtail along an A2
1-crossing line, as depicted in the

top row of Figure 39, in Figures 39.(a) and 39.(b). The realistic surface fronts are depicted
in the bottom row of Figure 39, in Figures 39.(A) and 39.(B), where the A3-swallowtail
singularity has been moved past the A2

1-segment of singularities.

Figure 39. The front depiction of the non-trivial part in Move X. The A3-
swallowtail singularity slides across a orthogonal A2

1-line, changing sheets as
it slides through.

The sliding lifts to a Legendrian isotopy, as the interaction between the A3-swallowtail and
the A2

1-line only sees a critical moment, where a A3A
2
1 singularitiy appears. At this critical

stage, the slopes are all distinct and non-vertical, thus the A3-swallowtail is allowed to move
past with a homotopy of fronts. This concludes that Move X is a Legendrian Reidemeister
move.

Finally, Move XI is proven in Figure 40. The middle singularity corresponds to the generic
spatial front A2A1-singularity. In short, Move XI is obtained by performing a homotopy
which interpolates between a constant movie of Legendrian links, and a movie consisting of
doing a Reidemeister R2 move and then undoing it, as in the left column of Figure 40. �
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Figure 40. The homotopy of fronts for Move XI. The left front diagram of
Move XI is obtained as the union of the slices in the left column, whereas the
right front in Move XI is the union of the slices in the right column.

Remark 4.8. It would appear that Reidemeister moves for Legendrian knots have been
mastered by the vast majority of contact topologists. This does not seem to be the case in
higher dimensions, including the Legendrian singularities appearing in surface fronts. Should
the reader be interested in that, [Ben86, Ad90] provides a starting presentation of the generic
singularities of surface fronts. Our present manuscript develops the diagrammatic calculus
adding to that classification, which allows us to manipulate fronts in a versatile manner. The
combination of the results of this article, along with [Ad90], should permit the reader to be
fluent in the manipulation of wavefronts for Legendrian surfaces in contact 5-manifolds. �

Let us now address the move shown in Figure 41, which we prove in the following:

Proposition 4.9. The combinatorial move depicted in Figure 41 is realized by a compactly
supported Legendrian isotopy of surfaces in a 5-dimensional Darboux ball (J1R2, ξst), relative
to the boundary.

Figure 41. (Move XII) This move allows us to exchange A3-swallowtail sin-
gularities with D−4 -singularities in the presence of a A2-cusp edge.

Proof. Let us start with the left front in Figure 41. Apply Move VII to create a canceling pair
of A3-swallowtails, as shown in the beginning of Figure 42. Now slide the A3-swallowtail by
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performing a Move X, and use the D+
4 -singularity, i.e. Move IX to exchange the A2-cusp edge

where the A3-swallowtail connects. This is depicted in the first and second steps of Figure
42. The next two steps in Figure 42 consists of Legendrian isotopies where no singularities
interact with each other, it is a plain homotopy of fronts with the same singularities. Finally,
the last step consists in joining the three existing A3-swallowtails into a single D−4 -singularity,
as depicted at the end of Figure 42.

Figure 42. The homotopy of fronts for Move XII. The initial A3-swallowtail
requires two additional swallowtails to become a D−4 -singularity, and certain
intermediate moves. The homotopy realizing this can be read in this picture.

�

4.5. Legendrian Surgeries. The theory of Legendrian surgeries was initiated in [Ad76,
Ad79] in the study of critical points of the time function with respect to a Legendrian
wavefront. Its modern description in terms of Lagrangian handle attachments is described
in [BST15, Theorem 4.2] and [DR16, Section 4]. A Legendrian surgery on Λ ⊆ (Y, ξ) is
an operation which inputs an isotropic sphere within Λ, bounding ambiently, and outputs a

Legendrian Λ̃ ⊆ (Y, ξ). The Legendrians Λ and Λ̃ are not even homotopy equivalent, and thus
Legendrian surgery is a useful method to create new Legendrians by modifying the topology
of a given Legendrian Λ.

In the context of Legendrian surfaces, there are different types of Legendrian surgeries [Ad90,
Figure 48]. The following result characterizes the combinatorial operations that correspond
to Legendrian 0-surgeries, 1-surgeries and Legendrian connected sums.

Theorem 4.10 (Legendrian Surgeries). Let G ⊆ C, G1 ⊆ C1 be N -graphs and G2 ⊆ C2 an
M -graph, for N,M ∈ N. The following statements hold:

1. (0-Surgery) The combinatorial move of adding an i-edge and two vertices along an
existing i-edge corresponds to a Legendrian 0-surgery. This move is shown in the
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upper right diagram in Figure 43.

2. (1-Surgery) The combinatorial move of removing an i-edge between two trivalent ver-
tices corresponds to a Legendrian 1-surgery. This move is shown in the lower left of
Figure 43.

3. (Connect Sum) The kissing of two trivalent vertices v1 ∈ G1 and v2 ∈ G2, where
G1 ⊆ C1, G2 ⊆ C2 are two disjoint graphs, corresponds to a connect sum

ι(Λ(G1))#ι(Λ(G2)) ⊆ (R5, ξst),

for any satellite ι : Λ −→ (R5, ξst). This is shown in the upper left of Figure 43.

4. (Clifford Sum) The combinatorial move of substituting a trivalent vertex by a triangle
corresponds to a connected sum of ι(Λ(G)) with a Clifford 2-torus T2

c ⊆ (R5, ξst).
This move is shown in the lower right of Figure 43.

The 0-surgeries, 1-surgeries are local in any Λ(G) ⊆ (J1C, ξst). In contrast, the connected
sum in the third item requires to geometrically satellite the Legendrian weaves Λ(G1) ⊆
(J1C1, ξst) and Λ(G2) ⊆ (J1C2, ξst) via any Legendrian embedding

ι : C1 ∪ C2 −→ (R5, ξst).

Figure 43. The Legendrian Surgery Moves in Theorem 4.10

Theorem 4.10 will be proven below. The Legendrian weaves in the statements involve only
D−4 and A2

1 (and A2-cusp edges for the connected sum, due to the satellite operation). Nev-
ertheless the manipulation of their fronts in the proof of Theorem 4.10 requires the use of
further Legendrian front moves, involving A3-swallowtails and A2A1-singularities and their
interaction with the A2, A

2
1 and D−4 -germs, as developed in Subsection 4.4 above.

Remark 4.11. (i) Should the reader be solely interested in the satellited Legendrian surface
ι(Λ(G)) ⊆ (R5, ξst), the connected sum operation in Theorem 4.10.(3) is the strongest of the
four statements (and the hardest to prove). Indeed, the satellite analogue of Items 1,2 and 4
follow from Item 3. That said, Items 1,2 do not follow from Item 3 locally.

(ii) Note also that the ι-satellite of the Legendrian 0-surgery depicted in Move (1) of Figure
43, and Theorem 4.10.(1), corresponds to a Legendrian connected sum with the standard
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Legendrian 2-torus in (R5, ξst). This is the 2-torus whose front is obtained by S1-front
spinning of the saucer front for the standard Legendrian unknot in (R3, ξst). See [DR11,
Section 4.1], and Figure 6 therein, and also [BST15, DR16]. �

We recall that, by definition, the index of an elementary exact Lagrangian cobordism is the
Morse index of its unique critical point, see [BST15, Section 4.1] and [DR16, Section 4]. Note
that elementary index-k exact Lagrangian cobordisms are also referred to as Lagrangian k-
handle attachments. In particular, the Legendrian convex end of an elementary index-k exact
Lagrangian cobordism is a Legendrian (k − 1)-surgery on the Legendrian concave end. In
combination with Theorem 4.2, Theorem 4.10 yields the following two moves:

Corollary 4.12. The two N -graph moves in Figure 44 corresponds to a Legendrian 1-
surgery, i.e. upon performing (2’), or (2”), there exists an elementary index-2 exact La-
grangian cobordism from the Legendrian weave on the left to the Legendrian weave on the
right.

In fact, in Move (2’) the Lagrangian 2-disk is attached along the 1-cycle represented by the
(bi)chromatic horizontal edge between the two trivalent vertices. In Move (2”) the Lagrangian
2-disk is attached along the 1-cycle represented by the (blue) tripod at the hexagonal vertex
uniting the three trivalent vertices.

Figure 44. The two Legendrian Surgery Moves in Corollary 4.12, both rep-
resenting Lagrangian 2-handle attachments.

Proof of Theorem 4.10. We start by proving that adding an i-edge with two trivalent vertices
to an existing i-edge effects a Legendrian 0-surgery, i.e. a Lagrangian 1-handle attachment.
The homotopy of spatial fronts is depicted in Figure 45, according to the conventions in
Subsection 4.3. The detailed description reads as follows. We first generically perturb the
two D−4 -singularities in the first spatial front, which yields the second front. Performing
Move VIII and then Move I yields the third and fifth fronts, respectively, in Figure 45. Note
that the homotopy from the third to the fourth front does not involve any change in the
singularities of fronts, as the blue segment of A2

1-singularities intersecting the orange A2-cusp
segment lies strictly below it in 3-space. The homotopy from the fifth to the sixth front
emphasizes the yellow band where the (reverse) 1-surgery is to be performed. The step from
the sixth to the seventh fronts is precisely the reverse surgery: the A2-cusp edges in the
seventh front are surgered along the yellow band [Ad76, BST15], in the sixth front, to obtain
the fifth front. The seventh front is homotopic to the eighth front by Move VII.

Let us now show that removing an i-edge corresponds to a Lagrangian 2-handle attachment,
i.e. a Legendrian 1-surgery. The homotopy of fronts is depicted in Figure 46. Starting with
the first front, generically perturbing yields the second front and two applications of Move
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Figure 45. The diagrammatic homotopy of spatial fronts associated to the
Legendrian 1-surgery move. It shows that the first front is a Legendrian 0-
surgery on the eight front, i.e. the result of a Lagrangian 1-handle attachment.

VIII give the third front. In the fourth front we have shown the Legendrian 2-disk (in yellow)
along which we perform the 1-surgery [Ad90, BST15], the result of which is the fifth front.
Indeed, the 1-surgery opens up the inner circle of A2-cusp edges and adds two horizontal
(Legendrian) 2-disks. As a result, the effect on its diagrammatic representation is removing
the inner circle of A2-cusps, as shown in the fifth front. The application of Move I gives
the sixth front, which is readily homotopic to the seventh front. The eighth front is then
obtained by performing a Move VII.

Now, we prove that joining two trivalent vertices in distinct graphs G1 ⊆ C1, G2 ⊆ C2 is
realized by a Legendrian surface connected sum, which is a Lagrangian 1-handle attachment
(a Legendrian 0-surgery) whose attaching 0-sphere has its two points belonging to different
boundary components. The required homotopy of fronts is shown in Figure 47. In this case,
we must satellite the Legendrian weaves Λ(G1),Λ(G2) to a Darboux ball (R5, ξst). From
the perspective of spatial fronts, we must locally add a A2

1-curve and two A2-cusp edges as
depicted in the first front of Figure 47. The Legendrian 0-surgery is performed from the first
front to the second, along the Legendrian band given by the red dotted line. The homotopy
from the second front to the third consists of four applications of Move XI. Then, we use
Move XII to obtain the fourth front. The fifth front is achieved by applying Move VII, and
the sixth front consists of two applications of Move XI.

Finally, substituting a trivalent vertex by a triangle corresponds to a connected sum with the
four vertex graph Gc ⊆ S2 in the left of Figure 48. One then shows that the spatial front of the
Legendrian weave ι(Λ(Gc)) ⊆ (R5, ξst) is front equivalent to the front on the right of Figure
48, which is known to be the Legendrian lift of the Clifford torus [DR11, CM19]. In brief, this
can be shown by first identifying the Legendrian 2-torus associated to the Clifford graph with
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Figure 46. The diagrammatic homotopy of spatial fronts associated to the
Legendrian 1-surgery move. It shows that the eighth front is a Legendrian 1-
surgery on the first front, i.e. the result of a Lagrangian 2-handle attachment.
Note that diagrams 3 and 4 in the first row are the same. The difference is
that in diagram 4 we have depicted (in yellow) the 2-disk along which the
Legendrian 1-surgery is performed, which overlaps with part of diagram 3
(and thus this part is not depicted in diagram 4).

Figure 47. The diagrammatic homotopy of spatial fronts associated to the
Legendrian connected sum.

the vanishing cycle associated to the superpotential W : C3 −→ C, W (z1, z2, z3) = z1z2z3.
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This superpotential has a singular Lagrangian thimble

L = {(z1, z2, z3) ∈ C3 : W (z1, z2, z3) ∈ R≥0, |z1| = |z2| = |z3|},

whose intersection with the contact unit 5-sphere (S5, ξst) ⊆ C3 is a Legendrian 2-torus LW .
It is shown in [Nad17b, Section 3.3] that the Clifford graph is a front for this 2-torus LW . In
order to obtain the cone front from Figure 48 (on the right), one stereographically projects
from (S5, ξst) ⊆ C3 to (R5, ξst) with the contactomorphism provided in [Gei08, Proposition
2.1.8] and draws the (image of LW in the) front projection. The resulting front for LW is
precisely the one drawn on the right of Figure 48.

Figure 48. The Clifford graph Gc ⊆ S2 and a simplified spatial front for the
satellited Legendrian ι(Λ(Gc)) ⊆ (R5, ξst).

�

Proof of Corollary 4.12. In Figure 44, Move (2’) follows by applying a sequence of Moves
II to the leftmost trivalent vertex, pushing that vertex through all the hexagonal vertices –
until it is connected to the rightmost trivalent vertex with a monochromatic edge – and then
using Move (3) in Theorem 4.10. Move (2”) is more interesting, and its proof is shown in
Figure 49.

Figure 49. The Lagrangian 2-handle attachment in Move (2”) decomposed
as a sequence of surface Reidemeister moves, from Theorem 4.2, and Move
(2) in Theorem 4.10, in the guise of Corollary 4.12.

�
46



Theorem 4.10 provides a useful and efficient way to describe Legendrian surfaces in terms
of N -graph combinatorics. Its statement is as strong as possible, in that the conclusion is
on the Legendrian isotopy type of the associated Legendrian weaves. The computation of
algebraic invariants then follows as a consequence of our geometric understanding.

In particular, we have following.

Corollary 4.13. Let G ⊆ C be an N -graph and v ∈ G a trivalent vertex. The blow-up
combinatorial move on G, given by an insertion of a triangle at the vertex v, is a twisted
0-surgery on ι(Λ(G)). �

The blow-up procedure was first studied in [TZ18, Section 5]. It is depicted in Figure 43
(lower right). By definition, a twisted 0-surgery is a connected sum with a non-standard
Legendrian torus in (S5, ξst). For now, we refer to [DR11, Section 4] for more details.

A consequence of Corollary 4.13 is that the Legendrian isotopy type of ι(Λ) is independent of
the choice of vertex v ∈ G, because a twisted 0-surgery is independent of the choice of 0-sphere
at which it is performed (since all pair of points are isotopic in a connected surface). This
question was initially asked in [TZ18] in the study of the dependence of the sheaf invariants
in terms of v. Since the Legendrian isotopy type of ι(Λ) is independent of v, the algebraic
invariants are also independent of v.

Finally, note that the Legendrian 0-surgery in Theorem 4.10.(1) can be understood as a
Legendrian connected sum with the 2-graph G ⊆ S2 shown in Figure 50 (Left). In fact,
the standard Legendrian satellite ι(Λ(G)) for this 4-vertex 2-graph is the standard Legen-
drian 2-torus, a Legendrian front of which is shown in Figure 50 (Right). Indeed, they are
both obtained from the standard Legendrian unknot by a 0-surgery (which yields a unique
Legendrian isotopy class of Legendrian 2-tori) and thus they must be Legendrian isotopic.

Figure 50. A 2-graph G in the 2-sphere S2 (Left) and a Legendrian front
for its Legendrian weave ι(Λ(G)) (Right). This is the standard Legendrian 2-
torus T2

st ⊆ (R5, ξst), given by Legendrian front spinning of the 1-dimensional
standard Legendrian unknot Λ0 ⊆ (S3, ξst).

Remark 4.14. The Legendrian 0- and 1-surgeries in Theorem 4.10 physically correspond
to partial puncture degenerations in the context of spectral networks [GMN13, GMN14].
Indeed, the Legendrian weaves obtained as the Legendrian lift of the Lagrangian hyperkähler
rotation of the spectral curve of a diagonalizable Higgs field are related by the Legendrian
surgeries in Theorem 4.10. For instance, the process of a full puncture [1,1,1] degenerating to
a simple [2,1] puncture in a punctured 3-sphere is precisely a Legendrian 0-surgery [GLPY17,
Section 6]. �

The Reidemeister moves in Subsection 4.1 and the stabilization operation in Subsection 4.7
preserve the Legendrian isotopy type of the (satellite) Legendrian weaves. The Legendrian
surgeries discussed in Theorem 4.10 generically change the topology of Λ(G). The natural
next step is to modify the Legendrian isotopy type of Λ(G) without changing its topology,
which we will discuss in Subsection 4.8. For now, we study an explicit example and present
the stabilization operation.
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4.6. Example of a Closed Legendrian Weave. Let us illustrate our spatial front calculus
in an example. Consider the triangulation of C = S2 given by a tetrahedron, and the 3-graph
G associated to this triangulation according to Section 3. This 3-graph is shown in Figure
51 (upper left). The 3-graph G is depicted in the plane as an unfolded triangulation, thus
the triangles should be identified according to the faces of the tetrahedron: the outer three
vertices of the dashed triangle are identified, and the dashed lines are glued accordingly. In
particular, the 3-graph G has twelve trivalent vertices and four hexagonal vertices. The ques-
tion is to describe the Legendrian isotopy type of this Legendrian surface ι(Λ(G)) ⊆ (R5, ξst).
In addition, we would like to compute Legendrian invariants, such as the augmentation va-
riety of 3-dimensional Lagrangian fillings in (D6, ωst). In this context, understanding the
Legendrian isotopy type readily implies the computation of this Legendrian invariant.

We will exploit Theorem 4.2 and Theorem 4.10 to understand this Legendrian weave, and
note that the closed surface ι(Λ(G)) := ι̃0(Λ(G)) has genus 4. First, we describe the sequence
of Legendrian moves and surgeries in Figure 51. In Diagram (1) on the upper left, first note
that there are three blue triangles each having one vertex in the central triangle, one each
in two outer triangles, and passing through one glued edge. There is another blue triangle
with one vertex on each of the outer triangles. By Theorem 4.10, we conclude that Diagram
(1) corresponds geometrically to a connected sum of the weave from Diagram (2) with four
copies of the Clifford 2-torus T2

c . The 3-graph of Diagram (2) is still complicated, so we use
Theorem 4.2 to simplify. First apply Move III, flopping the four vertices in the upper right of
the 3-graph. This brings us to Diagram (3). Now do a Move I to undo the newly appearing
candy twist.

Figure 51. Simplification of a 3-graph with Theorem 4.2 and Theorem 4.10.

This brings us to Diagram (4). So we have proven that the standard satellite ι(Λ(G)) is
Legendrian isotopic to ι(Λ(G′))#4

i=1T2
c , where G′ is the 3-graph in Diagram (4) of Figure 51.

It now suffices to understand the Legendrian ι(Λ(G′)) ⊆ (R5, ξst).
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Assertion: Let G′ ⊆ S2 be the 3-graph in Figure 52 (upper left). The Legendrian 2-sphere
ι(Λ(G′)) is Legedrian isotopic to the standard Legendrian unknot Λ0 ⊆ (R5, ξst).

Proof of the assertion: By Theorem 4.10, we can undo the two bigons in Diagram (5)
of Figure 52, and understand them as two connect sums with the standard Legendrian 2-
torus T2

st, defined as any Lagrangian 1-handle attachment to the standard Legendrian unknot
Λ0 ⊆ (R5, ξst).

Figure 52. Diagrammatic proof that the standard satellite of the Legendrian
2-sphere associated to the 3-graph in Diagram (5) is the standard Legendrian
unknot two-sphere Λ0 ⊆ (R5, ξst).

By applying Move I in Theorem 4.2 to the 3-graph in Diagram (6), we arrive at the 3-
graph G′′ in Diagram (7) of Figure 52, which simplifies to the three concentric circles of
alternating colors in Diagram (8). The Legendrian weave ι(Λ(G′′)) ⊆ (R5, ξst) is readily seen
to be the standard 3-component unlink Λ0 ∪ Λ0 ∪ Λ0 ⊆ (R5, ξst). Indeed, in 3-dimensional
contact topology, the standard satellite of an N -stranded braid along the unknot – with its
standard saucer front – creates a w−1

0 of crossings at each side of the braid, where w0 ∈ SN
is the longest element. That is, a S0-worth of w−1

0 crossings. In particular, a positive braid
given by w2

0, which consist of a S0-worth of w0-crossings, will get satellited to the standard
Legendrian N -component unlink. See e.g. [CN20, Section 2.2]. By S1-symmetrically rotating

this picture, we conclude that an N -weave in S2 given by
(
N
2

)
concentric circles whose colors

exactly give w0 will be satellited along the standard 2-dimensional unknot to a standard
Legendrian N -component unlink. Here the case at hand is N = 3 and it suffices to note that
red-blue-red represents w0 ∈ S3.

In conclusion, ι(Λ(G′)) is obtained by performing Lagrangian 1-handle attachments to Λ0 ∪
Λ0 ∪ Λ0 ⊆ (R5, ξst), and thus ι(Λ(G′)) must be the standard Legendrian unknot. �

The conclusion of the above discussion is that the Legendrian isotopy type of the Legendrian
surface ι(Λ(G)) ⊆ (R5, ξst) associated to 3-triangulation of the tetrahedron, i.e. Diagram (1)
of Figure 51, is that of the connected sum of four copies of the Clifford 2-torus T2. Hence, we
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now have a complete geometric understanding of ι(Λ(G)). In particular, this readily implies
[Siv11, DR11] that the C-moduli of objects of the category of microlocal rank-one sheaves in
R3 supported in ι(Λ(G)) is isomorphic to (C \ {0, 1})4. �

4.7. N-Graph Stabilization. The Reidemeister moves introduced in Theorem 4.2 consti-
tute combinatorial operations on a given N -graph G which yield the same Legendrian isotopy
type for the associated Legendrian weave Λ(G), as a Legendrian in (J1C, ξst). In particular,
the resulting graph is still an N -graph.

In this section we discuss a different type of combinatorial move, where the number of sheets
N ∈ N is increased. This operation, which we call stabilization, inputs an N -graph G ⊆ C and
outputs an (N + 1)-graph s(G) ⊆ C. The main property of stabilization, proven in Theorem
4.17 below, is that it preserves the Legendrian isotopy type of the standard Legendrian
satellite ι(Λ(G)) ⊆ (R5, ξst), and as a result it is a non-characteristic operation.

Remark 4.15. The relative homology class of the surface Λ(G) ⊆ J1C has order N , and thus
no combinatorial operation that modifies the number N ∈ N of sheets for a Legendrian weave
will ever yield a Legendrian isotopic surface in the 1-jet space J1C. Therefore, preserving the
Legendrian isotopy type for the (standard) satellite is the optimal statement for a stabilization
operation. �

Let us describe the Legendrian weave stabilization. Given an N -graph G, the first step is to
introduce a ladybug trivalent graph B in (N,N + 1) as depicted in blue in the left of Figure
53 in such a way that G is completely contained in one face13 of B, i.e. G is inside one of the
wings of the ladybug B. The second step is the introduction of descending halos centered at
an (N +1)-graph G, which consists of a nested set of N −1 circles of A2

1-crossings indexed by
the permutations (N − 1, N), (N − 2, N − 1), · · · (23), (12) reading outward. This is depicted
in the right of Figure 53.

Figure 53. Ladybug graph B around G (left) and halos centered at G (right).

The concatenation of these two operations leads to the following:

Definition 4.16. Let G ⊆ C be an N -graph. The stabilization of G is the (N + 1)-graph
s(G) ⊆ C obtained from G by placing a ladybug B around G, labeled with the transposition
(N,N + 1), and a sequence of descending halos centered at the (N + 1)-graph G ∪B. �

Figure 54 depicts the stabilization for the cases N = 2, 3. The ladybug graph B is shown in
blue.

13The construction is independent of the choice of such face.
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Figure 54. Stabilization of a 2-graph (left) and of a 3-graph (right).

