
On wall-crossing coordinates in Cerf theory

ROGER CASALS

Abstract. We relate Bruhat numbers in real Morse theory to cluster variables in braid varieties.

This provides instances of wall-crossing coordinates in the study of Cerf diagrams.

1. Introduction

The object of this short note is to relate Bruhat numbers in real Morse theory to cluster variables
in braid varieties. Specifically, the Bruhat numbers introduced in [PT23], refining [Bar94], and the
cluster structures constructed in [CGG+25b], building on [CG24, CW24, CZ22]. A motivating factor
is J. Cerf’s seminal work [Cer70] in parametric Morse theory.

Figure 1. (Left) The general form of a Cerf diagram πβ associated to a positive braid
word β. Each positive crossing of the braid word corresponds to a value exchange
between critical points. (Right) An example with β = (σ1σ2σ3)

2σ1σ2σ1σ3(σ1σ2σ1)
2.

1.1. Scientific context. A starting point is the Cerf diagram πβ associated to a positive braid word
β, as depicted in Figure 1 (left). The z-axis records the values of the critical points for a 1-parametric
family of generalized Morse functions fx : Rn −→ R, x ∈ R, where fx has no critical points if |x| is
large enough, and all fx are assumed linear at infinity. This class of Cerf diagrams lies at the core
of the global study of 1 and 2-parametric Morse theory, cf. e.g. [Cer70, Théorème 2’] and its proof.1

In fact, the semi-local lemmas in [Cer70, Chapitres II-IV] are used to reduce any Cerf diagram with
the same boundary conditions, on x and each fx, to one of such form. In the lemme fondamental of
[Cer70, Chapitre VI], generators of a key relative fundamental group are described by using the Bruhat
decomposition of GLn, indexed by its Weyl group Sn. For instance, the generator denoted δi,g in ibid
is described by a 1-parametric family of Morse functions realizing a value exchange between points of
Morse index i+1. The use of the Bruhat decomposition in the context of (framed) Morse functions is
further elucidated by S. Barannikov in [Bar94], see also the enlightening results of [Lau15, LPNV13],
and more recently by P. Pushkar and M. Tyomkin in [PT23].

2010 Mathematics Subject Classification. Primary: 53D10. Secondary: 57K43, 13F60.
1In [Cer70], the study of the homotopy type of the corresponding spaces of (generalized) Morse functions, focused

on connectivity, has three parts: local, semi-local and global. See also the outline [Cer71].
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Independently, cluster transformations provide a framework for the study of wall-crossing phe-
nomena in algebraic and symplectic geometry, cf. e.g. [GHKK18, KS14, Nei14].2 Specifically, the
cluster variables of a cluster algebra determine exponential Darboux coordinates for the chambers,
i.e. the cluster charts, and their mutations are related to the walls of the associated scattering dia-
gram, cf. [GHKK18, Section 1]. One of the first significant instances of cluster algebras were coordinate
rings of Bruhat cells and variations thereof, cf. [BFZ05], where the chamber ansatz dictates the cluster
variables in terms of generalized minors. The Bruhat decomposition, both in its Borel and unipotent
forms, has a crucial role in the study of such cluster algebras. The cluster structures on braid varieties,
constructed in [CGG+25b] via the weave calculus of [CW24, CZ22], can also be understood in terms
of the Bruhat decomposition and generalized minors, as explained in [CGG+25a].

In short, a reading of [Cer70] and the crucial appearance of the Bruhat decomposition in cluster
algebras lead the author to expect that J. Cerf’s results in [Cer70] adumbrate the presence of wall-
and-chamber structures in the study of real parametric Morse theory. The Comparison Lemma below
is an exercise aimed at illustrating this insight.

1.2. Main result. This note will discuss the following lemma, comparing cluster coordinates, in red,
to Bruhat numbers, in blue:

Comparison Lemma. Let β = σi1σi2 · · ·σil be a positive braid word, (πβ , {fx}) its associated
Cerf diagram, and X(w0β) ⊂ SpecZ[z1, . . . , zl] its braid variety. Then the cluster variable
Ak ∈ Z[X(w0β)] equals

(1.1) Ak(z1, . . . , zk) = sgnk ·
i∗k∏
j=1

βj(fxk
)

where xk ∈ R is arbitrarily close but greater than the x-coordinate of the kth crossing of πβ ,

βj(fxk
) is the jth Bruhat number of fxk

, and sgnk := (−1)⌊i
∗
k/2⌋+i∗k(n−1) with i∗k := n− ik.