The stabilization in Definition 4.16 is the Legendrian surface generalization of the Type
II Markov move for smooth N -strand braids [Mar35, Bir74]. The main property of graph
stabilization is the following geometric result:

Theorem 4.17. Let G ⊆ S2 be an N -graph. Then the standard satellites ι(Λ(G)) and
ι(Λ(s(G))) are Legendrian isotopic in (S5, ξst).

Proof. Let us provide a detailed proof for the case N = 2, where the stabilization is a 3-
graph. The argument for higher N ≥ 3 is identical. Consider the standard satellite closure
ι(Λ(s(G))), which yields the diagram on the left of Figure 55 – we refer the reader to Figure
33 for the front of the standard satellite closure. The standard satellite closure of a 3-graph
introduces three circles of A2

1-crossings, drawn in dark grey, and three circular cusp edges,
drawn in orange.14 Perform a Legendrian isotopy which exchanges the (12)-circle of A2

1-
crossings with the adjacent (34)-circle of A2

1-crossings; this gives the diagram in the right of
Figure 55. This move is possible thanks to the cusp sliding shown in the first two columns
of Figure 56.

Figure 55. Exchange of (12) and (34) circles of A2
1-crossings.

Then use the innermost cusp circle and perform a Move XI, also denoted R2
1 as it consists of

two Reidemeister I moves, to remove two of the A2
1-crossings as in the left of Figure 57, this

corresponds in the slice to the third column of Figure 56. Iterate with an R2
1 in the same

14For a general N -graph, a front for the standard satellite closure of the Legendrian weave contains N
additional sheets, (N + 1), (N + 2), . . . , 2N . The bottom N sheets 1, . . . , N are woven according to G, and
the top horizontal N sheets are parallel. The bottom and top sheets are then connected by circles worth of
A2

1-crossings, according to the half-twist ∆ ∈ Br+N , and N circles worth of A2-cusp edges – see Figure 33.
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Figure 56. The left three diagrams depict slices in the dotted segments for
Figure 55. The rightmost diagram depicts a slice for the dotted segment in
the right of Figure 57.

cusp edge with the (34)-circle of crossings and the ladybug piece B, arriving at rightmost
diagram in Figure 57.

Finally, eliminate the two half-moons in the cusp edge and isotope the cusp edge above the
graph G(1,2), which is possible thanks to the configuration shown at the rightmost column
of Figure 56. The resulting diagram is that on the left of Figure 58, which is Legendrian
isotopic to the diagram on its right. by applying two Moves XII, from Figure 41, and an
inverse Move VII from Figure 37.

Figure 57. Performing an R2
1-move with (34) and the ladybug.

�

In this manuscript, Reidemeister moves in Subsection 4.1 and the Stabilization in Theorem
4.17 form the set of combinatorial moves that is available to us when manipulating an N -
graph, if the Legendrian isotopy type of the associated (satellite) Legendrian weave is to be
preserved.

4.8. Legendrian Mutations. We now discuss the N -graph combinatorics of Legendrian
mutations, a new geometric operation that we define in this manuscript. This operation
inputs a Legendrian surface Λ ⊆ (R5, ξst) and an isotropic 1-cycle γ ⊆ Λ, and outputs a
Legendrian surface µγ(Λ) ⊆ (R5, ξst). The Legendrian surface µγ(Λ) ⊆ (R5, ξst) will be
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Figure 58. From N = 2 to N = 3 (left) and N = 3 to N = 4 (right).

ambiently (relatively) smoothly isotopic to Λ, and oftentimes not Legendrian isotopic to Λ.
The choice of notation aims at emphasizing its relation to the wall-crossing phenomenon
[GMN10, KS10, KS14], Lagrangian mutation [Pol91, Aur07, Aur09] and [FOOO09, Chapter
10], and quiver mutations [FZ02, Via14].

Definition 4.18. Let G ⊆ C be an N -graph and e ∈ G and i-edge between two trivalent
vertices. The mutation of G along e is the N -graph µe(G) obtained by performing the
exchange depicted in Figure 60 (left), also shown in Figure 4 (3). �

By Theorem 4.21 below, the Legendrian weaves Λ(G) and Λ(µe(G)) will be mutation-
equivalent, according to the upcoming 4.19 – this motivates Definition 4.18 from the perspec-
tive of contact topology. Note that the operation in Definition 4.18 is the simplest possible
mutation, corresponding to the combinatorics associated to a Whitehead move, i.e. an edge
flip in the context of triangulations dual to 2-graphs. Indeed, consider the two unique non-
degenerate triangulations T1, T2 of the square, the dual 2-graphs G1, G2 differ precisely by a
mutation along their unique internal edge.

Correspondingly, the standard satellites of their associated Legendrian weaves are two Leg-
endrian cylinders with coinciding Legendrian boundary, smoothly isotopic relative to their
boundary but which are not Legendrian isotopic relative to their boundary.

In general, given a 1-cycle γ ∈ Λ(G) which is expressed combinatorially in G, it is pos-
sible to describe the mutation of G along such 1-cycle γ. The mutated graph µγ(G) can
either be defined in an ad hoc way, or rather be understood as a graph which is equivalent
via Reidemeister moves, as in Subsection 4.1, to the mutated graph µe(γ)(G′). Here G′

is Reidemeister equivalent to G and e(γ) is an i-edge between trivalent vertices such that
[e(γ)] = [γ] ∈ H1(Λ(G),Z) under the canonical identification H1(Λ(G),Z) ∼= H1(Λ(G′),Z)
given by a Legendrian isotopy. Here is the definition:

Definition 4.19 (Legendrian Mutation). Two Legendrian surfaces Λ0,Λ1 ⊆ (R5, ξst) are
mutation-equivalent if and only if there exists a compactly supported Legendrian isotopy

{Λ̃t}t∈[0,1] relative to the boundary ∂Λ0, with Λ̃0 = Λ0, and a Darboux ball (B, ξst) such that

(i) The two restrictions Λ̃1|(R5\B) = Λ1|(R5\B) coincide away from this Darboux ball,

(ii) There exists a global front projection π : R5 −→ R3 such that each of the spatial

fronts π|B(Λ̃1) and π|B(Λ1) respectively coincide with each of the two fronts in Figure
59.

�
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Figure 59. Legendrian mutation in a local spatial wavefront.

The two fronts depicted in Figure 59 coincide at their boundaries and lift to Legendrian
cylinders. These Legendrian cylinders are not Legendrian isotopic relative to their boundary.
Indeed, compactifying the upper sheet of the fronts with an A2-cusp edge and a flat 2-disk,
and the lower sheet with a different A2-cusp edge and a flat 2-disk, yields the standard
Legendrian unknot Λ0 ⊆ (R5, ξst) for the left front in Figure 59, and a loose Legendrian
2-sphere s(Λ0) for the right front in Figure 59. The Legendrians Λ0, s(Λ0) ⊆ (R5, ξst) are not
Legendrian isotopic [EES05a, EES05b].

A strong motivation for the study of the above mutations is the production of Legendrian
surfaces which are not Legendrian isotopic, even though they belong to the same formal
Legendrian isotopy class [Gro86, EM02]. In order to distinguish Legendrian isotopy classes
we will be using flag moduli spaces, which synthesize Legendrian invariants coming from the
study of microlocal sheaves in terms of algebraic geometry.

Remark 4.20. The conic Legendrian singularity for the front in Figure 59 (left) is not a
generic singularity. It is explained in detail in [DR11, CM19], and its generic perturbation
contains four A3-swallowtail singularities. �

Theorem 4.21 (Legendrian Mutations). Let G1, G2 be one of the pairs of N -graphs depicted
in Figure 60. Then the associated Legendrian surface Λ(G1) is a Legendrian mutation of
Λ(G2) relative to their boundaries.

Figure 60. The Legendrian Mutation Moves in Theorem 4.21

Proof. Let us start by showing that the exchange move in Figure 60 (left) corresponds to
a Legendrian mutation, as in Definition 4.19. By [CMP19, Theorem 6.3], the Lagrangian
projections Π(Λ0),Π(Λ1) ⊆ R4 of the Legendrian lifts of the fronts π(Λ0), π(Λ1) ⊆ R3 in
Figure 59 correspond to the two Polterovich surgeries associated to the normal crossing of
two Lagrangian planes R2 × {0}, {0} × R2 ⊆ (R4, ωst). The Lagrangian projection of the
Legendrian lifts for each two 2-graphs in the exchange move in Figure 60 (left) are exact
Lagrangian fillings L1, L2 of the Hopf link ΛHopf ⊆ (S3, ξst) ∼= ∂(R4, ωst). Indeed, the 2-
stranded braid word at the boundary of the 2-weave is σ4

1, as there are four blue edges
arriving at the boundary, and then note that the (−1)-framed closure of σ4

1 in (R3, ξst) is
the Hopf link. See Section 7 for more details on Lagrangian fillings. Thus, it suffices to
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show that L1, L2 ⊆ (R4, ξst) are the positive and negative Polterovich surgeries of the two
Lagrangian planes R2×{0}, {0}×R2 ⊆ (R4, ωst) at their intersection points. Indeed, Figure
61 (center) depicts the 2-graph for the singular Legendrian whose Lagrangian projections is
the Lagrangian union (R2 × {0}) ∪ ({0} × R2).

Figure 61. The 2-graphs associated to a Legendrian Mutation. The middle
2-graph yields a spatial front which lifts to a singular Legendrian surface,
consisting of the union of two 2-planes intersecting at a point.

The 2-graph in Figure 61 (center) describes a topological surface which is the union of 2-
planes intersecting at a point, both for the Lagrangian surfaces in (R4, ωst) and the Legendrian
surfaces in (R5, ξst). Topologically, the front in Figure 61 (center) is the cone over the annular
projection of the (2, 4)-braid, with singular crossings15.

Finally, the Lagrangian projections of the Legendrian lifts of Figure 61 (left) and Figure
61 (right) are realized as Polterovich surgeries of the corresponding Lagrangian projection
in Figure 61 (center). Since the Legendrian lifts of Polterovich surgeries are Legendrian
mutations [CMP19, Theorem 6.3], this concludes the first part of Theorem 4.21.

Let us now show that the exchange move in Figure 60 (right) also corresponds to a unique
Legendrian mutation. This is proven directly through the homotopy of fronts in Figure 62.

Indeed, the first step in Figure 62, starting from the upper left, consists of applying Move II,
pushing a trivalent vertex through a hexagonal vertex. The second and third steps are also
a direct application of a Move II, pushing the remaining two trivalent vertices through the
newly created two hexagonal vertices. The fourth move, starting at the left of the second
row, is a mutation of 2-graphs. This yields the 3-graph at the center of the second row, the
arrow being labeled by the letter µ. Finally, we apply a Move III, flopping the four vertices
nearest to the center, in order to achieve the 3-graph at the right of Figure 60 (right). This
shows that the exchange move in Figure 60 (right) is a Legendrian mutation.

�

For our applications to Lagrangian fillings, it is important to understand how 1-cycle rep-
resentatives of classes in H1(Λ(G),Z) change under the mutations depicted in Figure 60.
Following Subsection 2.4, we focus on 1-cycles represented by monochromatic edges – or
more generally long edges – and by Y-cycles. Figure 63 explicits shows how to transport cer-
tain I-cycles along the mutation. (See Section 2, specifically Subsection 2.4, for the definition
of I-cycles.) In addition, mutation along a long edge is dictated by the following:

15This is consistent with the fact that the Hopf link is the boundary of two transversely intersecting planes
in the 4-ball D4. For the max-tb Legendrian Hopf link, these two planes should be taken to be Lagrangian.
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Figure 62. The Legendrian mutation for 3-graphs as a sequence of Legen-
drian isotopies and 2-graph mutation.

Figure 63. The 2-graph mutation with the additional information of the
1-cycles, before and after the 2-graph mutation (Left). The Y-cycle and an
incident 1-cycle transforming before and after a mutation along the Y-cycle
(Right).

Corollary 4.22. Let [γ] ∈ H1(Λ(G),Z) be represented by a long edge in an N -graph G,
as shown in the first row of Figure 64. Then the Legendrian mutation µγ(Λ(G)) is the
Legendrian weave associated to the graph µγ(G) as depicted in the second row of Figure 64.

Figure 64. The two cases, left and right, of a Legendrian mutation along a
1-cycle γ represented by a long-edge.

Theorem 4.21 and Corollary 4.22 describe mutations along Y-cycles and I-cycles, either
monochromatic or long edges. In general, we might be interested in mutating along a cycle
γ which is a tree, both with Y-pieces and I-piece, as introduced in Section 2.4. Thus, we now
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develop local rules for Legendrian mutations that will allow us to mutation along any such
cycle γ. These rules also imply Corollary 4.22. All these rules are obtained and proven in
the same manner: one simplifies the weave with equivalence moves – using Section 4 – until
the cycle to be mutated becomes a short I-cycle. Then we apply the short I-cycle mutation
in Figure 60 (left) and rearrange the weave with moves to the required configuration. For
instance, for Corollary 4.22 (and so Figure 64), we push-through the left-most trivalent ver-
tex through all the hexagonal vertices until the long I-cycle becomes a short I-cycle. Then
we mutate at the short cycle, and push-through one of the trivalent vertices back to the left.

4.9. Diagrammatic Rules for N-graph Mutations. Let γ be a 1-cycle in an N -graph,
given by a tree with Y-pieces and I-pieces. In this subsection we gather the necessary rules
for performing a general mutation along γ and also diagrammatically carrying a 1-cycle after
the mutation at γ. The rules are local, either near a hexagonal vertex or a trivalent vertex,
and there are three cases that we need to draw: Legendrian mutation being performed at a
Y-piece, at a I-piece, and mutation near a trivalent vertex.

First, we draw the rules for the effect of mutating at a cycle which contains Y-pieces:

(i) Figure 65 shows how the Y-cycle at which we mutate transforms, this cycle is depicted
in green. Note that the resulting cycle locally contains only one Y-piece.

(ii) Figure 66 explains how to transform the other Y-cycle, in ochre (a darker yellow),
under mutation at the green Y-cycle in Figure 65.

(iii) Figure 67 then depicts the transformation of edge I-cycles through a hexagonal vertex
under mutation at the green Y-cycle in Figure 65.

(iv) Finally, Figure 68 provides the last information needed for carrying any cycle upon
mutating at the green Y-cycle in Figure 65. These are the three ways in which a
1-cycle must be continued if the 1-cycle is coming from the extremes of one of the
sides.

Second, the rules for mutating at a long edge of an I-piece of a 1-cycle:

(v) Figure 69 shows how to transform an I-piece upon mutation at the green I-piece.
(vi) Figure 70 then depicts the transformation of a Y-piece of a cycle, in ochre, upon

mutation at the green I-piece in Figure 69.

Finally, the local rules for mutating near a trivalent vertex are shown in Figure 71. These
rules are derived by performing Legendrian Reidemeister moves, especially Move II, until
the given cycle at which we want to mutate becomes a monochromatic (short) edge. Then
a monochromatic edge mutation is performed, as in Theorem 4.21, and Legendrian Rei-
demeister moves are performed back to the starting configuration. The two non-canceling
applications of a push-through move, before and after a monochromatic edge mutation, are
responsible for the tripling behavior seen in the diagrams.
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Figure 65. Case Mutation at Y-cycle: Internal Mutation along Y-piece in green.

Figure 66. Case Mutation at Y-cycle in Figure 65: Effect for ochre Y-cycle
of Internal Mutation along Y-cycle in green in Figure 65.

4.10. Sufficiency For Stabilized Legendrians. Finally, we conclude this section by in-
troducing the following combinatorial idea, motivated by the topology of Legendrian surfaces
in 5-dimensional contact manifolds.

Definition 4.23. An N -graph G ⊆ C is said to have a bridge if there exists two disjoint
2-disks D1, D2 ⊆ C such that the complement G \ (G ∩ D1 ∪ G ∩ D2) consists of (N − 1)
disjoint strands with labels τ1, τ2, . . . , τN−1 consecutive with respect to a transverse oriented
curve in C \ (D1 ∪D2). �

For the N = 2 case, where G is a trivalent graph, a bridge for G according to Definition
4.23 coincides with the standard graph-theoretic notion of a bridge [BM08, Die17]. A general
N -graph G ⊆ C with a bridge is depicted in Figure 72 (left), and an example of a 4-graph
with a bridge is shown in Figure 72 (right).

The geometric motivation for this definition is based on the theory of loose Legendrian
surfaces, also known as stabilized Legendrians [Mur12]. This class of loose Legendrians are
known to satisfy an h-principle and has proven to be very useful in the study of Weinstein
manifolds [CE12, CM19]. The reader is referred to [CE12, Mur12] for further details. For the
present manuscript, we will assume known its definition and state the following property:

Proposition 4.24. Let G ⊆ C be an N -graph with a bridge. Then ι(Λ(G)) is a loose
Legendrian surface.

Proof. The proof is a simple argument in the theory of spatial fronts. Indeed, consider the
1-dimensional front slice along the dashed orange line in Figure 72. The braid shown along
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Figure 67. Case Mutation at Y-cycle in Figure 65: Effect for ochre I-cycle
of Internal Mutation along Y-cycle in green.

this slice is depicted in Figure 73 (left). Its closure as a satellite of the standard Legendrian
unknot is shown in Figure 73 (center). This Legendrian link is isotopic, via a sequence of
Reidemeister II moves, to the Legendrian link given by the front in Figure 73 (right). The
loose chart is exhibited in yellow in this figure. Note that this chart has arbitrarily large
thickness due to the dilation freedom in (R5, ξst) and the fact that our front is global. This
proves that ι(Λ(G)) is a loose Legendrian if G has a bridge. �

Proposition 4.24 immediately has the following consequence.

Corollary 4.25. Let G ⊆ C be an N -graph with a bridge. Then ι(Λ(G)) ⊆ (S5, ξst) admits
no exact Lagrangian filling L ⊆ (D6, ωst). �

Corollary 4.25 should be contrasted with the fact that many of the Legendrian surfaces
ι(Λ(G)) ⊆ (S5, ξst) admit exact Lagrangian fillings. For instance, it follows from Theorem
4.10 that any 2-graph G obtained from the unique two-vertex 2-graph by adding bigons, i.e.
a 1-surgery, yields a Legendrian surface ι(Λ(G))) which admits exact Lagrangian fillings. On
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Figure 68. Case Mutation at Y-cycle in Figure 65: Effect for side I-cycles of
Internal Mutation along Y-cycle in green.

=

=

=

Figure 69. Case Mutation at I-cycle in green (upper Left). In second and
third row: effect of this mutation for ochre I-cycle of Internal Mutation along
I-cycle in green.
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Figure 70. Case Mutation at horizontal I-cycle as in Figure 69: Effect for
ochre Y-cycle of Internal Mutation along I-cycle in green in Figure 69 (left).

=

=

=

Figure 71. Case Mutation near trivalent vertex for green cycle (first row).
Second and third rows: Effect for ochre Y-cycle of Internal Mutation at green
cycle near trivalent vertex.

(23)

(12)

(34)

Figure 72. Structure of an N -graph with a bridge (left) and instance of a
4-graph with a bridge (right).

the other hand, simple 2-graphs do not – see [TZ18, Theorem 1.3].

Example 4.26 (Exact Lagrangian Cobordisms To a Loose Legendrian). Consider the Leg-
endrian Clifford 2-torus T2

c ⊆ (S5, ξst) associated, via the standard satellite, to the 2-graph
in Figure 74 (Left). By applying our combinatorial Legendrian surgery from Theorem 4.10,
Figure 43.(2), we obtain an (index-2) exact Lagrangian cobordism from T2

c to the Legen-
drian 2-sphere Λl associated Figure 74 (Right). By Proposition 4.24, the Legendrian Λl is a
loose Legendrian surface. This proves that the Legendrian Clifford 2-torus T2

c ⊆ (S5, ξst) is a
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Figure 73. The front for the Legendrian link obtained in a 3-dimensional
slice of a bridge (left). The front for the corresponding satellite closure (center)
and a homotopic front exhibiting a loose chart (right).

subloose Legendrian surface, and we will show in Section 6 that T2
c is not a loose Legendrian.

In particular, this also proves that T2
c ⊆ (S5, ξst) admits no 3-dimensional exact Lagrangian

fillings L ⊆ (D6, λst) in the standard symplectic 6-disk. The points in the non-empty flag
moduli associated to T2

c will in fact be geometrically represented by non-exact Lagrangian
fillings. �

Figure 74. An exact Lagrangian cobordism from a non-loose Legendrian
2-torus to a loose Legendrian 2-sphere.

5. Flag Moduli Spaces

In this section we introduce one of the central algebraic invariants in this article, the flag16

moduli space M(G) of an N -graph G and its associated Legendrian weave. We will prove
that these flag moduli spaces are moduli spaces of constructible sheaves associated to a
Legendrian weave, but we first present their explicit and self-contained definition.

5.1. Preliminaries on the Flag Variety. Let N ∈ N be a natural number and R a
commutative ground ring, which will oftentimes be a field. We denote by GLN the general
linear group, a scheme whose value over R is GL(N,R), and likewise for PGLN , the projective
general linear group. By definition, a (full or complete) flag is an element

F • ∈ {F 0 ⊂ F 1 ⊂ F 2 ⊂ · · · ⊂ FN−1 ⊂ FN : dimF i = i, 0 ≤ i ≤ N},
i.e. a sequence of nested linear subspaces F i ⊆ RN = R⊕ (N). . . ⊕R, 0 ≤ i ≤ N . Let B ⊆ GLN
be the Borel subgroup17 of upper triangular matrices preserving the standard coordinate flag.
Since GLN acts transitively on the set of bases, the space that parametrizes such full flags is
the homogeneous space B = GLN /B. This is an algebraic variety, known as the flag variety.

16“Vexillary” is the appropriate adjectival form of “flag”. Hence, it should technically be named the
vexillary moduli space. The word is possibly too obscure, and we thus favor flag moduli space, as in flag
variety.

17This is a maximal Zariski closed and connected solvable algebraic subgroup. Since B is a minimal
parabolic subgroup of GLN it preserves the most geometric linear structure in RN , which is precisely a flag
F •.
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The relative position of two flags (F •,G •) ∈ B × B is encoded algebraically by the Bruhat
decomposition

GLN =
⊔

w∈SN

BwB,

where the symmetric group SN = W (GLN ) is identified with the Weyl group. That is, the
orbits of the diagonal action of GLN on a pair of flags are indexed by the symmetric group
SN . The dimension of the Bruhat cell BwB is the length `(w) of the permutation w ∈ Sn.
By definition, F • and G • are in transverse position (or totally transverse or completely
transverse) if their relative position is w0 ∈ SN , where w0 denotes the longest element in

the Coxeter group SN . Note that `(w0) =
(
N
2

)
, w0 ∈ SN , and that totally transverse is the

generic relative position between two points in the flag variety B. In particular, an elementary
transposition τi ∈ SN determines a relative position between two flags F • and G • in which
only their ith vector spaces differ, and no others.

We will require a slight generalization of the above when the surface C is not simply con-
nected: compatible local systems of flags, rather than flags of subspaces of a fixed vector
space. This will not be required for our applications in Sections 6, 7 and 8, so the reader is
welcome to skip this paragraph. Let E −→ X be a local system on a topological space X.
By a local system of flags, we mean a complete filtration (flag) E • of E by local systems E k

such that the monodromy preserves the filtration. In this sense, the flag itself makes global
sense. Let U ⊂ X be a subspace and let F • be a flag of sub-local systems on U , so that
F k ⊆ E for all 0 ≤ k ≤ N . We say that F • is compatible with E • if the monodromies
are: specifically, for γ ∈ π1(U, u) and v ∈ F k, ik(γ · v) = ik,∗(γ) · ik(v), where the symbol ·
denotes (ambiguously) the action of any group on a vector space. Note that by monodromy
invariance, we may speak of the relative position of two compatible sub-local systems of flags
F • and G • on subspaces U and U ′ of X.

With these algebraic preliminaries, we turn to describing the flag moduli space associated to
an N -graph.

5.2. Description of the Flag Moduli Space of an N-graph. Let G be an N -graph on
a connected surface C, thought of as the union of the embedded graphs Gi. By a face of G
we mean the closure of a connected component of the complement C \G.

We first give a general description of the flag moduli space for C not necessarily simply
connected. We will not use this in our applications, so the reader is welcome to skip to the
simpler Definition 5.2, which is equivalent when C is simply connected.

Let Σ(G) ⊂ C × R be the wavefront of the Legendrian weave, woven according to G ⊆ C.
Call a region a connected component of the complement (C × R) \ Σ(G).

Definition 5.1. Let C be a connected surface and let G ⊆ C be an N -graph. The framed

flag moduli space M̃(C,G) associated to G is comprised of the following data.

i) A rank-N local system E −→ C, equivalently a vector space V and a representation
of the based fundamental group π1(C) on V .

ii) For each face F of the N -graph G, a compatible local system of flags F •(F ).

iii) For each pair of adjacent faces F1, F2, sharing an i-edge e, their two associated com-
patible local systems of flags F •(F1),F •(F2) are in relative position τi ∈ SN , and
along the common edge e we have chosen isomorphisms

F j(F1) ∼= F j(F2), 0 ≤ j ≤ N, j 6= i,

and no other information, as F i(F1) � F i(F2).
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iv) By gluing, these isomorphisms define local systems in each region, since the jth step
of a flag of local systems F j compatible with E defines a local system on the region
between the jth and (j + 1)st sheets — and these are not separated by a τi crossing
of sheets when j 6= i. We require that such local systems in regions, each of which
are sub-local systems of E via upward generization morphisms, are compatible with
E.18

The group PGLN acts on the space M̃(C,G) diagonally, i.e. as isomorphisms of E and on
all flags of local systems at once. By definition, the flag moduli space of the N -graph G is
the quotient stack

M(C,G) := M̃(C,G)/PGLN .

We simply write M(G) when C is understood. �

Definition 5.2. Let C be a connected, simply connected surface and let G ⊆ C be an N -

graph. The framed flag moduli space M̃(C,G) associated to G is comprised of tuples of flags,
specifically:

i) There is a flag F •(F ) assigned to each face F of the N -graph G.

ii) For each pair of adjacent faces F1, F2 ⊆ C \G, sharing an i-edge, their two associated
flags F •(F1),F •(F2) are in relative position τi ∈ SN , i.e. they must satisfy

F j(F1) = F j(F2), 0 ≤ j ≤ N, j 6= i, and F i(F1) 6= F i(F2).

The group GLN acts on the space M̃(C,G) diagonally, i.e. on all flags at once. By definition,
the flag moduli space of the N -graph G is the quotient stack

M(C,G) := M̃(C,G)/PGLN .

We simply write M(G) when C is understood. �

We will equivalently exchange between the linear and projective perspective for a full flag.
In the projective setting, flags F • (or local systems of flags) are understood as a sequence
of nested projective planes P(F )•, given by the projectivization of the linear spaces of the
linear flag F •. For a ground field R, the moduli space M(C,G;R) is representable by an
Artin stack of finite type [LO08, LO09], and is typically an algebraic variety (unless G is so
symmetric that an admissible configuration of flags might be fixed by PGLN ).

In Subsection 5.3 we explain why the moduli space M(C,G;R) is an invariant of the Leg-
endrian isotopy type of the associated Legendrian weave Λ(G) ⊆ (J1C, ξst). The algebraic
questions we are interested in this article are about the different properties and computations
of the moduli M(C,G;R) — for instance the cardinality of |M(C,G;Fq)| over a finite field
or howM(C,G;R) changes upon performing the combinatorial moves in Section 4, including
Legendrian mutations and surgeries. To ease notation, we will denote flags F • by F .

5.3. Sheaf Description of Flag Moduli and Invariance. Let C be a smooth surface,
R a commutative ring, and Sh(C × R) the category of constructible sheaves, i.e. the R-
linear dg-derived category of complexes of sheaves of R-modules on C×R with constructible
cohomology sheaves. For algebraic preliminaries on (derived) dg-categories we refer the
reader to [Kel94, Tab05, Toe07, LO10], and for simplicity we will choose R a field. In this
section, we use the identification J1(C) ∼= T∞,−(C × R) of the first jet bundle of C with
downward covectors of C × R — see [NRS+15, Section 2.1]. Now given an N -graph G ⊆ C,
the Legendrian Λ(G) ⊂ J1(C) ∼= T∞,−(C × R) ⊂ T∞(C × R) can be used to define the
subcategory ShΛ(G)(C × R) ⊂ Sh(C × R) whose objects are constructible sheaves whose

18This condition is not local in the N -graph, G.
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singular support at contact infinity is contained in Λ(G) ⊂ T∞(C×R) — see [TZ18, Section
4].

We write C(C,G) := Sh1
Λ(G)(C × R)0 ⊂ ShΛ(G)(C × R) for the subategory of microlocal

rank-one sheaves which are zero in a neighborhood of C × {−∞}, or C(G) for short. This
has a simple description, which we now explain. The dg-category ShΛ(G)(C × R) is itself a
subcategory of sheaves constructible with respect to the stratification defined by the front
projection Σ(G), and thus has a combinatorial description. By [KS90, Theorem 8.1.11], it is
equivalent to the dg-category of functors from the poset of strata to k-mod (chain complexes)
— see also [Nad09, Section 2.3] and [STZ17, Section 3.3]. The subcategory cut out by C(G)
is the one whose objects are isomorphic to ones with the following properties: the chain
complex assigned to a neighborhood of C × {−∞} is zero; the complexes in each region of
(C × R) \ Σ(G) are rank-one local systems (or just vector spaces if C is simply connected);
the morphisms assigned to all downward restriction maps are isomorphisms; and the upward
morphisms from small open sets intersecting Σ(G) to the regions above them which do not
are codimension-one inclusions.

The combinatorial model for this description leads to the flag moduli spaceM(G) of isomor-
phism classes of objects in C(G). Indeed, the flag moduli space M(G) associated to an N -
graph G ⊆ C, as introduced in Definition 5.2, relates to the category C(G) := Sh1

Λ(G)(C×R)0

according to the following result, which itself generalizes [TZ18, Section 4.3] to N -graphs with
N ≥ 3:

Theorem 5.3. The flag moduli spaceM(C,G;R) is isomorphic to the moduli space of objects
in C(G) := Sh1

Λ(G)(C × R)0, the subcategory of microlocal rank-1 objects in ShΛ(G)(C × R)

supported away from C × {−∞}.

Proof. We first assume that C is simply connected. The argument parallels that of [STZ17,
Sections 6.2 and 6.3], with the additions required by the strictly two-dimensional behavior.
The moduli space of objects is defined locally, meaning that it is the fiber product over

its restriction-to-boundary maps of the moduli spaces M̃ in neighborhoods of C. We can
assume that these neighborhoods of C are chosen small enough so that they are contractible
and contain no more than one “feature” of the given N -graph G. That is, for some such
neighborhood U ⊆ C, either U ∩ G is empty or contains part of an edge, a single trivalent
vertex, or a single hexagonal vertex. We then have a local study for each of these cases.

In the case where U is empty or contains part of an edge, the front of the Legendrian weave
over U is either N parallel sheets or N sheets with a single crossing labeled τi, and can be
identified with σ × R, where σ is a front of a one-dimensional Legendrian knot being either
N parallel lines or N lines with a single crossing. Then, since the R factor is contractible,

we can identify the moduli space M̃ over U using the one-dimensional study in [STZ17,
Sections 6.2 and 6.3], concluding that it is either the flag variety or pairs of τi-transverse
flags, respectively.

The moduli Sh1
Λ(G)(C × R) is local with respect to G ⊆ C and the topology of the surface

C, i.e. it is globally described as fibered products for the local pieces of G ⊆ C. It therefore
remains to show that Sh1

Λ(G)(C × R) coincides with M(C,G) for the local graphs Gtri ⊆ D2

and Ghex ⊆ D2, respectively given by a trivalent vertex and a hexagonal vertex, as introduced
in Section 2. We do these in turn.

The trivalent vertex case was studied in [TZ18, Section 4] for 2-graphs, and we will make the
needed adjustments to N -graphs. The computation for the local N -graph Gtri consists of an
analysis of the moduli of constructible sheaves supported at the D−4 -wavefront singularity, as

directly carried out in [TZ18]. The boundary conditions for an object in Sh1
Λ(Gtri)

(D2 × R)

consist of a triple of flags (F1,F2,F3) such that Fi ∈ Sτk(Fj) for i 6= j, 1 ≤ i, j ≤ 3, if the
edges of Gtri are labeled by τk. This can be seen by combining the result for a neighborhood
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of a single crossing edge above, taking the fiber product over the spaces of flags in the empty
neighborhoods in-between. Then [TZ18, Section 4.1] implies that these are all the required
conditions (and strata) and thus Sh1

Λ(Gtri)
(D2 × R) coincides with M(D2, Gtri). Note that

the analysis in [TZ18, Subsection 4.1.2] restricts to the case where the local model is a 2-
graph Gtri ⊆ D2, it is readily seen that this model suffices for the analysis of the local model
N -graph Gtri ⊆ D2.

Figure 75. Constructible sheaf in R3 microlocally supported on the A3-
swallowtail singularity (left). The sheaf convolution given by the Guillermou-
Kashiwara-Schapira [GKS12] quantization upon performing a Reidemeister
R1 move (right).

Alternatively, it is possible to directly conclude the analysis of the D−4 -singularity by perform-
ing a generic perturbation of the D−4 -wavefront, as depicted in Figure 36, and studying the
category of constructible sheaves supported at a A3-swallowtail singularity. Indeed, Figure
75 (left) shows the conditions for a constructible sheaf microlocally supported along the front
of an A3-swallowtail singularity, which consists of a choice of injective map f : C1 −→ C2,
where C1

∼= Rk and C1
∼= Rk+1, for some k ∈ N. The crucial fact is that the (stalk of

the) sheaf in the remaining 3-dimensional open strata I is uniquely determined to be the
cone of the map (f,−f) : C1 −→ C2 ⊕ C2. This is a consequence of the Guillermou-
Kashiwara-Schapira quantization [GKS12, Theorem 3.7] of Legendrian isotopies: since the
A3-swallowtail is the big wavefront [Ad90] of the first Reidemeister move for 1-dimensional
Legendrian fronts, it follows that the sheaves in the strata I are uniquely determined by
f : C1 −→ C2 by the sheaf kernel associated to the first Reidemeister move. It is readily
seen [STZ17] that the result of the convolution with such a kernel yields the sheaf transfor-
mation in Figure 75 (right). By the non-characteristic property of the category of microlocal
sheaves [GKS12], the sheaves microlocally supported on the wavefront of the D−4 -singularity
is equivalent to that for a generic perturbation of such D−4 -singularity. The generic pertur-
bation consists of three A3-swallowtails and the conditions for the constructible sheaves on
these stratification follow from the above analysis. In conclusion, we obtain an isomorphism
Sh1

Λ(Gtri)
(D2 × R) ∼=M(D2, Gtri).

Let us now address the hexagonal vertex Ghex. Since the Legendrian weave Σ(Ghex) is the
big wavefront of the third Reidemeister move for 1-dimensional Legendrian fronts, it suffices
to understand the kernel of its quantization. Figure 76 shows the local transformation for
constructible sheaves near the third Reidemeister move [STZ17, Section 4.4.3].

In Figure 76, the Ci, 1 ≤ i ≤ 5 and E1, E2 are complexes of vectors spaces, which we can
actually assume to be vector spaces [STZ17, Section 3.3]. If C1

∼= Rk, for some k ∈ N,
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Figure 76. The explicit flag exchange given by the Guillermou-Kashiwara-
Schapira [GKS12] quantization upon performing a Reidemeister R3 move.

the microlocal rank 1 condition implies that E1, E2, C2, C3
∼= Rk+1, C4, C5

∼= Rk+2 and
C6
∼= Rk+3. The four flags at one of the sides of the hexagonal vertex are

F
(1)
1 = C1 −→ C3 −→ C5 −→ C6, F

(1)
2 = C1 −→ E1 −→ C5 −→ C6,

F
(1)
3 = C1 −→ E1 −→ C4 −→ C6, F

(1)
4 = C1 −→ C2 −→ C4 −→ C6,

and the four flags at the other side of the hexagonal vertex are

F
(2)
1 = C1 −→ C3 −→ C5 −→ C6, F

(2)
2 = C1 −→ C3 −→ E2 −→ C6,

F
(2)
3 = C1 −→ C2 −→ E2 −→ C6, F

(2)
4 = C1 −→ C2 −→ C4 −→ C6.

The three crossings in Figure 76 (left) imply, from left to right, that

F
(1)
1 ∈ Sτk+1

(F
(1)
2 ),F

(1)
2 ∈ Sτk+2

(F
(1)
3 ),F

(1)
3 ∈ Sτk+1

(F
(1)
4 ).

Similarly, the three crossings in Figure 76 (right) imply, from left to right, that

F
(2)
1 ∈ Sτk+2

(F
(2)
2 ),F

(2)
2 ∈ Sτk+1

(F
(2)
3 ),F

(2)
3 ∈ Sτk+2

(F
(2)
4 ).

These are precisely the conditions for the flag moduli space M(D2, Ghex) in Definition 5.2,
and hence Sh1

Λ(Ghex)(D2 × R) ∼=M(D2, Ghex).

This concludes the argument for the case where C is simply connected. We now turn to
the case where C is not simply connected. There are no further local conditions. The only
additional concerns regard compatibilities of local systems.

Let Σ(G) ⊂ C×R be the wavefront of the Legendrian weave, and recall that we call a region
a connected component of the complement (C × R) \ Σ(G). A constructible sheaf in C(G)
restricts to a local system on each region, since there is no singular support away from the
wavefront. There are two distinguished regions Rtop and Rbot containing neighborhoods of
C×{∞} and C×{−∞}, respectively. A constructible sheaf in C(G) restricts to 0 in Rbot (by
definition) and to a local system on Rtop ∼ C that we assign to be the data E from Definition

5.1(i). Now, as explained in Definition 5.1(iv), the data of a point in M̃(G) defines a local
system in each region. Commutativity of sheaf restriction maps requires that a section which
is parallel transported around a region and then included into E arrives at the same place as
a section which is included first and then parallel transported around Rtop, and this is the
requirement of Definition 5.1(iv). �

5.4. Local Flag Moduli Computations. Let us prove the following useful lemmas on the
flag moduli, which can be implicitly used when performing computations onM(C,G;R). In
this section, and subsequent computations, we will consider a ground field R = k, with k = C
and finite fields k = Fq as the main fields of interest.

We start with the study of the flag moduli space at a trivalent vertex, as depicted in the left
of Figure 8, and characterize that local flag moduli space.
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Lemma 5.4. Consider the neighborhood Op3(N) of a τi-trivalent vertex in an N -graph. Then
the local moduli of flags M(Op3, G; k) is set-theoretically a point, and the PGLN -action on

M̃(Op3, G; k) has stabilizer (k∗)N−2 × k(N2 )−1.

Proof. Let F1,F2,F3 be the three flags in Op3(N). The GLN -action is transitive on the
space of flags, and thus F1 can be mapped to the standard flag S1, defined by

S j
1 = {xj+1 = xj+2 = . . . = xN−1 = xN = 0}, where k = Spec k[x1, . . . , xN ].

The GLN -action allows us to also map the two flags F2 and F3, respectively, to S2 and S3,
defined by

S j
2 = S j

3 = S j
1 , 0 ≤ j ≤ N, j 6= i,

S j
2 = {xi = xi+2 = . . . = xN−1 = xN = 0},

S j
3 = {xi − xi+1 = xi+2 = . . . = xN−1 = xN = 0}.

This implies that the quotient of the moduli M̃(Op3, G;R) by the gauge group PGLN is
set-theoretically a point. In order to recover its structure as a quotient stack, it suffices to
identify the stabilizer of the triple of flags S1,S2,S3. For that, notice that the stabilizer of
S1 is the projectivization of the Borel subgroup of upper triangular matrices, isomorphic to

(k∗)N−1 × k(N2 ). The condition of fixing the flag S2 transversely cuts out a k-coordinate in
the interior of the upper triangle, since it sets the (i, i + 1) entry equals to zero. This cuts

the stabilizer down to (k∗)N−1 × k(N2 )−1, and finally stabilizing S3 imposes the equality of
the two diagonal entries (i, i) and (i + 1, i + 1), thus transversely cutting down a k∗. The

resulting stabilizer is (k∗)N−2 × k(N2 )−1, as claimed. �

In its simplest instance of N = 2, this is the statement that three distinct points in the
projective line P1(k) can be sent to {0, 1,∞} with trivial stabilizer. A lesson from Lemma
5.4 is that for any N , near at least one trivalent vertex of an N -graph, we are allowed to use
the gauge group PGLN and fix the flags around that vertex. The (proof of the) lemma also
provides the (geometric) degrees of freedom left after this choice.

Example 5.5. Consider the 2-graph G associated to the triangulation of C = S2 with two
triangles. This 2-graph G, dual to the triangulation, has two vertices, three edges and three
faces. Then the flag moduli space M(S2, G;C) consists of a point {∗}. In fact, this point
{∗} of the flag moduli space geometrically corresponds to the conjecturally unique Lagrangian
3-disk filling of the standard Legendrian unknot Λ0 ⊆ (S5, ξst). �

Lemma 5.4 is a statement about a particular triple of flags. It ought to be noted that a generic
triple of flags is part of a moduli space of dimension

(
N−1

2

)
, with birational coordinates given

by generalized triple ratios – see Section 7 and [FG06b, Section 9]. The flags appearing in
the context of our N -graphs are in general a combination of non-generic flags, arising from
the local vertices, with a flag being modified at exactly one degree when crossing an edge.

Let us now address our second local model at a vertex, that of a hexagonal vertex, as depicted
in the right of Figure 8.

Lemma 5.6. Consider the neighborhood Op6(N) of a hexagonal vertex, with edges τi, τi+1

and consecutively ordered flags Fj, j ∈ Z/6Z. Then any pair of opposite flags Fk,Fk+3

determines the others.

Proof. By symmetry, it suffices to show that the flags F1,F4 determine F5 and F6. We
assume that F4 and F5 are separated by a τi+1 edge — a similar argument will work if it is

of type τi. By the prescribed transversality, we have F j
6 = F j

1 and F j
5 = F j

4 for j 6= i+ 1.

Now since F i
5 6= F i

6, and F i+2
1 = F i+2

4 , there exists a unique linear subspace V ⊆ F i+2
1
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which contains F i
5,F

i
6. So we must have F i+1

5 = F i+1
6 = V , uniquely determining the flags

F5 and F6. �

A direct application of Lemma 5.6 is the invariance of the moduli of flags under the N -graph
Reidemeister Move I from our Theorem 4.2 above:

Corollary 5.7. The flag moduli space M(C,G;R) is invariant under the candy twist. �

The candy twist – Move I – is the move depicted in Figure 19 above, and the proof of
Corollary 5.7 follows immediately from Lemma 5.6, since the interior faces of the local model
are uniquely determined by two opposing boundary flags, and they in turn determine the
remaining ones. Corollary 5.7 also follows from Theorem 1.1 and the Legendrian invariance
proven in [GKS12, Theorem 3.7]. The invariance of the moduli of flags under the other moves
in Theorem 4.2 can be proven similarly by direct means.

Lemma 5.6 discusses the flags in a neighborhood of a hexagonal vertex and allows for a
computation of the local flag moduli space M(Op6(N);R) at a hexagonal vertex, since it
reduces it to the study of a quadruple of flags.

Example 5.8. Let us illustrate this point by computing M(Op6(3);C), which we claim is
isomorphic to a point stabilized by the subgroup (C∗)2 ⊆ PGL(3,C). Indeed, the incidence
problem at a hexagonal vertex is given by six flags

F1 = (p1, l1), F2 = (p2, l1), F3 = (p2, l2),

F4 = (p3, l2), F5 = (p3, l3), F6 = (p1, l3)

where pi and li, for 1 ≤ i ≤ 4, are points and lines in P2(C) and the notation (pi, li) stands for
the projectivized flag pi ∈ li. Since the three points p1, p2, p3 are pairwise distinct, PGL(3,C)
acts on them transitively, and their stabilizer is the (projectivization) of a maximal torus in
GL(3,C), which is isomorphic to (C∗)2. Lemma 5.6 provides a more direct route: it suffices
to observe that the PGL(3,C)-stabilizer of the two completely transverse flags F1,F4 is the
set of diagonal matrices in PGL(3,C), i.e. (C∗)2. �

It is an exercise to extend the argument for Lemma 5.4 above in this context and show that:

Lemma 5.9. Consider the neighborhood Op6(N) of a (τi, τi+1)-hexagonal vertex in an N -
graph. Then the local moduli of flags M(Op6, G; k) is set-theoretically a point, and the

PGLN -action on M̃(Op6, G; k) has stabilizer (k∗)2 ×
(

(k∗)N−3 × k(N2 )−3
)

. �

Having computed the local models at trivalent and hexagonal vertices, in Lemmas 5.4 and
5.9, we now address the local flag moduli space around a τi-edge connecting two trivalent
vertices for 1 ≤ i ≤ N − 1. Thanks to our discussion in Subsection 2.4 on the homology of
the associated Legendrian weaves, we know that this is the flag moduli space associated to
a Legendrian cylinder. In contrast to Lemmas 5.4 and 5.9 above, we will now discover that
the local flag moduli space around a monochromatic edge is (set-theoretically) non-trivial.

Lemma 5.10 (Flag Cross-ratio). Let G be an N -graph, and e ∈ G a monochromatic edge
between two trivalent vertices. The local flag moduli space M(Op(e), G; k) in a neighborhood

Op(e) is isomorphic to k∗ with stabilizer (k∗)N−2 × k(N2 )−1, under the PGLN -action.

Lemma 5.10 appears in the study of cluster coordinates for 2-graphs in the works [FG06b,
TZ18], yet a treatment of it here, in the context of N -graphs, seems in order. The interesting
part in Lemma 5.10 is the existence of a non-trivial flag moduli space around the edge e ∈ G.
The stabilizer only appears due to the dependence on N . Note also that, by using Lemma
5.6, the statement in Lemma 5.10 can readily be generalized for a long edge e, i.e. an I-cycle
between two trivalent vertices, as described in Section 2.
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Proof. For an edge e ∈ G between two trivalent vertices, it suffices to discuss the case of a
monochromatic edge, since the push-through move preserves the flag moduli. In this case,
let v1, v2 be the two endpoints of e. By Lemma 5.4, the local flag moduli space around

v1 can be fixed to be a point with stabilizer (k∗)N−2 × k(N2 )−1. In this normalization, the
flag moduli space around v2 is determined in two of the sectors, and thus it is uniquely
described by the remaining choice of flag. This is tantamount to the choice of a fourth point
in P1(k) \ {0, 1,∞}, which yields a modulus of k∗. �

In general, the existence of a non-trivial 1-cycle γ ∈ H1(Λ(G),Z) provides the flag moduli
space with a k∗ factor, which can be geometrically interpreted as being a contribution of
the microlocal monodromy of the associated local system induced in the Legendrian surface
Λ(G), as we explain in Section 7. The following example illustrates this point in the case of
a Y-cycle in G.

Example 5.11. Let us compute the local flag moduli space in an N = 3 neighborhood of
a Y-cycle, as depicted in Figure 11 (Right). The configurations of points for this incidence
problem are given by the following conditions:

(a) Three distinct points p0, p1, p2, and three points qi ∈ li = 〈pi, pi+1〉, where the index
0 ≤ i ≤ 2 is understood modulo 3,

(b) The triples {pi, pi+1, qi}, 0 ≤ i ≤ 2, are triples of distinct points.

The action of PGL3 allows us to set p0 = [1 : 0 : 0], p1 = [0 : 1 : 0] and p2 = [0 : 0 : 1] with
a (k∗)2 Cartan stabilizer, and this stabilizer can then be used to fix q0 = [1 : 1 : 0] ∈ l0 and
q1 = [0 : 1 : 1]. The remaining choice of q2 yields the k∗ contribution to the flag moduli space
since it is a choice of a point q2 ∈ l2 distinct from p1, p2. �

This concludes our local computations of flag moduli spaces M(C,G). We now study the
behavior of the invariant M(C,G) under Legendrian surgery, and Sections 6 and 8 will
develop global computation of flag moduli spaces. Given an N -graph G ⊆ C, we ease
notation by writing M(G) for M(C,G).

5.5. Flag Moduli under Legendrian Surgeries. Let G,G′ be N -graphs such that G′ is
obtained by Legendrian surgery on G, as described in Theorem 4.10. The following result
relates the flag moduli spaces M(G) and M(G′) before and after Legendrian surgery.