The Comparison Lemma is proven in Section 2.4. An intuitive description of it is as follows. Let
β = σi1σi2 · · ·σil be a positive braid word in n-strands and of length l ∈ N. There are two types of
data associated to β that have been studied in the literature:

(1) Morse data: the Cerf diagram πβ , as depicted in Figure 1. This is data about the critical
points of 1-parametric families of real Morse functions. These are studied in depth in [Cer70].

(2) Cluster data: the cluster algebra Z[X(w0β)], studied in [CGG+25b]. The relation between
cluster algebras and wall-crossing is studied in [GHKK18, KS14].

For the Morse data, we fix an index ι ∈ N large enough and assume that at every cusp of the
Cerf diagram the Morse index at the upper strand always equals (ι + 1). Thus the Morse index at
the lower strand of all cusps is ι. We also assume that all handleslides shall occur precisely to the
left of a value exchange, i.e. a crossing, or a death, i.e. a right cusp. This is the A-form studied in
[HR15a], cf. also [HR15b, Section 5]. Note that any Cerf diagram decorated with handleslides can be
connected, via Cerf diagrams, to a Cerf diagram in normal form: this follows from the moves [Hen09,
Figure 3.6-3.8] refined integrally and at the function level. The handleslide mark for the handleslide
associated to the kth crossing will be denoted by the variable zk, k ∈ [1, l]. We denote by (πβ , {fx})
any pair consisting of a 1-parametric family of Morse functions {fx} in this normal form, x ∈ R, with
πβ as its Cerf diagram.

In the (x, z)-coordinates of Figure 1, we always assume that the 1-parametric family of generalized
Morse functions fx : RN −→ R is on some RN , for N ∈ N fixed and large enough, and linear at
infinity. The Bruhat numbers of a Morse function fx are introduced in [PT23] and will be denoted
by βj(fx), j ∈ [1, n].

For the cluster data, cluster structures on braid varieties are studied in [CGG+25b], cf. also
[CGGS24, CW24]: braid varieties are a class of smooth algebraic varieties over Z and their Z-algebras

2See also the recorded lectures at the SLMath workshop “Cluster algebras and wall-crossing” in March 2016.
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of regular functions Z[X(w0β)] are shown to be cluster algebras in [CGG+25b, Theorem 1.1]. By
definition, X(w0β) is a moduli space parametrizing linear tuples of flags whose relative positions
are dictated by β. There is a defining embedding X(w0β) ⊂ Zl, where the ambient coordinates
z1, . . . , zl ∈ Zl can be chosen to be in bijection with the crossings of β, zk associated to σik . We de-
note the cluster variables of the initial seed given by the right-inductive weave of βw0 by Ak, k ∈ [1, l],
cf. [CGG+25b, Section 5.3]. By construction, the cluster variable Ak = Ak(z1, . . . , zk) ∈ Z[X(w0β)]
can be expressed as a regular function on the first k ambient variables z1, . . . , zk. In the context
of wall-crossing, the chamber corresponding to this initial cluster seed is given by the open set
{A1 ̸= 0, . . . , Al ̸= 0} ⊂ X(w0β).

In a nutshell, to connect the Morse data and the cluster data, the flags parametrized by a point
in X(w0β) can be understood as a filtration of the integral homologies of the sublevel sets of the
functions fx producing the Cerf diagram πβ . Intuitively, X(w0β) is a finite-dimensional model that
parametrizes part of the space of all 1-parametric families of Morse functions with Cerf diagram πβ ,
cf. Section 2.5 for more context. The cluster variable Ak on X(w0β), on the left hand side of the
Comparison Lemma, algebraically measures the transversality between the initial standard flag and
the flag right after the kth crossing. In line with this, and appropriately described, the products of
certain Bruhat numbers of fx can be understood as a measure of the relative position of fx with re-
spect to f−∞: such relative position can be expressed in terms of the handleslides and value exchanges
needed to go from f−∞ to the given fx, and this is quantitatively measured by the right hand side of
the Comparison Lemma.