Theorem 5.12. Let k be a field and G an N -graph. For any τi-edges of G, the flag moduli
space M(G) satisfies the following local relations:

Figure 77. The change of the flag moduli spacesM(G) under combinatorial
changes in a piece of an N -graph G.
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Proof. The relations can be verified with our description of the flag moduli space in Subsection
5.2. We can also argue directly thanks to the geometry developed in Section 4. Indeed,
the moduli of objects of the category of constructible sheaves microlocally supported at a
Legendrian connected sum Λ1#Λ2 is a direct product of the moduli of objects microlocally
supported at Λ1 and those microlocally supported at Λ2. By Theorem 4.10, the right and
left graphs Gr, Gl for the Relations (i) and (ii) geometrically correspond to Legendrian
connected sums with the standard Legendrian 2-torus T2

st, and the Legendrian Clifford 2-
torus T2

c , respectively. The flag moduli for the former is k∗, and for the latter it is k \ {0, 1},
which concludes (i), (ii). Finally, the relation (iii) follows from Proposition 4.24, as there do
not exist constructible sheaves microlocally supported at a loose Legendrian. �

Note that, by construction, there exists a 3-dimensional exact Lagrangian cobordism L(G,G′)
from Λ(G) to Λ(G′), in the symplectization of (J1C, ξst). Thus, from the standard results in
Floer theory [EES05b, EGH00], we expect19 a map fromM(G)×H1(L(G,G′), k) toM(G′).
Theorem 5.12 gives a strong indication of what these maps should be, i.e. for (i), (ii),M(G′)
is a k∗- or a (k \ {0, 1})-bundle over M(G), with the map being a section for this bundle
projection.

5.6. Non-characterstic Property of Stabilization. We conclude Section 5 with an in-
teresting and direct computation of flag moduli spaces. First, note that the proof of Theorem
4.17, showing that the standard satellites of Λ(G) and Λ(s(G)) are Legendrian isotopic, and
Theorem 5.3 imply the isomorphism

M(Λ(G)) ∼=M(Λ(s(G))),

where s(G) is the stabilization we introduced in Subsection 4.7. We will nevertheless provide
a self-contained sheaf-theoretical proof of that equivalence, which we now illustrate in the
case N = 2.

Proof of flag moduli space equivalence N = 2. In that case, the moduli of objects in the cat-
egory M(Λ(s(G))) parametrizes flags in P2 up to PGL(3,C) equivalence abiding the con-
straints imposed by the 3-graph on the left of Figure 78. We assume that the 2-graph
G = G1,2, before stabilizing, contains at least a vertex.

Figure 78. The flag configuration for N = 2 stabilization.

The graph G(1,2) imposes constraints on the points lying in a line l1 ⊆ P2, the ladybug
changes this line to distinct lines l2, l3, also different from l1, and the descending (12)-halo

provides the freedom of a point p ∈ l3. The fact that G(1,2) is contained in a wing of the

19To our knowledge, these maps have yet to be studied in the context of microlocal sheaf theory. The
expectation that they exist comes from the fact that the flag moduli space M(G) should correspond to an
augmentation variety for Λ(G), and these maps are known to exist between augmentation varieties.
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ladybug implies that l1 ∩ l2 ∩ l3 is a point, which for now we denote ∞. Let us show that
this moduli space coincides with the moduli space of points in l1 imposed by G(1,2). For
that, note that the stabilizer of three non-collinear points p1, p2, p3 ∈ P2 is isomorphic to
C∗ × C∗; indeed, it is isomorphic to the space of invertible diagonal matrices in PGL(3,C).
Geometrically, each of the C∗ allows us to move any point in one of the three possible lines
spanned by two of the three points {p1, p2, p3} around that line, on the complement of these
two spanning points.

Hence we can start by using the PGL(3,C) and fix the points 1, p,∞ ∈ P2 in the configuration
shown in the right of Figure 78, which determine the lines l1, l3. From the C∗ × C∗ we can
use the first C∗ in order to send the third point in l1 imposed by G(12) to 0 ∈ l1, and the
second C∗ to choose a point in the line l = 〈1, p〉, which in turn determines a line l2 ⊆ P2 by
taking its span with ∞ ∈ l1 ∩ l3. This fixes the configuration of lines l1, l2, l3 and the points
0, 1,∞, p ⊆ P2 with {0, 1,∞} ⊆ l1, and that is precisely the three points being fixed by the

PGL(2,C) symmetry acting in G(12). �

This argument is self-contained, yet hopefully illustrates how in general the geometric con-
clusion from Theorem 4.17, and the invariance of the flag moduli spaceM under Legendrian
isotopy, are stronger and neater tools than the strict algebraic invariance of the flag moduli
space. Let us now move forward with the following Sections 6, 7 and 8, which display several
applications of the techniques developed in Sections 2, 3, 4 and 5, and in particular prove
Theorems 1.5, 1.6, 1.8 and 1.9 stated in the introduction.

6. Applications and Vexillary Computations

In this section we study applications of our diagrammatic calculus for Legendrian weaves
Λ(G) associated to an N -graph G, and their flag moduli spacesM(G). In particular, we will
prove Theorem 1.5 and Theorem 1.6.

6.1. First Pair of Computations. Let us start with two simple examples of Legendrian
weaves and their flag moduli: the Legendrian Clifford torus and the double t4 ∪ t4 ⊆ S2 of
the 4-triangle t4 in the 2-sphere S2.

6.1.1. The Legendrian Clifford Torus. Let us consider the 2-graph G = (∂∆3)(1) ⊆ S2 in
Figure 79, which has already featured in the proof of Theorem 4.10. The flag moduli space
M(G) is readily seen to be the pair of pants P1\{0, 1,∞}. Indeed, there are four contractible
connected components in S2 \G, which implies that

M̃(G) = {(p1, p2, p3, p4) ∈ (P1)4 : pi 6= pj , i 6= j}

where P1 ∼= GL(2,C)/B is the flag variety of lines in C2. Since PGL(2,C) acts 3-transitively

on P1, we can assume that (p2, p3, p4) = (0, 1,∞), and the quotient M̃(G)/PGL(3,C) is
given by

M(G) = {λ ∈ P1 : λ 6= 0, 1,∞}.
This flag moduli space is shown in Figure 79 (left), which is uniquely determined by the
choice of λ ∈ P1 \ {0, 1,∞}.

Let us illustrate the Legendrian geometry in this case. The Euler characteristic of the Leg-
endrian weave Λ(G) is χ(Λ(G)) = 2 · χ(S2) − 4 = 0, and thus Λ(G) is a closed 2-torus. A
different front for Λ(G) is depicted in Figure 79 (right), where the cone singularity [CM19,
Section 2] is used, in line with the description in [DR11, Section 3]. The flag moduli space
M(G) for the 2-graph G is read in this front as the moduli space of constructible sheaves in
R3 microlocally supported with rank-1 in the front Figure 79 (right). This latter moduli is

72



Figure 79. The tetrahedral 2-graph G as a planar projection of the 1-
skeleton (∆3)(1) of the tetrahedron ∂∆ (left). A front projection for the
Legendrian 2-torus ι(Λ(G)) (right).

given with the data of a 1-dimensional vector space C in the bounded region in the interior
of the front and a linear monodromy map λ : C −→ C. The monodromy must be an iso-
morphism, and thus λ ∈ GL(1,C) ∼= C∗, and also satisfy the additional constraint imposed
by the cone singularity. By generically perturbing this singularity, it is readily seen that the
condition is that the monodromy λ does not have 1 has an eigenvalue, which in this case
reduces to λ ∈ C \ {0, 1} ∼= P1 \ {0, 1,∞}. This is precisely the flag moduli space M(G). �

Remark 6.1 ([Nad17b, TZ18]). This particular wavefront allows for a direct Legendrian
analysis of the Landau-Ginzburg model (C3, z1z2z3), as follows. The regular fiber F ⊆ C3 of
the superpotential is isomorphic to F ∼= (C∗)2, and its Lagrangian skeleton is thus an exact
2-torus T2 ⊆ F , i.e. the vanishing cycle for the (non-isolated) singularity W . Its Legendrian
lift

Λ := {(z1, z2, z3) ∈ C3 : |z1| = |z2| = |z3| = 1/3, arg(z1) + arg(z2) + arg(z3) = 0} ⊆ (S5, ξst),

has vanishing (singular) thimble the conic Lagrangian

L = {(z1, z2, z3) ∈ C3 : W (z1, z2, z3) ∈ R+, |z1| = |z2| = |z3|}.
By performing a real blow-up at the origin, we introduce a real 2-sphere S2 at the origin and
a projection map π : Λ −→ S2 from our Legendrian 2-torus onto this exceptional 2-sphere
S2. In coordinates, the map π(z1, z2, z3) = (<(z1),<(z2),<(z3)) is just given by taking the
real parts of the complex coordinates and realizes the Legendrian surface Λ ⊆ (S5, ξst) as
the Legendrian weave ι(Λ(G)) associated to the four-vertex 2-graph G ⊆ S2, given by the
1-skeleton of the tetrahedron. Thus, the mirror of the Landau-Ginzburg model (C3, z1z2z3)
is the Legendrian 2-torus in (J1S2, ξst) which satellites to the Clifford 2-torus T2

c ⊆ (S5, ξst).
This leads to the description of the A-model Landau-Ginzburg model (C3, z1, z2, z3), given by
the category µShL(C3) of wrapped sheaves, as the bounded dg-category of finitely-generated
torsion complexes on the flag moduli space M(T2

c)
∼= P1 \ {0, 1,∞}. �

6.1.2. The Double of the 4-Triangle. Let us consider the 4-graph G(t4) associated to a 4-
triangle t4, as depicted in Figure 80 (left), and described in Section 3. Let G = G(t4) ∪∂
G(t4) ⊆ S2 be the 4-graph obtained by gluing two copies of this 4-graph along their bound-
aries, i.e. G is the 4-graph associated to the 4-triangulation of S2 with two underlying
t1-triangles. The 4-graph G is depicted in Figure 80 (right), where the circle at the boundary
is identified to a unique point, which is a hexagonal vertex.

For the computation of the flag moduli spaceM(G), we employ our geometric techniques in
Section 4. Theorem 4.10 allows us to remove the initial three (blue) τ1-bigons, by considering
a direct sum with three copies of the standard Legendrian 2-torus T2

st, see Section 4. By
applying Move I in Theorem 4.2 three times, we obtain the 3-graph in Figure 81 (left).
Further removing three of the bigons, we reach the 3-graph G0 in Figure 81 (right). The

framed flag moduli space M̃(G0) for the 3-graph G0 is given by the choice of two flags
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Figure 80. The local 4-graph G(t4) associated to a 4-triangle t4 (left). The
global 4-graph G(τ4) given by the 4-triangulation τ4 of the 2-sphere S2 with
two triangles.

F1 = (p1, l1, π1),F2 = (p2, l2, π2) ∈ GL4 /B in projective 3-space, and a choice of three
points p3, p4, p5 ∈ P3

k such that

- (l1, π1) and (l2, π2) are completely transverse, i.e. l1 6∈ π2 and l2 6∈ π1, and p1 6= p2,
- p3 ∈ l1, p3 6= p1,
- p4 ∈ l2, p3 6= p2,
- p5 ∈ π1 ∩ π2, p3 6= p1.

In particular, M(G0) ∼= M̃(G0)/PGL4, and the flag moduli space M(G0) is described by
the data above. By Theorem 4.10, and the fact that each bigon contributes to k∗ once
the Legendrian weave is connected, we deduce that our original flag moduli space must be
isomorphic to M(G) ∼=M(G0)× (k∗)4.

Figure 81. The 4-graph G(τ4) in Figure 80 after three index 1 anti-surgeries
- accounted by the connected sums with T2

st - and simplified with Move I
(right). The 4-graph obtained by three additional index anti-surgeries (right).

This simplification, from the original 4-graph G to G0, allows for a direct description above
of the flag moduli spaceM(G), from which further information can be readily extracted. For
instance, the Fq-rational count for M(G)(Fq) is immediately:
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|M(G)(Fq)| =
(q − 1)5

(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)
· q3 · (q4 − 1)(q3 − 1)(q2 − 1)

(q − 1)3
(q + 1)q,

as |PGL(4,Fq)| = (q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)(q − 1)−1, the rightmost multiplicative
factor is the count for the two flags F1,F2, and the q3 factors stands for the final choice of
(p3, p4, p5). �

We conclude this initial gallery of computations with the following:

Example 6.2 (Concentric Circles). Let τ = (τi1 , τi2 , . . . , τin) be an ordered collection of n
simple transpositions τij ∈ SN−1, 1 ≤ j ≤ n, n ∈ N. Consider the N -graph G(τ) ⊆ S2

described by n concentric circles Ci ⊆ S2, 1 ≤ i ≤ n, with center on the North Pole, and
strictly increasing radius. This N -graph is depicted in Figure 82 (left).

Figure 82. The N -graph G(τ) associated to the sequence of transposi-
tions τ = (τi1 , τi2 , . . . , τin) (left). The 4-graph G(τ) associated to τ =
(τ1, τ2, τ3, τ1, τ2, τ1) (right).

The Legendrian weave Λ(G(τ)) ⊆ (J1S2, ξst) is a radial version of the N -stranded positive
braid closure of β = σi1σi2 · . . . · σin . Smoothly, it is a link of N two-spheres S2. The
moduli space of rank-one sheaves in R2 supported along the positive braid β is the open
Bott-Samelson variety O(β) [STZ17, Tri19, CG20]. By Section 5.2, since C = S2 is simply
connected, there is no further monodromy information and M(G(τ)) = O(β). In particular,
the links with different n have a different number of points over Fq and cannot be Legendrian
iosotopic. We note further that [STZ17, Theorem 6.34] relates this number to the HOMFLY-
PT polynomial of the (topological) knot in R3 defined by the braid β. �

6.2. Symmetry groups for Legendrian weaves. Let G be an arbitrary finite group and
Λ ⊆ (S5, ξst) a Legendrian surface, with underlying smooth surface S(Λ). Let L(Λ) be the
space of embedded Legendrian surfaces in (S5, ξst) Legendrian isotopic to the Legendrian
surface Λ, with base point Λ. In addition, let L(Λ) be the monoid of 3-dimensional exact
Lagrangian concordances in the symplectization (S5×R(t), etλst), up to Hamiltonian isotopy,
based on the Legendrian surface Λ ⊆ (S5, ξst). Let ϕt : S(Λ) −→ (S5, ξst) be a S1-family of
Legendrian embeddings, t ∈ S1. Then the graph map

gr : π1(L(Λ)) −→ L(Λ), [ϕt] 7−→ (ϕt(S(Λ)), t),

allows us to relate loops of Legendrian surfaces with Lagrangian concordances.

These spaces L(Λ),L(Λ) are challenging to study. Already in the 1-dimensional case of
Legendrian links Λ ⊆ (S3, ξst), it was only established recently that there exist Legendrian
links such that the fundamental groups π1(L(Λ)) can admit (infinite order) non-Abelian
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subgroups [CG20, Corollary 1.6], and L(Λ) actually contains elements of infinite order [CG20,
Corollary 1.7]. To our knowledge, the only previous result about the fundamental group
π1(L(Λ)) or the monoid L(Λ) for Λ ⊆ (R5, ξst) a Legendrian surface was proven in [SS16],
where Legendrian surfaces ΛZn , n ∈ N, were built such that π1(L(ΛZn)) admits the finite
cyclic group Zn as a subgroup. Legendrian weaves and their flag moduli space are well-suited
to address these questions. We present the following result for Legendrian surfaces in (S5, ξst):

Theorem 6.3. Let G be an arbitrary finite group. Then there exists a Legendrian surface
ΛG ⊆ (S5, ξst) such that

(i) G is a subquotient of the fundamental group π1(L(ΛG)),
(ii) G is a subquotient of the 3-dimensional Lagrangian concordance monoid L(ΛG).

In fact, the latter is the image of the former via the graph map gr : π1(L(Λ)) −→ L(Λ).

Proof. The argument is structured in two parts. First, we describe a construction of a 2-
graph G′ given a triangulation of a surface. Second, we use this construction to prove the
statement. The second part has itself two steps: in the first step, the statement is proven
only for those finite groups G which are Hurwitz groups H.20 In the second step, the case of
Hurwitz groups is used to conclude the statement for an arbitrary finite group.

First, we begin by describing a construction of 2-graphs. Let (C, T ) be a closed smooth
surface, T a triangulation with e(T ) edges, and G(T ) the trivalent 2-graph dual to the
triangulation T . Consider the 2-graph G′ obtained by adding a bigon at each edge of G(T ),
using Move 4 in Figure 4. By Theorem 4.10, specifically Remark 4.11.(ii), the Legendrian
ι(Λ(G′)) is obtained by performing a connected sum of ι(Λ(G(T ))) with e(T ) copies of the
standard Legendrian torus T2

st ⊆ (S5, ξst). Then [DR11, Proposition 4.6], or Theorem 5.12,
implies that the complex flag moduli spaceM(G′) is isomorphic to the productM(G(T ))×
(C∗)e(T ), and thus H∗(M(G′),Q) ∼= H∗(M(G(T ),Q) ⊗ H∗((C∗)e(T ),Q) by the Künneth
formula.

Second, we will now prove the statement in the case that G is assumed to be an arbitrary
but fixed Hurwitz group H. By virtue of Hurwitz’ theorem [Hur92, LT99], there exists a
compact Riemann surface C = C(H) whose automorphism group is (isomorphic to) H; this
surface C is called a Hurwitz surface in the literature. The topological surface underlying
the Riemann surface C admits a triangulation T (H) with symmetry group H. In particular,
the dual graph G = G(T (H)) also has symmetry group H. Let us now consider the 2-graph
G′, associated to G as in the paragraph above, where the edge bigons are added such that
H is still a subgroup of the symmetry group of G′. Note that, by construction, H acts
faithfully on the set of edges of the triangulation T , and thus H also acts faithfully on the
1⊗H∗((C∗)e(T ),Q) ⊆ H∗(M(G′),Q) piece of the cohomology of the flag moduli spaceM(G′).

Now, the generators x, y of the triangle group T (2, 3, 7) are geometrically given by rotations
of the Poincaré hyperbolic disk, namely x is a rotation of angle π about the vertices of the
(2, 3, 7)-Schwarz triangle and y corresponds to a rotation of angle 2π/3. Since a rotation
ρ is smoothly isotopic to the identity, as a diffeomorphism, there exists a contact isotopy
φt(ρ), t ∈ [0, 1], of (J1C, ξst) such that φ0(ρ) = id and φ1(ρ) set-wise fixes the weave front
associated to G′, and thus the Legendrian surface Λ(G′) associated to it. This contact
isotopy φt(ρ) defines an element of π1(L(Λ(G′))), and its graph an element of L(Λ(G′)).
The flag moduli space M(G′) is a Legendrian isotopy invariant of the Legendrian surface
Λ(G′) ⊆ (S5, ξst), and this contact isotopy induces an automorphism ofM(G′). In particular,
there are Legendrian isotopies φt(x) and φt(y) associated to the generators x, y of any Hurwitz
group H, x rotating π and y rotating 2π/3. Thus the subgroup 〈φt(x), φt(y)〉 ⊆ π1(L(Λ(G′)))

20A Hurwitz group H is any finite group which can be generated by an element x of order 2 and an element
y of order 3 whose product xy has order 7. Equivalently, a Hurwitz group is any finite nontrivial quotient of
the (2, 3, 7)-triangle group T (2, 3, 7) := 〈x, y‖x2 = y3 = (xy)7 = 1〉.
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acts by automorphisms in M(G′). Since H acts faithfully in the cohomology H∗(M(G′)),
as pointed out above, H is a subquotient of π1(L(Λ(G′))), namely, it is a quotient of the
subgroup 〈φt(x), φt(y)〉. The argument for L(Λ(G′)) is identical, and this concludes the
required statement for Hurwitz groups H.

Finally, to conclude the general statement, let G be an arbitrary finite group and assume
the result holds for Hurwitz groups, which is proven above. Then G is a subgroup of the
alternating group An for large enough n ∈ N. By [Con84, Section 3], see also [LT99], An is
a Hurwitz group G(C) for n ≥ 168, and thus G injects into such a Hurwitz group G(C).21

The argument above thus implies that G is a subquotient for π1(L(Λ(G′))) and L(Λ(G′)).
Hence, the choice of weave Λ(G′) completes the proof of Theorem 6.3. �

We do not know whether or not a result analogous to Theorem 6.3 holds for 1-dimensional
Legendrian knots Λ ⊆ (S3, ξst). That could be a good question in low-dimensional contact
topology. Any answer – positive or negative – would be of interest.

There is a complement to Theorem 6.3 for certain groups G of infinite order, including non-
Abelian groups such as PSL(2,Z), by using results of the first author. Indeed, the Legendrian
weave associated to the 4-graph G(τ) with the eighteen concentric circles

τ = (τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2, τ1, τ2)

represents a 3-component Legendrian link Λ(G(τ)) of 2-spheres. The geometric Br3-braid
action constructed in [CG20], modulo its center Z(Br3), acts faithfully on the flag moduli
spaceM(Λ(G(τ))). This flag moduli space is described in Example 6.2. Then [CG20, Theo-
rem 1.1] shows that the modular group PSL(2,Z) acts faithfully on the cluster charts for the
space obtained by forgetting the monodromies in the Grothendieck resolution M(Λ(G(τ))).
Hence, PSL(2,Z) is a subquotient of π1(L(Λ(G(τ)))) and L(Λ(G(τ))) for these Legendrian
weaves Λ(G(τ)).

6.3. Flag Moduli and Bipartite Graphs. In Section 3, we introduced the construction of
a 3-graph G ⊆ C associated to an embedded eponymous bipartite graph G. This subsection
explains how to compute flag moduli spaces for such 3-graphs.

We will employ a useful notation, local to this subsection. If a, b ∈ V 3 are distinct vectors in a
3-dimensional vector space V , we denote by ab the unique 2-plane spanned by a, b. Similarly,
given two 2-planes A,B,⊆ V 3, the intersection A ∩B will be denoted by AB.

At a hexagonal vertex, traveling between opposite faces requires crossing three edges of
alternating colors, and thus opposite faces are assigned completely transverse flags A =
(a,A) = aA and B = (b, B) = bB. Note that a single such pair A,B determines the
remaining four regions, by Lemma 5.6: if crossing red, blue, red from A to B, the flags
in succession are (a,A), (AB,A), (AB,B), (b, B). If crossing blue, red, blue, the flags are
(a,A), (a, ab), (b, ab), (b, B). This is depicted as follows:

(a,A)

(b, B)

(a, ab)

(AB,B)

(AB,A)

(b, ab)
•

•

a

b

AB

ab

A

B

Now consider an edge of the bicubic graph G. In the associated 3-graph, this edge generates
two hexagonal vertices which are connected by two adjacent edges of different colors. This
local configuration is said to be a hexagonal edge. Let us denote the two flags on opposite

21Note that An, for n ≤ 168, is a subgroup of Am, for a greater m ≥ n, and thus all cases An are covered.
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regions along the axis connecting the hexagonal vertices by A = aA and C = cC. Let B be
the flag in the interior region of the hexagonal edge, transverse to both A and C. There are
two further conditions on the flag B:

AB ⊂ C, c ⊂ ab.

The Weyl group W (A2) ∼= S3 is the symmetric group on three elements, and thus there are
six possible relative positions for the two flags A, C ∈ GL3 /B. Here we consider the case of
a finite field k = Fq. In a hexagonal edge, the relative position of the two outer flags A, C is
restricted:

Lemma 6.4. The two outer flags A, C in a hexagonal edge must coincide or be completely
transverse. In addition, with A, C fixed, number the of choices of flag B in the interior of the
hexagonal edge is q3, in the case A = C, and q − 1, in the case A 6= C.

Proof. Let us analyze their possible relative positions, labeled according to the elements
W (A2) = {0, 1, 2, 12, 21, 121}:

- Type 0: C = A. Then the conditions are automatic, and B is simply transverse to
A = C. There are q3 such choices.

- Type 1: c = a,C 6= A. The second condition is then automatic, but C ⊃ a = c and
C ⊃ AB means C = A. This is a contradiction.

- Type 2: c 6= a,C = A. The first condition is then automatic, but c ⊂ C = A and
c ⊂ ab means c = a. This is a contradiction.

- Type 12: a 6= c, C 6= A but a ⊂ C. Then a ⊂ C and AB ⊂ C means C = A This is a
contradiction.

- Type 21: a 6= c, C 6= A but c ⊂ A. Then c ⊂ A and c ⊂ ab means c = a. This is a
contradiction.