Acknowledgements: I am grateful to the organizers of the 2025 Georgia International Topology
Conference who, once more, created a wonderful environment for geometers and topologists from all
around to gather, interact, and discuss exciting new developments in this area of mathematics. I also
thank F. Laudenbach, whose work on Morse theory continues to inspire. The author is supported by
the National Science Foundation via DMS-2505760 and DMS-1942363. □

2. The argument

The goal of this section is to prove the Comparison Lemma, which is done in Section 2.4. The
reader is referred to the excellent article [PT23] for the enhanced Bruhat decomposition and the
Bruhat numbers of Morse functions, and to [CGG+25b] for braid varieties and cluster structures on
their rings of functions.

2.1. Initial setup. Let β = σi1σi2 · · ·σil ∈ Br+n be an n-stranded positive braid word and (πβ , {fx})
its associated Cerf diagram, as depicted in Figure 1, with fx : RN −→ R a 1-parametric family of
generalized Morse functions, in normal A-form and linear at infinity. Let f : Rn −→ R be a Morse
function of the form f = fx where x lies in-between the x-coordinates of the two sets of nested cusps
of πβ , and it is not the x-coordinate of any crossing either. Such an f has only critical points of
indices ι and ι + 1, and precisely n of each. The critical points of index ι are denoted by q1, . . . , qn
and those of index ι+ 1 by p1, . . . , pn, and we always assume

f(qn) < f(qn−1) < . . . < f(q1) < f(pn−1) < f(pn−2) < . . . < f(p1).

For the corresponding elements of the Morse complex CM∗(f), qi ∈ CMι(f) and pi ∈ CMι+1(f)
are identified with the column vector ei = (0, . . . , 0, 1, 0, . . . , 0)t with the unique entry 1 in the ith
position. This explicitly describes isomorphisms CMι(f) ∼= Zn and CMι+1(f) ∼= Zn.

Example 2.1. Consider an x-coordinate x0 with value arbitrarily close but greater than the x-
coordinate of the rightmost left cusp of πβ . In these coordinates above, and given that no handleslides
occur before such an x0 value, the Morse differential ∂ of fx can be expressed as

∂ : Zn −→ Zn, ∂(pi) = (−1)i+1qw0(i), i ∈ [1, n],

where w0 is the longest element of Sn, i.e. the half-twist. In particular, this differential ∂ can be
expressed as a permutation matrix in SLn lifting the element w0 from its Weyl group Sn. □
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2.2. An explicit pinning. For SLn, we choose the following matrices xi(z) and Bi(z):

(2.1) xi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 1 z · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

0 · · · · · · 1


, Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · z −1 · · · 0
0 · · · 1 0 · · · 0
...

. . .
...

0 · · · · · · 1


,

where the (2×2)-submatrices sit at the ith and (i+1)st rows and columns. The variable z is thus the
(i, i+ 1)-entry of xi(z), and the (i, i)-entry of Bi(z). This can be seen as part of a choice of pinning
for SLn, cf. e.g. [CGG+25b, Section 3.4]. Similarly, consider the Pi(z) matrix

(2.2) Pi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · −1 z · · · 0
...

. . .
...

0 · · · · · · 1


,

where the (2 × 2)-submatrices sit at the ith and (i + 1)st rows and columns. Given a positive braid
word β = σi1 · · ·σil we define

Bβ(z1, . . . , zl) := Bi1(z1) · · ·Bil(zl) and Pβ(z1, . . . , zl) := Pil(zl) · · ·Pi1(z1).

Note that Pi(z)
−1 := Bi(z) and thus

(2.3) Pβ(z)
−1 = Bβ(z).

We denote by ∆sw
i , ∆se

i and ∆nw
i , the ith principal minor starting from the lower-left corner (south-

west), the lower-right corner (south-east) and the upper-left corner (north-west), respectively. In
particular, ∆nw

i is the ith leading principal minor, i.e. the generalized minor for the fundametnal
weight ωi in SLn, cf. e.g. [BFZ05, Section 2.3].