- Type 121: In this case, the flag B is determined by either equivalent choice: a line b
in ac not equal to a or c (then B is the plane bAC) or a plane B containing AC not
equal to A or C (then b is acB). The number of such choices is q − 1.

Therefore, this flag B has either q3 or q−1 internal degrees of freedom, respectively, after fixing
the outer flags A and C to be either equal or completely transverse. The other configurations
have no solutions. �

We now apply Lemma 6.4 and the discussion above to prove Theorem 1.5 in the introduction.

6.4. Non-isotopic Links of Legendrian Spheres. Let n ∈ N and consider the bipartite
Ladder Graph Ln ⊆ S2 depicted in Figure 83 (bottom). The number n ∈ N denotes half the
number of square faces, and the right and left sides of the bipartite graph are identified in
S2. In particular, S2 \ Ln has 2n+ 2 connected components, 2n squares and two 2-disks, at
the north and south poles of S2. We consider its associated 3-graph Ln ⊆ S2, as described in
Section 3, which is shown in Figure 83 (bottom). The Legendrian weave Λ(Ln) ⊆ (J1(S2), ξst)
consists of a 3-component link of Legendrian 2-spheres, independent of n ∈ N.

Note that the Legendrian link Λ(Ln) ⊆ (J1(S2), ξst) is smoothly isotopic to the surface unlink,
as the codimension of this smooth embedding is three. We now show that the Legendrian
isotopy type of the Legendrian link Λ(Ln) ⊆ (J1(S2), ξst) is different for each n ∈ N. This
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Figure 83. The bipartite Ladder Graph Ln, where the right and left sides
are identified after n rungs (bottom). The 3-graph Ln associated to Ln (top).

will be achieved by counting the number of points of their flag moduli spaces M(Ln) over a
finite field. The precise statement reads:

Theorem 6.5 (Theorem 1.5). Let Ln ⊆ S2 be the (2n)-runged ladder graph and Fq a finite
field, q a prime power. Then the flag moduli space M(Ln) has orbifold point count

|M(Ln)(Fq)| =
q2n−3 − qn−2 + qn−1 + q − 1

(q − 1)2
.

Hence, the Legendrian surface links Λ(Ln) and Λ(Lm) are Legendrian isotopic iff n = m.

Proof. Let us consider the two flags A, C ∈ GL(3,C)/B located in the strata corresponding
to the neighborhoods of the north and south poles. We have shown these flags in Figure 84.
The flags in the vertical regions will be denoted Bi, 0 ≤ i ≤ 2n− 1, with the cyclic condition
B0 = B2n.

Figure 84. The flag configuration at a point of the flag moduli spaceM(Ln)
where A = (a,A), C = (c, C) are the inner and outer flags. Observe that the
choice of A, C partially fills the flags in the horizontal eye-shaped regions.

By Lemma 6.4, the existence of the flags Bi in the vertical hexagonal edges, 0 ≤ i ≤ 2n− 1,
as in Figure 84, implies that the relative position of A, C must either be trivial, i.e. A = C,
or completely transverse, i.e. the projective lines A 6= C are distinct, and a 6∈ C and c 6∈ A.
The Fq-count is divided into these two cases.

First, let us consider the case where A and C are completely transverse, i.e. they belong
to the Bruhat GL(3,C)-orbit labeled by w = (12)(23)(12) ∈ W (A2). We claim that after
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choosing the flag B0 = (b, B), the remaining flags Bi, 1 ≤ i ≤ 2n−1 are uniquely determined.
The resulting flag configuration is shown in Figure 85.

Figure 85. Flag configuration at a point of the flag moduli space M(Ln)
in the case A = (a,A) is completely transverse to C = (c, C). For these
configurations, the choice of flag (b, B) uniquely determines the point in the
flag moduli.

Let us prove this. Since A and C are completely transverse, they determine the flags
(AC,A),(a, ac) in the horizontal eye-shaped spaces in the upper row, and the flags (AC,C),(c, ac)
in the corresponding horizontal spaces along the bottom. The additional choice of B0 = (b, B)
determines the flags (AC,B), (b, ac) in the left and right regions adjacent to that of B0. Note
that B 6= ac and b ∈ B ∩ ac. Similarly, b 6= AC and the two points AC, b ∈ P2 span the line
B. The flag B1 must have b ∈ P2 as its point, and its line must contain AC, b ∈ P2. Hence the
flag B1 = (b, B) is uniquely determined, and coincides with B0. By an analogous reasoning,
B1 determines the flag (AC,B) on the adjacent region at its right, and hence the line in B2

must be B. Since the point in B2 must be the intersection B ∩ ac, we conclude B2 = (b, B)
and thus B2 = B1 = B0. Iteratively applying these two steps, we show that Bi = B0 for all
1 ≤ i ≤ 2n − 1. The cyclic condition B0 = B2n is automatically verified in this case. In
conclusion, in this completely transverse case, the choices are the three flags A,B1, C, being
pairwise completely transverse. This configuration is depicted in Figure 86 (left).

Figure 86. The projective flags A, C and B = (b, B) in the case A, C are
completely transverse (left). The configuration of projective flags in the case
A = C, where admissible flags (b1, B1), (b2, B1), (b2, B2), (b3, B2), (b3, B3) are
depicted (right).
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The counts over a finite field are

|PGL(3,Fq)| =
(q3 − 1)(q3 − q)(q3 − q2)

q − 1
, |P2(Fq)| = |P2(Fq)∗| =

(q3 − 1)

(q − 1)
= q2 + q + 1,

and a projective line P1(Fq) has q + 1 points. Also, note that there are |P1(Fq)| = q + 1
choices of lines through a point. Now, the choice of the flag A = (a,A) gives a count of
|P2(Fq)| · |P1(Fq)|. The choice of the completely transverse flag C = (c, C) gives q3, as we
must have a 6∈ C, and c ∈ C but c 6= A∩C. The line B in the third transverse flag B0 = (b, B)
must contain the point A∩C, and its point b = B ∩ ac is uniquely determined by the choice
of such B. Since B must be distinct from A and C, we get q− 1 choices for the line B. This
yields a total count of

((1 + q + q2)(1 + q)) · (q3) · (q − 1)

(1 + q + q2)(q3 − q)(q3 − q2)
=

1

q − 1
,

for the case where the flags A, C are completely transverse. Thus, A,B0, C can be fixed,
mutually completely transverse, and a factor of (q − 1)−1 remains.

Second, let us consider the case where A = C. In this case, the flags Bi, 1 ≤ i ≤ n, will not
all be equal. We proceed with the same systematic analysis as before. The initial choice is
B1 = (b1, B1), and this determines the flags (b1, ab1), (AB1, B1) in the left and right adjacent
regions of B1. In turn, this determines the line in B2 to be B1 ⊆ P2. The point in B2 remains
undetermined at this stage, and this is a choice of b2 ∈ B2, with a count of q, since b2 ∈ B1

and b2 6= A ∩ B1. This is depicted in Figure 85. The choice of the point b2 ∈ B2 readily
determines the point in the flag B3, whose line is undetermined. There are exactly q choices
for a line B2 ⊆ P2 in B3, as it must contain b2 and be different from B1. This is an iterative
process, where the count of choices that determine the flag Bi, 2 ≤ i ≤ n is exactly q, either
because of the choice of a point or a line. The flag configuration is depicted in Figure 87.

Figure 87. Flag configuration at a point of the flag moduli spaceM(Ln) in
the case A = C. For these configurations, the sequence of flags (bi, Bi) are
part of the choice that determine the points in the flag moduli.

At this stage of the case A = C, we need to impose the cyclic condition B0 = B2n given by
the ladder graph. This is not automatic, and it will actually reduce the naive count of q2n for
the choices of Bi, 0 ≤ i ≤ 2n− 1. Let us use the PGL(3,Fq) symmetry to fix the flags A = C
and B0. We will now use affine coordinates, so the flag A will be understood as a line a ⊆ F3

q

and a plane A ⊆ F3
q . Thus, we assume that the line a ⊆ F3

q in A is spanned by

1
0
0

 and

the plane A ⊆ C3 is the kernel of the covector (0, 0, 1), and the flag B0 is given by the pair
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0
0
1

, (1, 0, 0). Note that this flag configuration has a residual isotropy group isomorphic to

(F×q )2, and we will divide our count for fixed A,B0 by the isotropy factor of (q − 1)2.

Let us parametrize the remaining degrees of freedom for flags Bi, 1 ≤ i ≤ B2n−1 by the
choice of coordinates xi ∈ Fq and ai ∈ Fq, respectively used for each line bi and plane Bi,
1 ≤ i ≤ n. By labeling lines and planes by their normalized vectors and covectors, we obtain
the description:

B0 : b0 =

0
0
1

 B0 = (1, 0, 0)

B1 : b1 =

 0
x1

1

 B0 = (1, 0, 0)

B2 : b1 =

 0
x1

1

 B1 = (1, a1,−a1x1)

B3 : b2 =

 −a1x2

x1 + x2

1

 B1 = (1, a1,−a1x1)

B4 : b2 =

 −a1x2

x1 + x2

1

 B2 = (1, a1 + a2,−a1x1 − a2(x1 + x2))

B5 : b3 =

−a1x2 − (a1 + a2)x3

x1 + x2 + x3

1

 B2 = (1, a1 + a2,−a1x1 − a2(x1 + x2))

B6 : b3 =

−a1x2 − (a1 + a2)x3

x1 + x2 + x3

1

 B3 = (1, a1 + a2 + a3,−a1x1

−a2(x1 + x2)− a3(x1 + x2 + x3))
...

...

B2k : bk =

−
∑k

i=2

(∑i−1
j=1 aj

)
xi∑k

j=1 xj
1

 , Bk =

1,
k∑
j=1

aj ,−
k∑
i=1

ai

 i∑
j=1

xj


Since the dot product Bk · bk = 0 for all 1 ≤ k ≤ n, the 2-planes Bk contain the points bk, as
required. Define the new variables

αi =

i∑
j=1

aj , yi = xi+1, X =

n∑
j=1

xj ,

and the vectors α = (α1, α2, . . . , αn−1), y = (y1, . . . , yn−1). This is an allowed change of
variables, as it is a triangular and invertible transformation. The equation B0 = B2n gives
four equalities. Two of the equalities are αn = 0, X = 0. The third equation reads

α · y = 0, i.e.
n−1∑
i=1

αiyi = 0.

The fourth equation, imposed by the vanishing of the third coordinate of B2n is dependent
on the first three equations, as b2n ∈ B2n. We are now in position to count solutions of this
system over Fq:

82



(i) Suppose that the vector α ∈ (Fq)n−1 is non-vanishing. There are (qn−1 − 1) such
possibilities for α. Then the equation α · y = 0 imposes exactly one linear relation
among the yi variables, 1 ≤ i ≤ n − 1. This yields a choice of qn−2 possibilities for
the vector y. The contribution in this case is thus (qn−1 − 1)qn−2.

(ii) Suppose that instead α = 0 is the zero vector. Then the equation α ·y = 0 is vacuous.
The choice of an arbitrary vector y ∈ Fn−1

q completes the count with a factor of qn−1.

In conclusion, the case A = C yields a total count of

(qn−1 − 1)qn−2 + qn−1

(q − 1)2
.

Finally, adding together the two cases for the relative position of the two flags A, C, we obtain
a finite field count of

|M(Ln)(Fq)| =
1

(q − 1)
+

(qn−1 − 1)qn−2 + qn−1

(q − 1)2
=
q2n−3 − qn−2 + qn−1 + q − 1

(q − 1)2
.

�

Note also that the proof of Theorem 6.5 shows that the moduli space of n-gonsMn [MGOT12,
OST13] admits an embedding into our flag moduli spaceM(Ln)(C). In the next section, we
will considerN -graphsG ⊆ D2 with non-empty boundary ∂G 6= ∅, which feature prominently
in our study of Lagrangian fillings through N -graphs G.

7. Microlocal Monodromies and Lagrangian Fillings

This section explains how to use N -graphs G in order to study 2-dimensional exact La-
grangian cobordisms between 1-dimensional Legendrian links in (S3, ξst) – in particular, the
study of their exact Lagrangian fillings. Briefly, the Legendrian mutations we developed in
Section 4 will be used to construct Lagrangian fillings, and we use microlocal monodromies –
and the connection to cluster algebras – to distinguish them. The proof of Theorem 1.8, using
these two steps to build infinitely many distinct Lagrangian fillings for a class of Legendrian
knots, is also given here.

7.1. Exact Lagrangian Cobordisms. This manuscript has heretofore focused on the study
of Legendrian surfaces in an ambient 5-dimensional contact manifold. In fact, the theory of
N -graphs and Legendrian weaves that we have developed is also useful for studying exact
Lagrangian fillings of 1-dimensional Legendrian links Λ ⊆ (S3, ξst) and, more generally, exact
Lagrangian cobordisms between such Legendrian links. This is also the context in which
applications to both Spectral Networks and Soergel Calculus should arise.

There are two advantages to studying exact Lagrangian fillings L of ∂L ⊆ (S3, ξst) from
the perspective of N -graphs. First, the manipulation of their Hamiltonian isotopy class
L ⊆ (D4, ωst) becomes combinatorial, as do operations such as Polterovich surgery (see
Theorem 4.10). Second, the computation of cluster coordinates for the augmentation variety
Aug(Λ) associated to the Legendrian link ∂L = Λ ⊆ (S3, ξst) is accessible.

Remark 7.1. The cluster structures in the coordinate rings of Aug(Λ) have proven to be
an effective method for proving new results for Legendrian knots in the 3-sphere [STWZ19,
CG20]. We do not know how to prove these cited results using Floer-theoretic methods (such
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as the Legendrian DGA [Che02, Etn05]), nor is there currently a Floer-theoretic description22

for the cluster coordinates induced by an exact Lagrangian filling L ⊆ (D4, ωst). �

In this section we present the context in which Legendrian weaves Λ(G) provide exact La-
grangian cobordisms. This is a viewpoint that we will use extensively in the reminder of the
article, including Section 8 and Appendix A.

7.1.1. The geometric setup. Let (R5, ξst) have coordinates (x, y, z, s, t) ∈ R5, contact 1-form
αst = es(dz− y1dx1)− dt, and let π : (R5, ξst) −→ (R4, λst) be the projection π(x, y, z, s, t) =
(x, y, z, s). Consider the contact 3-planes (R3

l , ξst) := {t = 1, s = l} ⊆ R5 and choose two
Legendrians Λ1 ⊆ (R3

1, ξst) and Λ2 = (R3
2, ξst). Suppose that Λ ⊆ (R5, ξst) is a Legendrian

surface with isotropic boundaries ∂Λ = Λ1 t Λ2, and Λ1 = Λ ∩ (R3
1, ξst), Λ2 = Λ ∩ (R3

2, ξst).

The crucial geometric fact is that the projection π(Λ) ⊆ (R4, λst) is an immersed exact
Lagrangian, whose immersion points are in bijection with the Reeb chords of Λ ⊆ (R5, αst).
In particular, if the Legendrian surface Λ ⊆ (R5, ξst) has no Reeb chords, then the Lagrangian
image π(Λ) ⊆ (R4, λst) is an embedded exact Lagrangian with boundary Λ1tΛ2. It is readily
verified that π(Λ) is an exact Lagrangian cobordism from Λ1 to Λ2 (and not viceversa). The
particular case of Λ1 = ∅ yields exact Lagrangian fillings of Λ2.

In line with the constructions in this article, the Legendrians Λ1,Λ2 ⊆ (R3, ξst) that we study
arise from positive braids – see [CG20, Section 2] – and thus can be described as satellites of
the standard Legendrian unknot Λst ⊆ (R3, ξst). The description in the paragraph above is
then modified as follows. Consider (J1(S1 × [1, 2]), ξst), two Legendrian links

Λ1 ⊆ (J1(S1 × {1})), Λ2 ⊆ (J1(S1 × {2})),
and a Legendrian surface Λ ⊆ (J1(S1 × [1, 2]), ξst) such that

Λ ∩ (J1(S1 × {1})) = Λ1, Λ ∩ (J1(S1 × {2})) = Λ2.

Now, suppose that the surface Λ has no Reeb chords, then the Lagrangian projection
π(Λ) ⊆ (J1S1 × R, λst) in the symplectization of (J1S1, ξst) provides an exact Lagrangian
cobordisms from Λ1 to Λ2. The case in which Λ1 = ∅ can be compactified to (J1D2, ξst) in
the (J1(S1×{1}), ξst) end, which symplectically corresponds to adding a standard symplectic
4-disk (D4, ξst) in the concave end of the symplectization, i.e. as an exact symplectic filling
of (S3, ξst). Diagrammatically, this implies that we can describe exact Lagrangian fillings of
a positive Legendrian braid Λ2 = Λ(β) ⊆ (S3, ξst) in (D4, ωst) by drawing N -graphs in D2

whose free edges meet the boundary according to a positive braid word β. Here Λ(β) denotes
the standard satellite of the Legendrian in (J1S1, ξst) whose front in S1 × R is given by the
positive braid (word) β.

In short, exact Lagrangian fillings between Legendrian links can be studied via the spatial
wavefronts of their Legendrian lifts to the contactization, and the techniques we have devel-
oped for Legendrian surfaces can be applied. In particular, we can use our diagrammatic
N -graph calculus to study and distinguish exact Lagrangian cobordisms.

7.1.2. Free N -Graphs. Let Gβ be the set of N -graphs on a 2-disk D2 with boundary braid
word β. As stated above, in order to construct embedded exact Lagrangian fillings L ⊆
(D4, ωst) for Λ(β) ⊆ (S3, ξst) as N -graphs G ⊆ D2 in Gβ, we must have that the Legendrian
weave Λ(G) ⊆ (R5, ξst) has no Reeb chords. Let us introduce the following:

Definition 7.2. An N -graph G ⊆ D2 is said to be free if its associated Legendrian front
Σ(G) can be woven with no Reeb chords. �

In this section many of the N -graphs G ⊆ D2 can be checked to be free by direct inspection.

22As far as we know, this remains an open question even if the exact Lagrangian filling is given by a
pinching sequence [EHK16, Pan17b, Pan17a].
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Example 7.3. Let G ⊆ D2 be a 2-graph such that (D2 \ G)/(∂D2 ∩ (D2 \ G)) is simply-
connected. Then G is free if and only if G has no faces contained in the interior of D2. Figure
88 shows four examples of 2-graphs.

Figure 88. Two free 2-graphs (i) and (ii), shown on the Left. Two 2-graphs,
(iii) and (iv), whose woven front must have a Reeb chord (Right). Each of
the fronts associated to the non-free two 2-graph can be woven with exactly
one Reeb chord, as indicated. In both cases, the green lines depict the two
sheets of a woven front and the orange segments indicate the distance between
these sheets. On the left, these length of the distance grows as we approach
the boundary, whereas for the 2-graph (iii) there must be a maximum for this
distance, forcing a Reeb chord.

The two 2-graphs (i), (ii) on Figure 88 (Left) are free. For that, consider a smooth 1-
dimensional foliation of D2 \G whose leaves are open intervals and such that the closure of
each leave intersects ∂D2. The radial-like yellow foliations depicted in Figure 88 (Left) suffice.
Then choose a woven front for such 2-graphs such that the differences between the heights
of the two sheets of the front strictly increase along each of the leaves of this foliation, being
0 at G and having positive value at ∂D2. These woven fronts do not have Reeb chords, as
the functions giving the differences of heights between the sheets do not have critical points.
In contrast, such foliations do not exist for the two 2-graphs (iii), (iv) on Figure 88 (Right),
as D2 \G contains a region whose closure is contained in the interior of D2. It can be shown
that any front woven with respect to (iii) or (iv) must have a Reeb chord and there exists a
woven front with a minimal number of Reeb chords, one per each interior face of G. �

From the perspective of Lagrangian fillings, the 2-graph (i) in Figure 88 is an embedded
(exact) Lagrangian filling for the 2-component standard unlink, which is the union of two
disjoint Lagrangian disks D2 ∪ D2. The 2-graph (ii) yields the embedded Lagrangian filling
for the standard unknot, which is the standard flat Lagrangian disk D2 ⊆ D4. This stands
in contrast with the immersed Lagrangian fillings represented by (iii) and (iv). The 2-graph
(iii) is an immersed exact Lagrangian annulus with boundary the 2-component standard
unlink, and (iv) is an immersed exact Lagrangian once-punctured 2-torus filling the standard
Legendrian unknot. In general, the following criterion is useful:

Lemma 7.4. Let G ⊆ D2 be a free N -graph. Then the N -graph µ(G) ⊆ D2, obtained from
G by performing a Legendrian mutation at any I-cycle or Y-tree of G, is also free.

Proof. Consider the 2-graph mutation at a monochromatic i-edge of an N -graph G. Let
Op(e) be a neighborhood of a monochromatic edge e in a freeN -graph. The 2-graph mutation
along the 1-cycle γe can then be performed by the exchange in Figure 89, which builds on
Figure 60 (Left). Since both 2-graphsG and µe(G) in the exchange coincide in a neighborhood
of the boundary, we can force that the front woven with respect to µe(G) coincides identically
– not just up to homotopy of Legendrian fronts – with the given front Σ(G) woven with respect
to G. Let us choose a 1-dimensional foliation in D2 with respect to G, as in Example 7.3,
such that the difference between the heights of any pair of sheets in the woven front strictly
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increase (or decreases) as we move along the sheets of the foliations away from G. (This
foliation exists because G is free.) We have depicted such a foliation for G in Figure 89.

Figure 89. Mutation for anN -graphG along a monochromatic i-edge e. The
mutated graph µe(G) admits a woven front Σ(µe(G)) which coincides with any
front Σ(G) woven with respect to G near the boundary of the neighborhood
Op(e). The yellow foliation near the boundary fixes the difference between
the ith and (i+ 1)th sheets in both fronts Σ(G) and Σ(µe(G)). This foliation
is extended to the interior in two different ways, yellow or red, depending on
the graph being G or µe(G).

In order to guarantee that µe(G) is free, we construct a front Σ(µe(G)) woven with respect
to µe(G) as follows: this new front is identical to that of G near the boundary of the neigh-
borhood of the monochromatic edge, and the j-th sheets for Σ(µe(G)) coincide with those
of Σ(G) except for the sheets corresponding to j = i, i + 1. The ith and (i + 1)th sheets
of Σ(µe(G)) are woven according to µe(G) such that the difference in heights between the
ith and the (i + 1)th sheets increases (or decreases) strictly along the 1-dimensional red fo-
liation as we move away from µe(G) as shown in Figure 89 (Right). Since the red foliation
is drawn to coincide with the yellow foliation at the boundary of the neighborhood Op(e),
this is consistent with the sheets coinciding in that neighborhood. Given that the leaves of
the 1-dimensional red foliation are intervals with a free end, it is possibly to build such a
front, meeting the condition that the difference of heights between ith and (i+ 1)th strictly
increases (or decreases). In addition, we can draw the front Σ(µe(G)) such that the slopes of
each sheet are arbitrarily close to the slopes of Σ(G). This guarantees that µe(G) is free as
required.

For a general N -graph mutation along a I- or Y-cycle, it suffices to observe that Subsections
4.8 and 4.9 show that such mutations are given by a composition of Legendrian Reidemeister
moves, as presented in Subsection 4.1, and mutations along monochromatic edges. Legen-
drian Reidemeister moves are local, relative to the boundary, and can be performed without
ever introducing Reeb chords. Thus an N -graph mutation µ(G) of a free G is free if the
statement holds for 2-graph mutations, which we have already proven above. �

Lemma 7.4 allows us to perform Legendrian mutations to the N -graph and obtain potentially
new embedded exact Lagrangian fillings. Examples of this are now illustrated. We will
implicitly apply Lemma 7.4 in Subsection 7.3, in order to realize cluster mutations as N -
graph mutations of embedded exact Lagrangian fillings.

7.1.3. Explicit Examples of Lagrangian Fillings. For the case of free 2-graphs on a disk D2,
this immediately yields that the max-tb Legendrian (2, n)-torus positive link Λ(2, n) has at
least a Catalan Cn number worth of exact Lagrangian fillings [EHK16, Pan17b, STZ17, TZ18].
This is because Cn counts binary trees, which are equivalent to free 2-graphs. These exact
Lagrangian fillings are distinguished, up to Hamiltonian isotopy, through the use of cluster
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coordinates – see Subsection 7.2.1. Now, the ability to increase N ∈ N greatly expands23

the class of Legendrian links for which their Lagrangian fillings can be studied with N -graph
calculus, including all Legendrian positive braids Λ(β), β ∈ Br+

N for any N ∈ N.

Example 1: Recently, the first examples of Legendrian links with infinitely many exact La-
grangian fillings were described in the article [CG20]. We exhibit them here in terms of 3-
graphs. For any (p, q) ∈ N2, the max-tb Legendrian (p, q)-torus positive link Λ(p, q) ⊆ (S3, ξst)
is the satellite of the braid ∆(σ1σ2 ·. . .·σp−1)q∆ along the standard Legendrian unknot, where
∆ = ∆p ∈ Sp is the p-stranded half-twist. Let us now illustrate how to diagrammatically
visualize these infinitely many Lagrangian for the Legendrian link Λ(3, 6).

Remark 7.5. Similar p-graphs can be drawn for Λ(p, q) for all (p, q) ∈ N2 and they produce
infinitely many Lagrangian fillings if p ≥ 3, q ≥ 6 or (p, q) = (4, 4), (4, 5). Alternatively,
infinitely many exact Lagrangian fillings for Λ(p, q) ⊆ (S3, ξst), p ≥ 4, q ≥ 7 can also be
readily constructed from those of Λ(3, 6) [CG20, Corollary 1.5]. �

Consider the braid word β = (σ1σ2)9 = ∆(σ1σ2)6∆ in the 1-jet space (J1S1, ξst), where
∆ = ∆3 ∈ S3 is the 3-stranded half-twist ∆ = σ1σ2σ1. This braid β can be depicted as a set
of points in the circle S1 labeled with two colors, corresponding to σ1, σ2. Figure 90 shows
this braid β in two circles, the inner circle S1 × {1} and outer circle S1 × {2} in the annulus
S1× [1, 2]. These two marked circles are labeled by Λ(3, 6), as the Legendrian link associated
to the marking β is the (3, 6)-Legendrian link Λ(3, 6).

Figure 90. Legendrian weave whose Lagrangian projection defines an infi-
nite order element in the fundamental group of the space of Legendrian links
isotopic to Λ(3, 6). In particular, this Lagrangian concordance has infinite
order in the Lagrangian concordance monoid. Infinitely many Lagrangian fill-
ings for Λ(3, 6), and all torus links Λ(n,m), n ≥ 3,m ≥ 6, are obtained by
concatenating this 3-graph.

The 3-graph G ⊆ S1 × [1, 2] depicted in Figure 90 describes a Legendrian surface Λ(G) ⊆
(J1S1 × [1, 2], ξst) with boundary Λ(3, 6) t Λ(3, 6). By increasing the slope in the radial

23This is particularly relevant for the study of exact Lagrangian fillings, as it is expected that any Λ(β)
with β ∈ Br+2 has only finitely many exact Lagrangian fillings, and we will show in Theorem 7.14 that this is
not the case already for N = 3.
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direction, the Legendrian surface Λ(G) can be assumed to have no Reeb chords, and thus
π(Λ(G)) is an exact Lagrangian cobordism from Λ(3, 6) to itself. Since the graph G has
no trivalent vertices, Λ(G) has the topology of Λ(3, 6) × [1, 2] and it is in fact an exact
Lagrangian concordance. The remarkable property of the 3-graph G, and its Lagrangian
projection π(Λ(G)), is stated in the following:

Theorem 7.6 ([CG20]). The 3-graph exact Lagrangian concordance in Figure 90 has infinite
order. In particular, for any fixed exact Lagrangian filling of Λ(3, 6), iterated concatenation
of this 3-graph yields infinitely many Lagrangian fillings of the Legendrian link Λ(3, 6) ⊆
(S3, ξst). �

In fact, it is possible to describe the entire faithful modular PSL(2,Z)-representation in
[CG20] with the diagrammatics of 3-graphs. Similarly, the diagrammatics of 4-graphs give
explicit spatial wavefronts for the M0,4-worth of the (Legendrian lift of the) Lagrangian fill-
ings for the Legendrian link Λ(4, 4) ⊆ (S3, ξst). The non-triviality, and infinite order, of this
Lagrangian concordance is detected by studying its action on the cluster structure of the
coordinate ring of the moduli space of isomorphism classes of simple objects in ShΛ(3,6)(R2).

Example 2: Let us address the following question. Given a positive braid β, and the Legen-
drian link Λ = Λ(∆β∆), how do we diagrammatically produce an N -graph which represents
an embedded exact Lagrangian filling for Λ ⊆ (S3, ξst) ?

Let us begin with a simple example, with β = ∆2 = (σ1σ2)3 the full-twist, which is smoothly
the (3, 3)-torus link. The game is to draw τi-edges along the boundary ∂D2 of a (planar)
2-disk D2 according to the braid word β and complete these edges to an N -graph G inside
D2. The only rule is that the Legendrian weave Λ(G) should not have Reeb chords, or else
it would yield an immersed Lagrangian filling, and thus we require G to be free.

Consider the free 3-graph G1 in Figure 91 (upper Left). This represents an embedded exact
Lagrangian filling L1 of the max-tb Legendrian (3, 3)-torus link Λ(3, 3) = Λ(∆β∆) = Λ(∆4).
We can now apply the Legendrian mutation moves in Theorem 4.21 in order to produce
another Lagrangian filling L2 which is not Hamiltonian isotopic to the exact Lagrangian
filling L2. (Note that L1 and L2 are smoothly isotopic relative to their boundaries, and L2

will be also embedded thanks to Lemma 7.4.) In Figure 91 we perform a Lagrangian disk
surgery on L1 along a Lagrangian 2-disk which bounds the 1-cycle in H1(L1,Z) graphically
given by the Y-cycle in surrounded by the dashed green curve.

At this stage we can manipulate L2 with Theorem 4.2, in this case Figure 91 (upper right)
to 91 (bottom left) shows how to apply Move II to push-through a hexagonal vertex through
a trivalent vertex (as indicated by the green arrow). This is an interesting move because it
makes a new 1-cycle for L2 readily visible, as represented by the blue monochromatic edge in
91 (bottom left) surrounded by a dashed green curve. We can perform Lagrangian surgery
at this monochromatic edge, as in Theorem 4.21, to obtain another exact Lagrangian filling
L3, also embedded by Lemma 7.4. It is immediate that L1 and L3 are not not Hamiltonian
isotopic to L2, as the cluster coordinates associated to these 3-graphs, as explained in Sub-
section 7.2.1, show that L1 and L3 are not Hamiltonian isotopic. In conclusion, the 3-graphs
in Figure 91 represent three distinct embedded exact Lagrangian fillings for Λ(3, 3).

Example 3: Let us illustrate what a generic 3-graph diagram like for a positive braid β ∈ Br+
3 .

The pictures in the case of β ∈ Br+
N , N ≥ 3 are alike, with as many as (N −1)-colors instead.

Let us consider a random braid

β = (σ1σ2σ1)σ2
2σ

2
1σ

2
2σ

3
1σ

3
2(σ1σ2σ1),
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Figure 91. Four 3-graphs representing exact embedded Lagrangian fillings
for the maximal-tb (3, 3)-torus link Λ(3, 3).

which has no particular significance to us. To obtain exact Lagrangian fillings, we draw
blue and red edges around a circle S1 ⊆ R2, according to σ1 or σ2, and construct 3-graphs
with no Reeb chords and these boundary constraints. Figure 92 shows four free 3-graphs Gi,
i ∈ [1, 4], such that the Lagrangian projections π(ι(Λ(Gi))) ⊆ (D4, ωst) are embedded exact
Lagrangian fillings which are distinct up to Hamiltonian isotopy for i 6= j, i, j ∈ [1, 4].

Remark 7.7. From our experience drawing 3-graphs, the pictures in Figure 92 accurately
represent the generic appearance of exact Lagrangian fillings described by free 3-graphs. We
presently do not know any example of a Lagrangian filling for a positive braid which does
not arise as an N -graph, for some N ∈ N. �

Remark 7.8. There exists a technique for producing many such free N -graphs G, filling
β-boundary conditions at a circle and thus representing embedded exact Lagrangian fillings.
This is ongoing work by the first author, which in particular proves that any Legendrian
link Λ(β) arising from a positive braid β ∈ Br+

N admits an embedded Lagrangian filling
whose Legendrian lift is a Legendrian weave. In precise terms, it can be proven that for each
triangulation of a |β|-gon, one can assign a free N -graph which represented an embedded
Lagrangian filling of β, where |β| is the length of the positive braid β. �

7.2. Microlocal monodromies and cluster structures. In this section, we demonstrate
how notions of cluster theory are borne out with N -graphs. This is an important ingredient
in showing that microlocal monodromies can be used to distinguish exact Lagrangian fillings,
as we do in Section 7.3 and as has been mentioned previously.

To orient the discussion, we recall that the cluster structures on the Fock-Goncharov moduli
spaces of framed local systems described in [FG06b] were given a sheaf-theoretic description
in [STW16, STWZ19]. In these works, the spectral surface associated to a bipartite graph, as
defined in [Gon17, Section 2.2], is described symplectically as an exact Lagrangian filling of
the zigzag Legendrian curve. In the case of bipartite graphs associated to an N -triangulation,
as in [Gon17, Section 1], the zigzag curves isotope to concentric circles around the vertices of
the triangulation, and the singular support of such a configuration translates to the data of
a local system with a monodromy-invariant flag at each vertex. Sheaf quantization [GKS12]
then implies that local systems on the exact filling embed as a cluster chart of objects, the
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Figure 92. Four exact embedded Lagrangian fillings for the braid β in Ex-
ample 3. Their satellites in (R4, ωst) are smoothly isotopic relative to their
boundaries, but not Hamiltonian isotopic.)

chart being provided by the bipartite graph (and its dual quiver), and the cluster coordi-
nates given by microlocal monodromies. The intersection form in H1(L,Z), or its negative,
corresponds to the skew-symmetric bilinear form in cluster theory. For us, the crucial point
is that we can represent all these Lagrangian fillings by N -graphs, as in the diagrammatics
of Subsection 7.1, and the cluster coordinates can be read directly from the N -graph, as we
will now explain.

Remark 7.9. In [TZ18], the case of Legendrian surfaces defined by trivalent 2-graphs was
studied, giving a sheaf-theoretic description of the constructions in [DGG16]. In this setting,
the microlocal monodromy functor µmon induces, at the level of moduli of objects, a mor-
phism from the sheaf moduli space to the cluster chart defined by the triangulation dual to
the 2-graph. The image is a (holomorphic) Lagrangian in a (holomorphic) symplectic leaf,
as in [DGG16], in a manner compatible with quantization of algebra of functions.24 Fur-
thermore, in that work, the potential describing the local exact structure of the Lagrangian
was interpreted as a generator of BPS states or disk invariants, following the analysis of

24In work in progress with Linhui Shen, the second author will develop the relation to cluster theory more
systematically, and prove Lagrangianicity of the moduli space.
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Aganagic-Vafa [AV00, AV12]. Here we generalize some of the constructions to N -graphs,
N ≥ 2. �

In this article, the Legendrian surfaces are described by N -graphs, a more complex construc-
tion, but we will now explain how the basic features should persist. That is, the microlocal
monodromy functor allows us to read cluster coordinates for the moduli spaces of isomor-
phism classes of simple objects in ShΛ(R2), equivalently augmentation varieties, directly from
N -graphs with boundary Λ. Examples of these constructions are provided below.

7.2.1. Microlocal monodromies as cluster coordinates. By definition, microlocal monodromy
is a functor

µmon : ShΛ → Loc(Λ)

from the category ShΛ of sheaves microsupported on the Legendrian surface Λ, as defined in
Subsection 5.3, to the category of local systems on Λ [STZ17]. This functor carries microlocal
rank-one sheaves F ∈ Sh1

Λ, i.e. simple sheaves, to rank one local systems on the surface Λ.
Since it is locally defined, the monodromy of the local system µmon(F ) around a loop
γ ∈ H1(Λ) can be evaluated by restricting the constructible sheaf F to an annular tubular
neighborhood of γ. Below, these annuli are depicted as thin purple loops. In short, the
calculation for Legendrian weaves can be done using the microlocal monodromy functor
µmon as it is used for knots, as described in [STZ17].

The main point in these computations is that the stalk µmon(F )|λ at a point λ ∈ Λ is
the cone of the restriction map corresponding to λ, and for flags this is the inclusion of
subspaces, whence cones become cokernels. The transversality of adjacent flags ensures that
these cokernels propogate as a local system. Let us now perform these calculations for 1-cycle
γ ∈ H1(Λ,Z), starting at the I-cycle represented by a monochromatic edge.

Let us consider a monochromatic edge with label τi, as depicted in Figure 93.

a

b

c

d
e

Figure 93. Neighborhood of a monochromatic edge e with the data de-
termining a constructible sheaf F . As we show, the microlocal monodromy
µmon(F ) along the 1-cycle γ(e) is given by the cross-ratio 〈a, b, c, d〉.

Near such a monochromatic edge, a sheaf object in a simply connected face is specified by
the data of a quadruple of flags. Each of these flags has the same subspaces F j in each
region for j 6= i, and for j = i we additionally require the data in each region of a line l
in the two-dimensional space V := F i+1/F i−1. This is the data of four lines a, b, c, d ⊆ V ,
as specified in Figure 93. Restricted to the purple oval shown, we have a cylindrical braid
of type β = σ4

i , where σi is the lift of the transposition τi from the Coxeter group SN to
the braid group BrN . Given the prescribed transversality imposed by the flag moduli of an
N -graph, we further know that the cyclic chain of inequalities a 6= b 6= c 6= d 6= a holds. We
thus have the chain of isomorphisms of cokernels

a ∼= V/b ∼= c ∼= V/d ∼= a,

which computes the microlocal monodromy. In this case, the isomorphism that we obtain is
the cross ratio

〈a, b, c, d〉 =
a ∧ b
b ∧ c

· c ∧ d
d ∧ a

91



of the four lines a, b, c, d, and it is equal to the cluster coordinate associated to 1-cycle γ as
prescribed in [FG06b, Section 9].

Let us now consider the cluster coordinate associated to a Y-cycle, which is a new type of
1-cycle, as it only appears for N ≥ 3. Figure 94 depicts a Y-cycle, drawn as a purple circle,
along with the data determining a constructible sheaf in a neighborhood of this 1-cycle.

• •

•

(a,A)(c, C)

(b, B)

(a,
ab)

(b,
ab)

(c, bc)

(b, bc)

(c,a
c)

(a
,a
c)

Figure 94. Neighborhood of a Y-cycle with the data determining a con-
structible sheaf F . As we compute, the microlocal monodromy µmon(F )
along the associated 1-cycle γ is given by the triple ratio of the three trans-
verse flags.

Following the notation in Section 6, we denote by ab the unique plane containing the two lines
a and b, while AB denotes the intersection of the planes A and B. The braid associated to
the Y-cycle γ, as drawn by the purple circle in Figure 94, is given by β = (σiσi+1σi)

3, where
σi corresponds to the crossing coming from a τi-edge. By considering the three-dimensional
vector space V := F i+2/F i−1, a given flag is specified by a line and a plane in V . Since the
word σiσi+1σi represents the half-twist ∆ for flags on V , and τiτi+1τi is the Coxeter element
in S3, the complete data specifying a constructible sheaf near the Y-cycle is given by three
transverse flags (a,A), (b, B), (c, C) in V . In this notation, the line is written in lower case
and the covector defining the the plane in upper case, thus (a,A) determines a flag. Now,
the microlocal monodromy functor µmon along γ is computed as the composition of the
isomorphisms

a ∼= V/B ∼= c ∼= V/A ∼= b ∼= V/C ∼= a.

Let va ∈ a, vb ∈ b, vc ∈ c, vd ∈ d be non-zero vectors defining the corresponding one-
dimensional lines. Then the parallel transport from a to c in this basis is given by the
quotient B(a)/B(c), where B(a) is the pairing between the vector va and the covector B.
Iterating these isomorphisms, we conclude that the microlocal monodromy along the Y-cycle
is given by

〈(a,A), (b, B), (c, C)〉 :=
B(a)C(b)A(c)

B(c)C(a)A(b)
.

This expression is precisely the triple product of transverse flags as defined in [FG06b], and
thus we have shown that the microlocal monodromy along a Y-cycle determines a cluster
coordinate.

7.2.2. Legendrian Mutations are cluster transformations. The coordinate transformations
upon Legendrian mutations can also be computed, as we will demonstrate in an example.
The conclusion is that Legendrian mutations induce cluster transformations. The case of a
monochromatic edge follows from the analysis in [TZ18, STWZ19], and we now study the
mutation at a Y-cycle. To do so, consider the local geometry shown in Figure 95. We want
to compute how the cluster coordinate associated to the unique monochromatic (blue) edge
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– as in Subsection 7.2.1 – changes as we perform a Legendrian mutation along the Y-cycle
specified by the unique hexagonal vertex.

• •

•

•

(a,A)(c, C)

(b, B)

(a,
ab)

(b,
ab)

(c, bc)

(b, bc)

(c,a
c)

(a
,a
c)

(b, B′)

Figure 95. The geometric setup before performing a Legendrian mutation
at the Y-cycle, where the cluster coordinate associated to the monochromatic
edge is given by the cross-ratio 〈B, bc, ab,B′〉.

The monochromatic blue edge has monodromy equal to the cross ratio z := 〈B, bc, ab,B′〉 of
the four planes in the projective line of planes containing b. (This can be computed directly
or by intersecting the four lines with any transverse line – see Subsection 7.2.1.) Now, after
Legendrian mutation at the Y-cycle, the resulting 3-graph is shown Figure 96.

•

•• •

• (a, a
b)

(b, ab
)

(A
B,
A)(A

B,
B)

(c, bc)

(b, bc)

(BC,B)(BC,C)

(c,a
c)

(a
,a
c)

(A
C
,C

)

(A
C
,A

)

(b, B′)

(a,A)(c, C)

(b, B)

Figure 96. The result of applying a Legendrian mutation to Figure 95 along
the Y-cycle, along with the data of a constructible sheaf.

The 1-cycle determined by the blue monochromatic edge in Figure 95 becomes a (bichromatic
edge) 1-cycle contained in the 3-graph shown in Figure 97, which is itself a piece of Figure
96, in its upper-right corner25:

25The trivalent blue vertex in Figure 97 is the unique trivalent blue vertex in Figure 96. The trivalent red
vertex in Figure 97 is the rightmost trivalent red vertex in Figure 96.
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• • (b, B′)
(b, B)

(AB,B)

(AB,A)
(AC,A)

(a,A)

(a,ab)

(b, ab)

Figure 97. Local geometry near the 1-cycle after mutation.

By applying Move II, we can push the red trivalent vertex in Figure 97 through the hexavalent
vertex. This allows us to represent the 1-cycle as a monochromatic edge again, as shown in
Figure 98:

• • (b, B′)

(b, B)

(b, bAC)

(b, ab)

Figure 98. The constructible sheaf near the 1-cycle after Legendrian muta-
tion and Move II. The new coordinate is thus the cross-ratio 〈B, bAC, ab,B′〉.

The required conclusion, stating that the new cross-ratio z′ = 〈B, bAC, ab,B′〉 is obtained
by a cluster transformation, follows from this:

Lemma 7.10. Let x = 〈(a,A), (b, B), (c, C)〉 be the triple ratio of flags and z = 〈B, bc, ab,B′〉
the cross-ratio of lines. Denote by z′ = 〈B, bAC, ab,B′〉 the new microlocal monodromy. Then

z′ = z(1 + x).

Proof. By PGL3 invariance, we may assume that

a =

1
0
0

 , A = (0, 0, 1), b =

0
0
1

 , B = (1, 0, 0), c =

 1
−1
1

 , C = (1, 1 + x, x).

Since the cross-ratio z is prescribed, we find that B′ = (z, 1, 0), and similarly

AC =

1 + x
−1
0

 .

This implies that bAC = (1, 1 + x, 0), and thus z′ = z(1 + x). �

Note that z′ = z(1 + x) in Lemma 7.10 is the transformation expected for a cluster-X
transformation.26 This concludes that a Legendrian mutation at the Y-cycle induces a cluster
transformation for the microlocal monodromy coordinate at the monochromatic blue edge in
Figure 95. The computation is analogous if we choose a different blue monochromatic edge
to be added near the Y-cycle. In particular, if we had chosen instead the blue edge attaching

26The rule for a cluster-X transformation upon mutating at loop k is that the monodromy zi transforms
to 1/zk if i = k and otherwise z′i = zi(1 + z

−sgnεik
k )−εik , where εi,k is the skew-symmetric cluster form. We

get agreement on the nose if we make this form the negative of the intersection pairing.
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at the lower-right of the Y-cycle and pointing upward, and again called its monodromy z,
then we would have A′ = (0, z, 1) and would obtain

z′ = 〈ab, aBC,A,A′〉 = z

(
1 +

1

x

)−1

,

in agreement with the cluster transformation.27

Example 7.11. Flip of a N-triangulation. Let (C, τ) be a punctured surface C, τ an ideal
triangulation and τ ′ an ideal triangulation obtained from τ by a flip. Denote by tN , resp. t′N ,
the N -triangulation refinement of τ , resp. τ ′. It is an exercise [Gon17, Prosition 1.1] to show

that the Legendrian weave Λ(G(t′N )) differs from Λ(G(tN )) by a sequence of
(
N+1

3

)
2-graph

mutations, i.e. Λ(G(t′N )) can be obtained from Λ(G(tN )) by performing
(
N+1

3

)
Legendrian

mutations along 1-cycles represented by monochromatic edges.

For instance, [Gon17, Figure 9] translates into four monochromatic edge mutations for a flip
in a N = 3 triangulation, as we have depicted in Figure 99. We can see how to perform the
corresponding moves for 3-triangulations with 3-graphs. Indeed, referring to the notation
in Figure 105, perform a monochromatic edge mutation at z and w, then perform Move
III, a flop of the two trivalent and two hexagonal vertices in the center, and proceed with a
mutation at the remaining two monochromatic edges. In conclusion, the constructions of this
paper can therefore be used to give a geometric understanding of the intermediate quivers
arising when flipping N -triangulations.

Figure 99. Flip in a 3-triangulation realized as four monochromatic edge
mutations. In general, the Legendrian weaves associated to two N -
triangulations which differ by a flip of the underlying (1-)triangulation dif-

fer by a sequence of
(
N+1

3

)
such 2-graph mutations. Note the Move III flop

isotopy in-between the two mutation pairs.

27We remark that the case x = −1 is not a generic configuration of flags, since in this case c ∈ ab, and
thus not in the domain of the birational cluster map.
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7.3. N-graph Realization of Quiver Mutations. In this subsection we explain how to
use N -graphs in order to construct infinitely many Lagrangian fillings for certain Legendrian
links in the standard contact 3-sphere (S3, ξst). These Lagrangian fillings are distinguished
by the microlocal monodromies/cluster coordinates in Subsection 7.2.

Let β ∈ Br+
N be a positive braid, with a fixed braid word w(β). Consider an N -graph G ⊆ D2

on the 2-disk such that the labels of the edges of G near ∂D2, read cyclically, form the word
w(β). Following Subsection 7.1, the Lagrangian projection L(G) = π(ι(Λ(G))) ⊆ (R4, ωst)
of ι(Λ(G)) ⊆ (R5, ξst) is an exact Lagrangian filling of the Legendrian link Λ(β) ⊆ (S3, ξst)
associated to the positive braid β. All the N -graphs G ⊆ D2 which feature in this subsection
will be free, and thus the Lagrangian projections are embedded, equivalently Λ(G) has no
Reeb chords.

Now consider a free N -graph G ⊆ D2, b1(G) := rk(H1(Λ(G),Z)) and a basis

B = {[γ1], . . . , [γb1(G)]}

for H1(Λ(G),Z) ∼= Zb1(G), equivalently a basis for the first homology group of its Lagrangian
projection L(G). For a choice of basis B, we denote by Q(B) the intersection quiver of the
1-cycles γi, i ∈ [1, b1(G)]. The vertices vi of the quiver Q(B) are in bijection with elements of
the homology basis B, and the number of arrows between two distinct vertices vi, vj is given
by the geometric intersection number |γi ∩ γj |. The direction of each arrow is given by the
sign of each geometric intersection, and there are no loops, i.e. no edges from a vertex vi to
itself. The quiver obtained by mutation of a quiver Q at the vertex vi will be denoted µi(Q).