Example 2.2. Let U ⊂ SLn be the unipotent subgroup of upper unitriangular matrices and T ⊂ SLn

the Cartan subgroup of diagonal matrices. Suppose that M ∈ SLn lies in the unipotent Bruhat cell
M ∈ Uw0TU ⊂ SLn, then

∆sw
i (M) = (−1)i(i−1)/2 ·∆nw

i (t),

where t ∈ T is the Cartan representative of M in the cell. Indeed, the Cauchy-Binet formula implies
that ∆sw

i (M) = ∆sw
i (w0t), while ∆sw

i (w0t) = (−1)i(i−1)/2∆nw
i (t) is a direct computation. □

2.3. Coordinatizing Morse Differentials. The Morse differentials ∂h
l and ∂h

r before and after a
handleslide of qi along qi−1 with handleslide marked by a variable z, i ∈ [2, n], are related by

(2.4) ∂(h)
r = xi(−z)∂

(h)
l .

See Figure 2 (left) for a depiction of the location of such differentials in part of the Cerf diagram.

Figure 2. A depiction of Equation (2.4) on the left, Equation (2.5) at the center,
and Equation (2.6) on the right. The Cerf diagram is in black, the handleslide marks
in dashed blue, and the location and relation between the Morse differentials in gray.
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The Morse differentials ∂c
l and ∂c

r before and after exchanging the values of qi−1 and qi, i ∈ [2, n],
i.e. a σi crossing in the Cerf diagram as in Figure 2 (center), are related by

(2.5) ∂(c)
r = si∂

(c)
l ,

where si = Pi(0) is a permutation matrix lifting the simple transposition si ∈ Sn.

Remark 2.3. (i) The Bruhat numbers are defined independently of a choice of metric, cf. [PT23, Sec-
tion 0.2] and thus cannot change under a handleslide. This is reflected algebraically in Equation (2.4)
above: since xi(z) is unipotent upper-triangular, the rook matrices associated to any matrix M and
xi(±z)M must coincide, and thus their Bruhat numbers are equal. That said, the Bruhat numbers
after a handleslide between two critical points followed by an exchange of their values do depend on
the handleslide mark.

(ii) In Example 2.1, Equations (2.4) and (2.5) the minus signs in ∂, xi(−z) and si are due to suitable
choices of relative orientations of the stable and unstable cells, made to match the pinning for SLn in
[CGG+25b, Section 3.4]. □

By Equations (2.4) and (2.5), the differentials ∂
(hc)
l and ∂

(hc)
r before and after a pair of handleslide

mark z and a value exchange, both between qi and qi−1 as in Figure 2 (right), i ∈ [2, n], satisfy

(2.6) ∂(hc)
r = si∂

(c)
l = sixi(−z)∂

(hc)
l = Pi(z)∂

(hc)
l ,

as si · xi(−z) = Pi(z) by direct computation. Therefore, in a Cerf diagram where all the handleslides
occur exactly to the left of a crossing, the differential ∂k right after the kth crossing is given by

(2.7) ∂k = Pik(zk) · · ·Pi2(z2)Pi1(z1)∂0,

where ∂0 = Pw0(0) is a permutation matrix for the longest permutation w0 ∈ Sn, as in Example 2.1.

Lemma 2.4 (Bruhat numbers from handleslide marks). Let β = σi1σi2 · · ·σil and (πβ , {fx}) its
associated Cerf diagram in normal form. Consider the Morse differential ∂k of a Morse function fk
right after the kth crossing, and its Bruhat numbers βj(fk), j ∈ [1, n]. Then

(2.8)

i∗k∏
j=1

βj(fk) = (−1)i
∗
k(i

∗
k−1)/2 ·∆sw

i∗k
(Pik(zik) · · ·Pi1(z1)w0).

if Pik(zik) · · ·Pi1(z1)w0 ∈ Uw0TU lies in the unipotent Bruhat cell for w0 ∈ Sn.