We will study the realization of quiver mutations, algebraic in nature, as Legendrian mu-
tations of free N -graphs, which are geometric. Suppose that there exists a subset Bµ of
classes [γi], i ∈ [1, k], for some k ≤ b1(G), such that γi ∈ Bµ is represented by a 3-graph
cycle with no multiplicity. That is, each 1-cycle γi is represented by either a Y-cycle, a tree,
a monochromatic edge I-cycle or a long edge. Let {x1, . . . , xk} be the cluster coordinates
associated to {γ1, . . . , γk} via microlocal monodromies, as in Subsection 7.2.1.

Remark 7.12. In general, this set of cluster coordinates {x1, . . . , xk} is only a partial subset
of the entire cluster seed {x1, . . . , xb1(G)} for H1(L(G),Z). The ability to work with a subset
is an advantage that allows for our methods to be applied in more generality. From the
viewpoint of cluster algebras, the vertices of Q(B) which are not in Q(Bµ) are to be considered
as frozen vertices, and the variables {xk+1, . . . , xb1(G)} as frozen coordinates. �

By Subsection 4.8, and Lemma 7.4, we can perform a Legendrian mutation at γi ∈ Bµ and
obtain a free N -graph µi(G). The intersection quiver Q(µi(B)) associated to the mutated
basis µi(B) is the mutated quiver µi(Q(B)). The 1-cycle in the mutated graph µi(G) cor-
responding to γj ∈ B, under mutation at γi, is denoted by µi(γj). By Subsection 7.2.2, the
cluster coordinate associated to µi(γj) is given by the j-th coordinate in the cluster trans-
formation of {x1, . . . , xb1(G)} at xi. Therefore, the exact Lagrangian filling represented by
the free N -graph µi(G) has intersection quiver µi(Q(B)) and cluster coordinates obtained by
mutation of the cluster seed {x1, . . . , xb1(G)} for L(G) at xi. In conclusion, if the 1-cycles are
represented by trees, performing one quiver (or cluster seed) mutation as a Legendrian mu-
tation is possible, and the microlocal monodromies after the Legendrian mutation accurately
reflect cluster mutation.

Remark 7.13. The challenging aspect of the geometric side is that iterating this procedure
is not necessarily possible, or at least readily accessible. This aspect is not reflected in
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the algebra of quiver mutations (or cluster coordinate mutations) since, by definition, two
opposite edges between vertices are canceled28. �

The technology of 3-graphs and their mutations, as developed in Subsection 4.8, allows us to
iterate Legendrian mutations in an abundance of cases, including arbitrarily high genus. We
will illustrate explicit cases in which an infinite sequence of quiver mutations can be realized
as an infinite sequence of N -graph mutations. These cases can be inserted in (infinitely many)
other examples, and the first consequence is the production of new families of Legendrian
links with infinitely many exact Lagrangian fillings:

Theorem 7.14. Let Λs,t = Λ(βs,t) ⊆ (S3, ξst) be the Legendrian link given by the standard
satellite of the positive braid

βs,t = (σ3
1σ2)(σ3

1σ
2
2)sσ3

1σ2(σ2
2σ

3
1)t(σ2σ

3
1)(σt+1

2 σ2
1σ

s+2
2 ), s, t ∈ N, s, t ≥ 1.

Then Λs,t ⊆ (S3, ξst) admits infinitely many embedded exact Lagrangian fillings in (D4, λst)
realized as 3-graphs Gs,t ⊆ D2 and their Legendrian mutations.

Proof. The argument is uniform for all s, t ∈ N and all the difficulties, and their solutions,
are already present for the simplest case.29 Let us thus assume s = t = 1 for now. First,
we need to construct a free 3-graph G = G1,1 which represents a Lagrangian filling for the
Legendrian link Λ(β) associated to β = β1,1. This 3-graph is shown in Figure 100:

1

2

3 4

5

6

Figure 100. The 3-graph G and the initial Quiver Q.

The exact Lagrangian L(G) associated to G is a genus-4 surface with two boundary compo-
nents, and thus b1(G) = 9. Let us consider the subset Bµ = {γ1, γ2, γ3, γ4, γ5} given by the
following 1-cycles: γ1 is represented by the yellow 1-cycle in Figure 100, which is a tree of
Y-pieces, and γ2, γ3, γ4, γ5 are represented by monochromatic edges, in purple in Figure 100.
In addition, we consider the 1-cycle γ6 represented by the monochromatic edge, in green.

28In previous attempts to geometrically iterate Lagrangian mutations, such as [STW16, Section 2], this
obstruction manifests itself as embedded curves becoming immersed upon performing Dehn twists, a problem
which presently has no known solution.

29We thank Dylan Thurston for useful discussions on quivers and their mutations. In particular, for
providing the infinite sequence of mutations that we use in this proof.
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The intersection quiver Q = Q(Bµ ∪ {γ6}) is given by the quiver drawn in Figure 100. The
quiver Q is of infinite mutation type, as it is associated30 to hyperbolic Coxeter diagram
[Law17, Table 1]. In fact, we claim that the sequence of quiver mutations µsn , where

sn =



1 if n ≡ 1

2 if n ≡ 2

3 if n ≡ 3

4 if n ≡ 4

5 if n ≡ 5

(mod 5),

is an infinite sequence of quiver mutations. Indeed, each time we apply the sequence of
mutations µ5µ4µ3µ2µ1, the number of arrows from the vertex v1 to v6 increases by two, and
the number of arrows from vi to v6, for i ∈ [2, 5] increases by one. In particular, at the kth
iteration there are 2k + 1 arrows from v1 to v6 and k arrows from vi to v6, i ∈ [2, 5]. Now
we reach the core of the issue, which is realizing this infinite sequence of quiver mutations as
Legendrian mutations of 3-graphs. For that, we observe the following two properties:

Let us perform a Legendrian mutation along the Y-tree which represents the 1-cycle γ1. The
resulting 3-graph, which is free by Lemma 7.4, is depicted in Figure 101:

1

2

3 4

5

6

Figure 101. Mutated 3-graph µ1(G) at the 1-cycle γ1 (yellow) corresponding
to vertex 1 in Q, and its associated intersection quiver µ1(Q).

Now, upon this Legendrian mutation at γ1 the 1-cycles γ2, γ3, γ4, γ5 are still represented by
monochromatic edges. These new 1-cycles µ1(γ2), µ1(γ3), µ1(γ4), µ1(γ5) are circled in purple
in Figure 101. The figure also displays the mutated quiver µi(Q(Bµ ∪ {γ6})) and the cycle

30Precisely, the quiver Q corresponds to the rank 6 paracompact hyperbolic Coxeter group L5 = [3[1,1,1,1,1]].

98



γ6 in green. Similarly, upon this Legendrian mutation, the 1-cycle µ1(γ1) is still represented
by an embedded Y-tree, as depicted in yellow in Figure 101.

These properties hold true as we now perform Legendrian mutations at the monochromatic
edges γ2, γ3, γ4, γ5. The free 3-graph resulting from these four mutations is drawn in Figure
102:

1

2

3 4

5

6

(x3)

Figure 102. Mutated 3-graph µ5µ4µ3µ2µ1(G) and its associated intersection
quiver µ5µ4µ3µ2µ1(Q).

The claim is that we can iterate the sequence of mutations µ5µ4µ3µ2µ1 geometrically as
Legendrian mutation of the free 3-graph, and these two properties hold. That is, at any
stage in the sequence of mutations µsn we have that

(i) the 1-cycles γ2, γ3, γ4, γ5 are represented by monochromatic edges,
(ii) the 1-cycle γ1 is represented by an embedded Y-tree, with no multiplicities.

In fact, the Y-tree representing γ1 always has exactly four Y-pieces. These four pieces have
been surrounded by a dashed pink circle in Figures 100 through 104. The two items above
can be readily verified, as follows. The behavior of the mutated 3-graph near each of the the
monochromatic edges is as depicted in Figure 103:

It thus follows that γi, i ∈ [2, 5], remains a monochromatic edge upon any iteration of
the 3-graph mutation µ5µ4µ3µ2µ1. Similarly, according to the Legendrian mutation rules
of Subsection 4.8, each Y-piece of the Y-tree representing γ1 itself mutates to a Y-piece,
and mutating at γ2, γ3, γ4, γ5 preserves this property. Thus the pattern persists upon any
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Figure 103. The effect of the sequence of mutations µ5µ4µ3µ2µ1 near the
monochromatic edges γi, i ∈ [2, 5]. The only mutations from these five that
affect γi are µ1 and µi.

iteration. The two properties (i) and (ii) now allow us to perform the sequence of mutations
µsn up to any point in the sequence. For instance, the sequence of mutations µ1µ5µ4µ3µ2µ1

applied to G lead to the 3-graph in Figure 104:

1

2

3 4

5

6

(x3)

(x2) (x2)

(x2)(x2)

Figure 104. Mutated 3-graph µ1µ5µ4µ3µ2µ1(G) and its associated intersec-
tion quiver µ1µ5µ4µ3µ2µ1(Q).

In order to pairwise distinguish the exact Lagrangian fillings associated to the sequence of
3-graphs (µsnµsn−1 · · ·µ1)(G), up to Hamiltonian isotopy, we use the microlocal monodromies
{x1, x2, x3, x4, x5, x6} along the 1-cycles γi, i ∈ [1, 6], and their mutations. By Subsection
7.2.2, the cluster seed {x1, x2, x3, x4, x5, x6} associated to the quiver Q mutates to the cluster
seed associated to (µsnµsn−1 · · ·µ1)(Q) upon performing the Legendrian 3-graph mutations
(µsnµsn−1 · · ·µ1)(G). Since the quivers (µsnµsn−1 · · ·µ1)(Q) are distinct, and so are the as-
sociated cluster seeds, it follows that the associated Lagrangian fillings are distinct. This
concludes the proof for s = t = 1.

The general case s, t ∈ N is proven with the same argument. Indeed, the free 3-graph G1,1

in Figure 100 generalizes to a 3-graph whose boundary is βs,t, just by adding s copies of
the leftmost pattern in G1,1, to the left, and t copies of the rightmost pattern in G1,1, to
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the right. In this general case, it is still true that γ1 is represented31 by a Y-tree and the
remaining {γ2, γ3, . . . , γs, γs+1, . . . , γs+t+3} cycles are represented by monochromatic edges.
The argument is then identical, with the infinite sequence of mutations given by

sn = i, if n ≡ i (mod s+ t+ 3), 1 ≤ i ≤ s+ t+ 3.

The reader can directly verify that this is an infinite sequence of mutations, as the multiplicity
of the arrows to the cycle γs+t+4 – generalizing the green cycle γ6 in Figure 100 – increases
as we apply the mutations µs+t+3µs+t+2 · · ·µ2µ1. �

Remark 7.15. For s = t = 1, note that the sequence µsn never mutates at the 1-cycle γ6,
i.e. at the sixth vertex v6 in Q. It is nevertheless crucial to include γ6 in the quiver as well
as the cluster variable x6, with its subsequent mutations. Note that the 1-cycle γ6 is initially
represented by an embedded curve in the 3-graph, but this curve develops immersed points
as we iterate the sequence of mutations µsn according to Subsection 4.8. This still allows us
to define the cluster coordinate associated to it but we would not be able to mutate along
such a 1-cycle just with the rules developed in Subsection 4.8. (This is just a side remark,
since the argument for Theorem 7.14 does not require mutating at v6.) �

The Legendrian links in Theorem 7.14 are relatively simple. For instance, the Legendrian
knot associated to β1,1 is genus-4 two-component link. One of the components is an unknot
and the other is the (2, 7)-torus knot 71. Note that Λ(β1,1) is (smoothly) distinct from the
(3, 6)-torus link that the first author studied in [CG20], which also has genus-4. Thus, not
only does Theorem 7.14 bring a new method to construct infinitely many Lagrangian fillings,
but it in fact provides new Legendrian links with infinitely many Lagrangian fillings.

Remark 7.16. Note that the L5 quiver that we used in Theorem 7.14 appears as a subquiver
of the intersection quiver for several other positive braids. Following L. Lewark’s positive
braid table32 each of the following positive genus-6 braids, 14n5644, 15n118169, 16n144958,
16n149517, 16n173894, 16n175324 and 16n339638, to name a few, contain L5 in their intersection
quiver. We believe that an argument similar to Theorem 7.14 should prove that the maximal-
tb representative of each of these links has infinitely many exact Lagrangian fillings. �

Finally, the contrast between Theorem 7.14 and [CG20, Corollary 1.5] is interesting. The
former constructs an infinite family of Lagrangian fillings for a Legendrian link by directly
using Legendrian mutations, which are themselves distinguished by their effect – as cluster
mutations – on the microlocal monodromies. The latter result [CG20] is entirely about con-
structing infinite order Lagrangian concordances, coming from Legendrian loops of positive
braids, and the infinite family of Lagrangian fillings is a byproduct of such construction. In
particular, N -graph calculus should apply to much more general Legendrian links, and does
not require knowing about the existence of an infinite order element in their Lagrangian
concordance monoid.

8. Moduli Space for N-triangles and Non-Abelianization

In this final section, we focus on N -graphs associated to N -triangulations, as introduced in
Section 3. This class of N -graphs G yields Legendrian weaves Λ(G) whose Lagrangian projec-
tions are related to the Goncharov-Kenyon conjugate Lagrangian surfaces [GK13, STWZ19].
These Lagrangian surfaces have also appeared in the context of Gaiotto-Moore-Neitzke’s
spectral networks [GMN13, Nei14]. In particular, we prove Theorem 1.9, which computes
the flag moduli space M(G) for G any N -triangle tN , matching the algebraic results in
[GMN14, Section 8] and [FG06b, Section 9].

31In this case the Y-tree has (s+ t+ 2) Y-pieces, s+ 1 to the left and t+ 1 to the right of the base root.
32Lukas Lewark’s Positive Knots Table: Braids and Trees at “http://lewark.de/lukas/braids.html ”.
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8.1. Flag moduli space of the N-triangle. Let us compute the flag moduli space associ-
ated to the N -graph G(tN ) of an N -triangle tN , as we defined in Section 3.2 (see Figure 15).
The result reads as follows:

Theorem 8.1. Let G(tN ) be the N -graph associated to an N -triangle tN . The flag moduli

space of G(tN ) is a
(
N−1

2

)
-dimensional complex torus, i.e.

M(tN , G(tN ); k) ∼= (k∗)(
N−1

2 ).

This rest of this subsection is devoted to the proof of Theorem 8.1. The statement of
Theorem 8.1 is an instance of how incidence geometry problems connect to the contact
topology of Legendrian surfaces. Indeed, although our proof is entirely within projective
geometry, the conclusion from Theorem 8.1 ought to be read as the fact that the moduli
space M(tN , G(tN ); k) is parametrized by the toric coordinates provided by the holonomies
Hom(H1(Λ(G(tN ),Z)), k∗). For k = C, this complex torus should be related to the complex
torus appearing in Fock-Goncharov [FG06b, FG06a] in their study of cluster varieties, see
[Kuw20, Theorem 8.3].

Theorem 8.1 can also be interpreted as follows. The triangle tN is topologically a disk D2

with boundary a circle ∂D2 = S1. The Legendrian weave

Λ(G(tN )) ⊂ (J1(D2), ξst)

has a Lagrangian projection L := π(Λ(G(tN ))), which is an exact Lagrangian submanifold,
where π : J1(D2) −→ T ∗D2 is the projection along the standard (vertical) Reeb flow. The
Lagrangian L has boundary in T ∗D2|S1

∼= J1(S1), and it is checked that ∂L is the cylindrical
Legendrian braid ∆3, where ∆ is the half-twist positive braid corresponding to a longest word
in the Weyl group, i.e. the Garside element. Since G(tN ) is free, L is an embedded exact
Lagrangian filling of ∂L. Now, by looking at the boundary circle S1 and considering the
moduli space à la [STZ17], we conclude that the moduli space of Lagrangian fillings should
carry a cluster structure: the flag moduli space M(tN , G(tN ); k) is one such chart.

In fact, by an argument akin to Lemma 5.6, the flags at two vertices of the triangle tN
determine the flags along the edge they bound, and therefore the flags along the boundary
circle δD2 = S1 must be determined by the flags at the vertices, themselves three mutually
completely transverse flags in the flag variety B. This space of triples of mutually transverse
flags is one of the Richardson varieties33 R. Now, by the PGLN action, two totally transverse
flags can be put in standard position B, B−, with residual symmetry the Cartan H of
diagonal matrices up to scale. Then the moduli space R/H is a cluster variety and the exact
Lagrangian filling L provides a cluster chart via its moduli of local systems

Loc(L) ∼= Hom(H1(Λ(G(tN ),Z)), k∗) ∼= (k∗)(
N−1

2 ).

This torus can be checked to agree with that of 8.1. Note also that, following Section 7
many other cluster charts and exact Lagrangian fillings can be found by performing N -graph
mutations. Let us now prove our result:

Proof of Theorem 8.1. Let us argue by induction on N , where the base case N = 2 follows
from the fact that PGL2 acts transitively on triples of distinct points. Let us assume that

M(tN , G(tN ); k) ∼= (k∗)(
N−1

2 )

for the N -graph of an N -triangle. Consider an (N + 1)-triangle with one side being an
arbitrary fixed preferred base, and thus the row associated to this base contains 2N − 3
triangles. It is combinatorially apparent that the complement of this row in tN+1 is in
fact an N -triangle tN , and thus we can construct tN+1 by adding such base row to tN . This
combinatorial splitting is translated into a containment of an N -graph G(tN ) within G(tN+1).

33We thank Ian Le for many discussions on the Richardson variety.
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Let us describe such splitting in the (N+1)-graph by providing its construction starting from
the N -graph G(tN ).

Start with the N -graph G(tN ) – see Section 3.2 – and consider the
(
N
2

)
edges intersecting

the base side of tN . The edges are depicted vertically and the base side horizontally – see
Figure 15. These are τi-edges, i = 1, . . . , N − 1, with exactly (N − 1 − k) τk-edges. The
(N + 1)-graph G(tN+1) can be described in the following N stages:

1. First, insert an (N − 1, N)-hexagonal point in the unique τN−1 edge in the base side
of G(tN ). The τN -edge aligned with the previously existing τN−1-edge is continued
down vertically. The remaining two τN -edges are extended horizontally, respectively
to the left and to the right, and the remaining two τN−1 edges are continued down
diagonally, in south-east and south-west direction respectively.

2. Second, continue down the τi-edges, i = 1, . . . , N , until the two τN−1-edges intersect
with the two originally existing τN − 2-edges. In the moment of collision, insert
two (N − 2, N − 1)-hexagonal vertices at the intersection point matching the two
incoming τN−1 and τN − 2 trajectories. We extend the two τN−1-edges adjacent to
the incoming τN−2-edges horizontally to the left and to the right.

The remaining two pairs of three edges, each with two τN−2-edges and a τN−2-edge,
are continued down, with the τN−1-edges continued vertically and the τN−2-edges con-
tinued diagonally in the south-east or south-west directions, accordingly.

3. Iteratively, we proceed as follows in the lth stage, 2 ≤ l ≤ N − 1. We continue down
the τi-edges, i = 1, . . . , N , and at this stage the only edges being continued diagonally
down are τN−l+1-edges. There are 2l− 2 of such edges, which can be gathered in two
groups, internal and external.

By definition, there are two external edges, which are the leftmost and rightmost
τN−l+1-edges, respectively continuing south-west and south-east. For these two ex-
ternal edges, we insert two (N − l, N − l+ 1)-hexagonal and describe the N -graph as
described in Stage 2. The 2l − 4 internal τN−l+1-edges, which continue down diago-
nally, ought to intersect with τN−l-edges, which continue down vertically.

For the 2(l−2) internal edges, there are (l−2) such intersections, since an intersection
occurs for each pair. For each such an intersection, insert a (N−l, N−l+1)-hexagonal
vertex, and continue the outgoing three edges down as described by the local model
for the hexagonal vertex. Hence, for each of these hexagonal vertices, the outgoing
τN−l+1-edge continues vertically down whereas the two τN−l-edges continue down di-
agonally. Thus, at the lth stage we have inserted exactly l (N−l, N−l+1)-hexagonal
points.

4. In the Nth stage, all τi-edges, i ≤ 2 ≤ N continue down vertically and we are left
with 2(N − 1) τ1-edges continuing diagonally. In line with the previous stages, there
are two external τ1-edges and 2(N −2) internal edges. Insert two τ1-trivalent vertices
at the end of the two external τ1-edges. The internal edges will meet in consecutive
pairs at N − 2 intersection points. In this final stage we insert a τ1-vertex in each of
these intersection points, and continue the remaining τ1-edge vertically down.

Let us now compute the flag moduli space M(tN , G(tN+1); k) using this inductive construc-
tion of G(tN+1). A crucial fact to be used is Lemma 5.6, i.e. at a hexagonal vertex, four
consecutive flags uniquely determine the remaining two flags. Let us assume that we have
chosen a point inM(tN , G(tN ); k) and we thus have the data of a flag F in PN for each open
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region in D2 \ G(tN ). This data needs to be considered in the moduli space of flags, given
that G(tN+1) is an (N + 1)-graph, and thus we fix an embedding i0 : PN −→ PN+1 and the
corresponding inclusion PGLN ⊆ PGLN+1. Let us then start the construction G(tN+1) from
G(tN ) by stages, as described above, and prove the statement in Theorem 8.1.

In the first stage, the flag data at the inserted (N − 1, N)-hexagonal point in the τN−1-
edge is uniquely determined by a choice of a codimension-2 projective subspace H2 in PN ,
transverse to i0(PN ). Note that the intersection of H2 and i0(PN ) is uniquely determined by
the flag data coming from M(tN , G(tN ); k). We claim that this choice in the first stage can
be absorbed by the symmetry group PGLN+1.

In order to understand the symmetry group, it is convenient to represent an element in
PGLN+1 via the projective matrix

a1,1 a1,2 . . . a1,N a1,N+1

a2,1 a2,2 . . . a2,N a2,N+1

...
...

. . .
...

...

aN,1 aN,2 . . . aN,N aN,N+1

aN+1,1 aN+1,2 . . . aN+1,N aN+1,N+1


,

where the subgroup PGLN ⊆ PGLN+1 is defined by

PGLN = {A ∈ PGLN+1 : aN+1,N+1 = 1, ai,N+1 = aN+1,i = 0, 1 ≤ i ≤ N}.

In these coordinates, we can assume that the subgroup K ⊆ PGLN+1 fixing our fixed hyper-
plane i0(Pn) ⊆ PN−1 is cut out by the equations

K := {A ∈ PGLN+1 : aN+1,i = 0, 1 ≤ i ≤ N}.

As a result, the remaining PGLN+1-symmetries (once the flag moduli spaceM(tN , G(tN ); k)
is fixed, and thus the symmetries of PGLN have been used) consist of projective transforma-
tions of the form 

a1,1 a1,2 . . . a1,N c1

a2,1 a2,2 . . . a2,N c2

...
...

. . .
...

...

aN,1 aN,2 . . . aN,N cN

0 0 . . . 0 cN+1


,

where ai,j are fixed, 1 ≤ i, j ≤ N , ci ∈ k, 1 ≤ i ≤ N , and cN+1 ∈ k∗ are free. Then, in this
coordinate system, we can assume that the choice of the codimension-2 projective subspace
H2 uses the gauge provided by c1, c2 ∈ k.

In the second stage, two (N − 2, N − 1)-hexagonal vertices are inserted. For each of them,
the flag data is fixed by induction in three out of the six regions near the hexagonal vertex.
Hence, there is a choice of a codimension-3 projective subspace H3 in each of these two
vertices. Let us fix one of these choices by using the free coordinate c3 ∈ k and notice that
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the other choice has an a priori moduli of k. Nevertheless, the τN−3-edge that interacts with
the τN−2 edges in the third stage forces that moduli to be k∗, since the two newly chosen flags
must be τN−3-transverse. Thus in the second stage we have used the symmetry provided by
c3 ∈ k and we are left with a k∗ contribution to the flag moduli.

In the lth stage, 3 ≤ l ≤ N − 1, we proceed inductively as follows. We partition the
(N−l, N−l+1)-hexagonal vertices inserted in this stage into two groups: external, containing
two of them, and internal, containing (l − 2) of them. By definition, the two external (N −
l, N − l + 1)-hexagonal vertices are the leftmost and rightmost vertices. Each of these two
external vertices have flags fixed in three out of the six regions, by the process in the (l−1)st
stage. Thus, as in the second stage, there is exactly one choice of flag at each of these
(N− l, N− l+1)-hexagonal vertices which determines each of their respective neighborhoods.
This corresponds to a choice of codimension-l projective subspace H l+1 in accordance with
the incidence conditions imposed by the given flags. Proceeding as in the second stage, we
fix one of these choices with the free variable cl+1 and the remaining choice contributes k∗

to the flag moduli.

The (l − 2) internal (N − l, N − l + 1)-hexagonal vertices have flags fixed in four out of the
six regions, given the process in the (l− 1)st stage. By Lemma 5.6, these hexagonal vertices
are uniquely determined in their neighborhoods. Thus, although the k∗ contribution of one
of the external hexagonal vertices interacts with an internal vertex, no contributions to the
flag moduli space come directly from the internal vertices.

The argument then develops iteratively in the above manner until the (N − 1)st stage is
completed. The last Nth stage consists of the insertion of N τ1-trivalent vertices. Following
the same pattern as before, only the two external trivalent vertices contribute to the flag
moduli, since each of the internal trivalent vertices have their three surrounding flags deter-
mined at the (N − 1)st stage. In this last stage, the variables ci, 1 ≤ i ≤ N have been fixed
and the only remaining degree of free symmetry is cN+1 ∈ k∗. Let us use such symmetry to
fix the choice in one of the two external trivalent vertices, and thus the contributions of this
last stage to the flag moduli space is the k∗ choice of the remaining point coming from the
remaining external trivalent vertex.

The conclusion in the statement Theorem 8.1 now follows by gathering the contributions of
the flag moduli space at each stage. Indeed, the first stage has no contribution, whereas each
of the (N − 1) stages, from the second to the last Nth stage, has a k∗ flag moduli space
contribution. By the inductive hypothesis, the desired flag moduli space is

M(tN+1, G(tN+1); k) ∼=M(tN , G(tN ); k)× (k∗)N−1 ∼= (k∗)(
N−1

2 ) × (k∗)N−1 ∼= (k∗)(
N
2 ),

which corresponds to the statement, as required. �

Remark 8.2. Note that the inductive combinatorial description of G(tN+1) in terms of
G(tN ) used in the proof of Theorem 8.1 can be used to provide a third alternative definition
of the local N -graph G(tN ), in addition to the descriptions introduced in Subsection 3.2. �

8.1.1. Tetrahedral Triangulations at N = 3 and N = 4. Let us study the Legendrian weaves
Λ(G(τ)) and flag moduli space M(S2, G(τ)) associated to 3- and 4-graphs G(τ) for the
tetrahedral 3- and 4- triangulations τ of the 2-sphere S2. The case N = 2 has been discussed
in Subsection 6.1 above, where Λ(G) ∼= T2

c is the Legendrian Clifford Torus and M(G) ∼=
P1 \ {0, 1,∞}. Let us denote the pair of pants P1 \ {0, 1,∞} by H .

Let us consider the 3-graph G(3) = G(τ (3)) ⊆ S2 associated to the tetrahedral 3-triangulation

τ (3) of the 2-sphere S2, according to the construction in Section 3. We want to compute its flag
moduli spaceM(G). This will be done directly by using the N -graph calculus computations
in Section 4. Indeed, it is proven in Subsection 4.6 that in this case the (satellite of the)
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Legendrian weave Λ(G) is Legendrian isotopic to the four-fold connected sum of the Clifford

torus T2
c . Hence, we obtain that M(S2, G(3)) ∼= H 4. From the description in Theorem 8.1,

we are also giving a contact geometric proof of the following

Corollary 8.3 ([FG06b]). The moduli of four generic flags in C3 is isomorphic to H 4. �

The same argument, using N -graph calculus also allows us to study the flag moduli space
M(S2, G(4)), where G(4) = G(τ (4)) ⊆ S2 is the 4-graph associated to the tetrahedral 4-

triangulation τ (4) of the 2-sphere S2. It is left as an exercise for the reader to use Theorem
8.1 and conclude that M(S2, G(4)) is isomorphic, as an algebraic variety, to

M(S2, G(4)) = {(z1, w1, . . . , z5, w5) ∈ (C∗)9 : (1− κ)wizi − zi + 1 = 0, 1 ≤ i ≤ 5} × (H )4,

where κ = 1 − z1z2z3z4z5 ∈ C∗. The exercise is solved in [DGG16, Section 6.3.2] in the
language of the 3d N = 2 superconformal field theory T4[∆,Π].

8.2. A Computation of the Non-Abelianization Map. We conclude the main body
of the manuscript by exploring the relationship between Legendrian weaves and the works
[FG06b, AV00, AV12, Pal15] in some explicit examples. In particular, we present a case
in which the non-Abelianization map featured in [GMN13, GMN14] can be realized by the
microlocal monodromies associated to constructible sheaves microlocally supported along
Legendrian weaves.

The context is described as follows. Let (C, τN ) be a polygon endowed with an ideal N -
triangulation τN , and choose a wavefront for Λ(G(τN )) with no Reeb chords, such that the
Lagrangian projection is a smooth exact Lagrangian L embedded in the cotangent bundle
(T ∗C, λst). This Lagrangian projection L has a sheaf quantization [NZ09] to a rank-N sheaf
on C with no singular support, i.e. a local system in C. Now, of course, all local systems on
polygons are trivial, but the crucial point is that the Lagrangian covering gives a preferred34

basis for the fibers of the local system, which can undergo changes à la handle-slides in
the Morse context – see [GKS12]. Here, the Lagrangian covering is given by the restriction
π|L : L −→ C of the projection π : T ∗C −→ C onto the zero section. Now, the N -graphs and
the microlocal monodromies, as discussed in Section 7.2, precisely encode these changes. In
our context, the non-Abelianization map is the construction that recovers the constructible
sheaf from its microlocal monodromy.

We illustrate this in the following example. Figure 105 shows the 3-graph G associated to
two adjacent 3-triangles. Suppose that we are given a local system on Λ(G). Denote by x, y
the two monodromies of the corresponding Legendrian weave around the two Y-cycles, and
z, w the two microlocal monodromies along the two I-cycles represented by the two (red)
monochromatic edges.

Figure 105. The 3-graph associated to an adjacent pair of 3-triangles. The
monodromies along the four 1-cycles are labeled x, y, z, w.

34In the Floer-theoretic languange of the Fukaya category, the basis elements are the intersections of the
exact Lagrangian with the cotangent fibers.
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The Legendrian weave Λ(G) is a thrice-punctured genus-one surface and these four 1-cycles
are a basis for H1(Λ(G),Z). We would like to reconstruct the flag data, specifying a con-
structible sheaf, from the monodromies x, y, z, w of the local system. Indeed, this will realize
the Non-Abelianization map [GMN13] from rank-one local systems on the (spectral, or con-
jugate) Lagrangian – parametrized by monodromies – to decorated rank-two local systems
on the base surface. Since the base surface here is contractible, the only degrees of freedom
are the choices of flags at vertices. The map is computed as follows.

Let (a,A), (b, B), (c, C) be the flags at the vertices of the left triangle, and let (d,D) be
the remaining flag. We would like a birational map from the monodromies (x, y, z, w) to
the choice of flags. By using the PGL3-action, we may assume (a,A), (b, B), (c, C) are as in
Subsection 7.2.2 above, with triple product x. Then the flag (c,D) is determined by the cross
ratios z and w, and the triple product y. For instance, z is the cross ratio 〈b, BC,AB,BD〉
while we find w = 〈a,AD,AB,AC〉. These determine D, whence the triple product y fixes
d ∈ D. Direct computation shows

d =

−x
q (1 + x)

x(1 + y)
−py(1 + x)

 , D = (pq, p(1 + x), x).

This thus recovers [FG06b, Pal15] from the perspective of N -graphs.

Example: Tetrahedron with 3-Triangulation. Let us conclude this subsection by ana-
lyzing the genus-4 Legendrian weave Λ in Example 4.6 from the microlocal perspective. We
also compute, following [TZ18], the primitive which characterizes (a discrete cover of)M(G)
as an exact Lagrangian subvariety. Following [AV00, AV12], this primitive – the superpoten-
tial of an effective 4d theory – is interpreted as a generating function of BPS numbers, and
should have integrality properties. We check this for this example.

Consider the tetrahedron with its unique 3-triangulation, as in Example 4.6, which gives rise
to a 3-graph G. An object in the category of simple constructible sheaves Sh1

Λ(G)(S
2×R,Λ)0

microlocally supported along Λ(G) is defined by a four-tuple of transverse flags in V ∼= C3,
placed at the vertices of the tetrahedron, as in Figure 94.

Note that there are 4 ·3 = 12 total nodes, and the Legendrian surface indeed has genus g = 4.
We therefore have 2g = 8 cluster variables, specified by the monodromies around each of the
eight loops, which themselves are a basis for H1(Λ(G),Z) ∼= Z8. Four of the monodromies
are the triple ratios along the faces. Let us label the faces by the three unordered vertices
it contains, e.g. we write x123 for the monodromy of the loop deteremined by the minimal
triangle at the center of the face (123): it is the triple ratio of the three flags at vertices 1, 2
and 3. There are 4×3 = 12 more edge monodromies, but we will find 4·2 = 8 relations among
all these 16 total, giving 8 independent monodromies as expected for a genus-4 surface. Let
us compute the edge monodromies.

First, following [TZ18], for each edge e we define a corresponding coordinate xe to be the
negative of the cross ratio.35 Now there are two relations for each vertex: first, the product
of the edge coordinates around the encircling triangular face is unity; second, the product of
edge and Y-monodromies encircling the vertex at a greater distance is unity. There are thus
8 independent coordinates, and we can take two from each of the triangles surrounding the
four vertices. Let us then write

x12 = −w1 ∧ v4

v4 ∧ v2

v2 ∧ v3

v3 ∧ w1

35We believe the sign appears due to the fact that we should be considering twisted local systems, i.e. lifts
to the circle bundle of the surface that have monodromy −1 over the circle fibers, as in [FG06b] and [GMN13,
Section 10].
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for the coordinate associated to the edge of the triangle encircling vertex 1 and traversing
the one-simplex of the triangulation between vertices 1 and 2, where vi, i ∈ [1, 4], are gen-
erators of lines and wi are generators for planes (thought of as anti-symmetric two-vectors)
— and likewise for the other edges. Then the relation for the triangle encircling vertex 1 is
x12x13x14 = 1, and likewise for the other vertices. Recall that we have similarly denoted by
x123 the inverse of the coordinate corresponding to the Y-cycle in the face containing vertices
1, 2 and 3 — and likewise for the coordinates xijk, i, j, k ∈ [1, 4]. For the first vertex we have
the unital relation

x123x21x142x41x134x31 = 1,

and likewise for the other three vertices. This expresses the flag moduli in terms of generators,
given by xij , xijk, and relations, as above.

Let us verify that these coordinates define a (holomorphic) Lagrangian embedding of flag
moduli space M(G) associated to the genus-4 Legendrian Λ(G) into the moduli space of
framed local systems for C = S2. The symplectic 2-form is computed from the intersection
form to be

ω = −d log x12 ∧ d log x13 + d log x23 ∧ d log x24 − d log x34 ∧ d log x31 + d log x41 ∧ d log x42.

We can directly compute the following four relations

x12 =
−1

1 + x13
, x24 =

−1

1 + x23
, x34 =

−1

1 + x31
, x42 =

−1

1 + x41
,

which readily imply that the embedding of the flag moduli space M(G) in each of the
cluster charts for the moduli space of framed local systems is Lagrangian. This holomorphic
Lagrangian M(G) is in fact exact and we can compute a primitive function W for the
restriction of the Liouville 1-form λst. This would allow us to writeM(G) as the graph ΓdW
of the 1-form dW in this chart. This primitive encodes the BPS states associated to some
Lagrangian filling, given by the Lagrangian projection of Λ(G), determined by a phase and a
framing (implicit here) as in [TZ18, Section 4.8] – see also [AV00, AV12]. For that, we define
the variables

U1 = −x13, V1 = −x12, U2 = −x23, V2 = −x24,

U3 = −x31, V3 = −x34, U4 = −x41, V4 = −x42.

Also, recall that if we have U + V −1 = 1 with U = eu and V = ev, then we can write

v = − log(1− U) = ∂uLi2(U).

Hence, since we have Ui + V −1
i = 1 for all i, with symplectic 2-form ω =

∑
i dui ∧ dvi, we

conclude that M(G) = ΓdW where

W (U1, U2, U3, U4) =

4∑
i=1

Li2(Ui).

This computation for the BPS potential is in line with the results in [TZ18, Section 5].

Finally, let us review how geometric methods, as developed in Section 4, would lead to
this result. Instead of the algebraic computation above, we could have directly used the
diagrammatic calculus, as in Example 4.6, and deduced that our Legendrian weave Λ(G) ∼=
#4
i=1T2

c is the Legendrian connected sum of four Clifford 2-tori T2
c . Since the generating

function of BPS numbers for T2
c is given by one dilogarithm Li2(U), by direct computation,

and the potential W is additive under connected sum, we could have directly deduced that
W (U1, U2, U3, U4) =

∑4
i=1 Li2(Ui). This concludes that our algebraic computation above is

consistent with the contact topology of the underlying Legendrian weave.
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Appendix A. Soergel Calculus and Legendrian Weaves

In this appendix, we provide a construction and a concise speculation regarding the symplectic
geometrization of Soergel Calculus via Legendrian weaves. The following discussion owes a
good deal to B. Elias and E. Gorsky, as explained in the introduction, to whom we are
very grateful. Soergel calculus, as developed by B. Elias, M. Khovanov and G. Williamson
[EK10, EW16], provides a diagrammatic presentation of the category of Soergel bimodules,
which itself categorifies the Hecke algebra. The similarities between Elias’ diagrammatic
calculus and our Legendrian weaves are apparent. Legendrian weaves can be understood as
a geometric approach to the study of the algebra of certain complexes of Soergel bimodules.
We explain this below.

Remark A.1. Soergel bimodules are essential to categorifications of knot invariants [Rou06,
Soe07, Kho07, EK10]. The link between these and moduli spaces of sheaves for Legendrian
braid closures was described in [STZ17, Section 6]. From this perspective, it is not unnatural
to seek a connection between planar Soergel structures and planar structure defined by
Legendrian weaves, the two-dimensional version of braids. �

The category of Soergel bimodules is the Karoubi completion of the subcategory of Bott-
Samelson bimodules, arising as the equivariant cohomology of a closed Bott-Samelson vari-
ety, and thus it suffices to understand the relation to this latter class of bimodules. The key
connection between the present work and Soergel bimodules is that a subclass of Legendrian
weaves yields exact Lagrangian cobordisms between Legendrian links, which are themselves
represented as positive braids. The moduli space of microlocal constructible sheaves sup-
ported on a singular compactification of a positive braid is a closed Bott-Samelson variety,
and our Legendrian weaves, understood as Lagrangian cobordisms – and singularly compact-
ified – induce morphisms between these closed Bott-Samelson varieties.

Thus, we are able to geometrize the diagrammatics of Soergel calculus by considering the
D−4 -singularity for the trivalent vertices in [EK10, EW16], the A3-swallowtail singularity for
the univalent vertex and the A3

1-singularity for their hexagonal vertices. (The Soergel calcu-
lus we geometrize corresponds to the m = 2 Coxeter exponent.)

Remark A.2. Exact Lagrangian cobordisms are directed, due to the convexity directionality
in symplectic topology. The dissonance arises from the fact that, as of today, Soergel calculus
only considers closed Bott-Samelson varieties, whereas the moduli space of microlocal sheaves
supported on a positive braid is an open Bott-Samelson variety. Thus, the Soergel calculus
is geometrized by singular compactifications of our Legendrian weaves, and our Legendrian
weave calculus, without compactification, should naturally induce a Soergel calculus for open
Bott-Samelson varieties. �

For instance, the A3-Zamolodchikov relation from Soergel calculus corresponds to the A4
1-

Reidemeister move in Legendrian weave calculus, as depicted in Figure 106.

Now, let us consider two positive braids β1, β2 ∈ Br+
n , n ∈ N, and their associated Leg-

endrian (long) links Λ(β1),Λ(β2) ⊆ (J1[0, 1], ξst) [CG20, Section 2]. A Legendrian weave
Λ ⊆ (J1([0, 1] × [1, 2]), ξst) with no Reeb chords and boundaries Λ(β1) at [0, 1] × {1}, and
Λ(β2) at [0, 1]× {2}, yields an embedded and exact Lagrangian cobordism L(Σ) from Λ(β1)
to Λ(β2) in the symplectization of (J1[0, 1], ξst), as in Section 7. In particular, each trivalent
vertex Σ(Gtri) and hexagonal vertex Σ(Ghex) yield the following exact Lagrangian cobordism:

(i) The Lagrangian projection L(Gtri) of the Legendrian weave Λ(Gtri) is a Lagrangian
cobordism from the Legendrian tangle Λ(β1) given by one crossing in two strands
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Figure 106. Contact Isotopy among Legendrian weaves, relative to the
boundaries. The lack of Reeb chords allows us to interpret these as exact
Lagrangian cobordisms between the positive braids σi+1σiσi−1σi+1σiσi+1 and
σi−1σiσi−1σi+1σiσi−1. The fact that these Lagrangian cobordisms are Hamil-
tonian isotopic implies that the morphism induced between the associated
Bott-Samelson bimodules must coincide. �

β1 = σi, to the Legendrian tangle Λ(β2) given by two crossing in two strands β1 = σ2
i ,

where i ∈ N is labeling the transposition τi of the edges of Gtri. Smoothly, this is a
saddle cobordism obtained by an index-1 handle attachment to the Lagrangian cone
Λ(β1)× [0, ε] in the symplectization, for ε ∈ R+ small.

(ii) The Lagrangian projection L(Ghex) of the Legendrian weave Λ(Ghex) is a Lagrangian
concordance from the Legendrian tangle Λ(β1) given by three crossings in three
strands β1 = σiσi+1σi, to the Legendrian tangle Λ(β2) given by β2 = σi+1σiσi+1,
where i ∈ N is labeling the transpositions τi, τi+1 in the edges of Ghex. Smoothly,
this is a Lagrangian surface obtained by graphing a Reidemeister three move.

For simplicity, let us suppose that the relative homology H1(L, ∂−L;Z), which we denote by
H1(L), is a free Z-module and the surface L is spin, as is verified for the two local cobordisms
above. An exact Lagrangian cobordism L ⊆ (J1[0, 1], ξst)× [1, 2] from Λ(β1) to Λ(β2) yields
an algebraic map

ΦL : M̂(Λ(β1)) −→M(Λ(β2)),

where ̂M(Λ(β1)) is an algebraic (C∗)b1(L)-bundle over M(Λ(β1)), and M(Λ(β)) denotes the
moduli space of microlocal rank-1 objects in the dg-category of of microlocal sheaves in S1×
microlocally supported on Λ(β), as described in [CG20, Section 3], [STWZ19, STZ17].

Remark A.3. In the Floer-theoretic context, the map ΦL is obtained by applying the
contravariant functor Hom(·, k) in the category of dg-algebras to the morphism

ΦFl
L : A(Λ(β2)) −→ A(Λ(β1))⊗Z Z[H1(L)]

of the Legendrian Contact dg-algebras A(Λ(β)) associated to Legendrian links Λ(β). The
Floer theoretic map ΦFl

L is described in [EHK16, Pan17b], and it is a count of holomorphic
strips whose boundary homology classes are encoded in Z[H1(L)]. To ease the geometry, we
have tensored by the flag moduli space map ΦL above C[H1(L)] ∼= Z[H1(L)] ⊗Z C to base

change the Spec(Z[H1(L)])-bundle to a complex variety M̂(Λ(β1)). �

The relation to Soergel calculus now arises because the moduli space of simple microlocal
sheaves M(Λ(β1)) is (explicitly) isomorphic to the open Bott-Samelson variety associated
to β, also known as the Broué-Michel variety of β [STZ17, Tri19, CG20]. Let R = H∗(B)
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denote the cohomology of the complete flag variety for GL(N,C), N ∈ N, and Bsi the Bott-
Samelson Soergel (R⊗R)-bimodule associated to a permutation si ∈ SN in the Weyl group
SN of GL(N,C). The Rouquier complex Ti := [Bsi −→ R] will be denoted by Ti, for all
i ∈ N. Consider a braid

β =
l∏

j=1

σij , 1 ≤ ij ≤ k − 1,

where σi1 is the leftmost crossing in the front diagram of the Legendrian braid, and the
crossings are read from left to right. Then the (singular) compactly supported cohomology
of algebraic variety M(Λ(β)) is described by the tensor product

Tβ = Ti1 ⊗R Ti2 ⊗R · · · ⊗R Til ,
of Rouquier complexes.

Remark A.4. Should the reader be interested in the closure of the Legendrian Λ(β) ⊆
(J1S1, ξst), instead of the long link (J1[0, 1], ξst), the cohomology of the corresponding moduli
space M(Λ(β)) is obtained by applying Hochschild homology to the above complex Tβ. In
particular, H∗(M(Λ(β))) coincides with the triply-graded homology of the knot associated
to β, equivalently, Khovanov-Rozansky link homology – see [STZ17, Theorem 6.14]. �

In conclusion, the geometric map ΦL : M̂(Λ(β1)) −→M(Λ(β2)) functorially induces

H∗c (ΦL) : H∗c (M̂(Λ(β1))) −→ H∗c (M(Λ(β2))),

which is a map of (products of) Rouquier complexes T̂β1 −→ Tβ2 , where T̂β1 is the com-

pactly supported cohomology of M̂(Λ(β1)), which contains the information of the compactly
supported cohomology Tβ1 of the open Bott-Samelson variety for β1.

Now, applying this to the two Lagrangian cobordisms associated to the trivalent vertices Gtri
and the hexagonal vertices Ghex, we obtain the following two maps:

(i) The map ΦL(Gtri) : Tsi ⊗H∗(S1) −→ Tsi ⊗R Tsi , where i labels the τi-edges of Gtri,

and we have identified the fiber bundle M̂(Λ(β1)) ∼= (Λ(β1))×C∗ with the Cartesian
product, as in this case the bundle is topologically trivial. The fact that there is one
copy of C∗ = S1 × R corresponds to the fact that the Lagrangian cobordism L(Gtri)
has a unique index 1 critical point and its cocore carries the data C∗.

(ii) The map ΦL(Ghex) : Tsi ⊗ Tsi+1 ⊗ Tsi −→ Tsi+1 ⊗ Tsi ⊗ Tsi+1 , where in this case

M̂(Λ(β1)) ∼=M(Λ(β1)) as the Lagrangian L(Ghex) is a cylinder and H1(L) ∼= {0} is
trivial.

In conclusion, the above discussion can summarized according to the following tenet:

Principle A.5. Let Tβ1 , Tβ2 be the Rouquier complexes associated to positive braids β1, β2

and Ψ : Tβ1 −→ Tβ2 the morphism given by a graph GΨ with only (upwards) trivalent
and hexagonal morphisms in (open) Soergel calculus. Then the Lagrangian projection of the
Legendrian weave Λ(GΨ) yields an embedded exact Lagrangian cobordism L from Λ(β1) to
Λ(β2) and a geometric map

ΦL : M̂(Λ(β1)) −→ Λ(β2)

such that H∗c (ΦL) = Ψ. �

The difference between the principle above and a theorem lies on the correct definition of
open Soergel calculus, of which we are not aware at this stage. That said, since the trivalent
and the hexagonal vertices are two of the main building blocks for closed Soergel calculus, the
above construction provides a potential symplectic geometrization of open Soergel calculus,
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associated to Rouquier complexes, instead of Soergel bimodules. In particular, in the context
of open Bott-Samelson varieties, the Lagrangian cobordisms above indicate the need for
additional data from H1(L) = Z|V | in specifying a morphism, where |V | is the number of
trivalent vertices. The development of open Soergel calculus, the computations establishing
that our geometric maps induce the expected algebraic maps, as well as the Lagrangian
description of the univalent vertex, will be the subject of upcoming and more algebraic work.
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Éc. Norm. Supér. (4), 46(5):747–813, 2013.
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Henri Poincaré, 15(1):61–141, 2014.

[Gom98] Robert E. Gompf. Handlebody construction of Stein surfaces. Ann. of Math. (2), 148(2):619–693,
1998.

[Gon17] A. B. Goncharov. Ideal webs, moduli spaces of local systems, and 3d Calabi-Yau categories. In
Algebra, geometry, and physics in the 21st century, volume 324 of Progr. Math., pages 31–97.
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