Proof. The statement follows from Equation (2.7) and Example 2.2. □

2.4. Proof of the Comparison Lemma. Equation (1.1) is obtained from the following equalities:

i∗k∏
j=1

βj(fk)
(1)
= ρ1(k) ·∆sw

i∗k
(Pik(zik) · · ·Pi1(z1)w0)

(2)
= ρ1(k)ρ2(k) ·∆se

i∗k
(Pik(zik) · · ·Pi1(z1))

(3)
= ρ1(k)ρ2(k) ·∆nw

ik
(Bi1(z1) · · ·Bik(zk))

(4)
= ρ1(k)ρ2(k) ·Ak(z1, . . . , zk).

Here we denoted ρ1(k) := (−1)i
∗
k(i

∗
k−1)/2 = (−1)⌊i

∗
k/2⌋ and ρ2(k) := (−1)i

∗
k(n−1) for the signs. Each of

the equalities can be justified as follows:

(1) Equality (1) is Equation (2.8) in Lemma 2.4. Since Pik(zik) · · ·Pi1(z1)w0 ∈ Uw0TU is an
open condition, we can and do assume it here: the resulting equalities under this assumption
extend to the equalities between the corresponding global regular functions on X(w0β).

(2) Equality (2) is implied by the linear algebra fact that ∆sw
m (Mw0) = (−1)m(n−1) ·∆se

m(M) for
any M ∈ Matn×n(Z), applied to m = i∗k and M = Pik(zik) · · ·Pi1(z1).
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(3) Equality (3) follows from the fact that the mth leading principal minor of an invertible (n×n)-
matrix coincides with the (n −m)-th trailing principal minor of its inverse. That is, we are
using the linear algebra identity ∆se

m(M) = ∆nw
n−m(M−1) for any M ∈ GLn(Z), applied to

m = i∗k and M = Pik(zk) · · ·Pi1(z1), and so M−1 = Bi1(z1) · · ·Bik(zk) by Equation (2.3).

(4) Equality (4) is a consequence of [CGG+25b, Theorem 5.12] and the last line of equalities in
[CGG+25b, Section 3.7], where the cluster variables are expressed as generalized minors. □

Remark 2.5. (i) Note that βj(fk) ∈ Q(z1, . . . , z2) are rational functions on the z-variables, and
typically not polynomial. In fact, their definition requires a field. Nevertheless, the Comparison
Lemma and [CGG+25b, Theorem 7.6] together imply that the product of Bruhat numbers on the
right hand side of Equation (1.1) is a polynomial in the z-variables with integer coefficients.

(ii) The equations cutting out a braid variety directly translate in Cerf theory as the conditions for
the critical points of fx to be able to cancel in pairs as dictated by the right cusps when x is close
but smaller than the x-coordinate of the leftmost right cusp. Such conditions themselves cut out
equations in terms of the handleslide marks, and those coincide with the equations in [CGG+25b,
Corollary 3.7], cf. also [CGG+25b, Definition 3.15 & Lemma 3.16]. □

2.5. A final comment. There is a precise connection between parametric Morse theory and the study
of Legendrian submanifolds. For instance, normal rulings, as introduced and studied by D. Fuchs,
P. Pushkar and Y. Chekanov and their collaborators, combinatorially capture Barannikov’s pairing
[Bar94] of critical points. Another instance is the theory of generating families for Legendrian sub-
manifolds and their associated invariants, as developed by many, including C. Viterbo, D. Théret,
and L. Traynor, see e.g. [BST15, EG98, Thé99] and references therein.

From the viewpoint of Cerf theory, it would be enlightening to rigorously name a reasonably
behaved category or space of all the 1-parametric families of Morse functions with a given Cerf
diagram, and understand how these categories or spaces relate as the Cerf diagram varies, e.g. under
front homotopies, clasp moves and surgeries, cf. [Cer71, Section 4] and [HW73, Chapter I.2]. In the
current scientific context, given a Legendrian submanifold Λ ⊂ (J1(B), ξst), the following steps would
seem both reasonable and an exciting valuable addition to the literature:

(1) Rigourously set up a stable ∞-category GFΛ whose objects are given by generating family
spectra for Λ, i.e. the sublevel set spectra associated to parametric families fx : M −→ R,
x ∈ B, whose Cerf diagram yields the front projection of Λ under the natural projection
J1(B) −→ B × R sending j1f to (b, f(b)), cf. [TT25, Definition 3.1]. The morphisms should
naturally be a spectral enhancement of generating family homology, cf. e.g. [TT25, Section
1.4], discussions therein, and variations thereof, as GFΛ is preferably constructed to be sym-
metric monoidal and unital.

(2) Show that GFΛ is a Legendrian invariant and it is smooth over the sphere spectrum S. In
addition, show that the functor that locally records the spectral local system on Λ given
by the framing of the unstable submanifolds admits a relative left Calabi-Yau structure, as
defined in [BR23, Section 4.1.10]. This latter property should be implied by the unlinked
copy argument use to prove for Sabloff duality, cf. [Sab06, Section 4] or [EES09, Prop. 4.1],
with the relative fundamental class now belonging to the corresponding (relative S1-invariant)
topological Hochschild homology.

In the same vein, show the existence of the appropriate functors between GFΛ and GFΛ′ if
Λ and Λ′ are related by Legendrian surgeries or clasp moves, and establish their properties,
e.g. forms of full faithfulness.

(3) For a space gfΛ, rather than a category GFΛ, I suggest we consider the spectral moduli stack
of pseudoperfect objects associated to a stable ∞-category, cf. [AG14, Section 5.3] which ex-
tends [TV07, Theorem 0.2] to this setting by taking R = S. If non-empty, one might expect
that these spaces gfΛ admit rich geometric structures coming from the symplectic topology
of Lagrangian fillings of Λ. For instance, these moduli stacks should be spectrally smooth
and the ∞-analogue of shifted symplectic, by the categorical properties of (2), and gfΛ be
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equivalent to a substack of gfΛ′ if Λ′ is a Legendrian surgery of Λ.

Each of the (classical) points of gfΛ should be realizable by an extension to the symplectization
of the generating spectrum of the corresponding object in GFΛ, itself generating a possibly
immersed (unobstructed) Lagrangian filling of Λ. By construction, cf. [AG14, Prop. 5.9],
the cotangent complex at such a point shall coincide with the desuspended generating family
spectrum of such an extension, crystallizing the fact that the cohomology groups of a La-
grangian filling (or its framed cobordism class or the appropriate spectrum) appearing in the
corresponding Seidel isomorphisms are to be understood as infinitesimal deformation groups.3

In addition, these moduli stacks gfΛ should admit a generalization of the notion of a cluster
structure, by the same symplectic geometric principles as in [CW24, CGG+25b], e.g. for Leg-
endrian links, an open cluster substack for each complete L-compressing system. In particular,
the braid varieties X(w0β) discussed in the introduction yield, when quotiented by a certain
torus action, a stack isomorphic to the simplest connected component of gfΛ if Λ ⊂ (R3, ξst)
is the rainbow closure of β.

Remark 2.6. (i) As per usual in the trichotomy given by Floer theory, generating families and
microlocal sheaves, one is to expect an equivalence of stable ∞-categories between such spectrally
enhanced GFΛ, perfect modules over the appropriate spectral enhancement of the Legendrian dg-
algebra (see ongoing work of Lipshitz-Ng-Sarkar for the case of knots), and with the corresponding
category of spectral sheaves on B × R with singular support on Λ.

(ii) Despite the expected equivalences in (i), there is significant merit in developing and establishing
(1),(2) and (3) above within the methods and context of parametric Morse theory and generating
families. These different approaches each have their own merits and once each of the facets of this
trichotomy is properly developed on its own, they can be better compared and complement each
other. It is not ideal to sit on a cuttie-stool if one leg wobbles: each is equally important and can
hopefully be appreciated as such. □

3. A few examples

Let β = σi1 . . . σil be an n-stranded positive braid word. In order to produce arbitrary examples
with ease, the reader is referred to the file “BruhatCluster.nb”, available in the author’s website. In
this Mathematica file, I implemented a function

BruhatAndClusterVariables[{i1, . . . , il}, n]
that inputs the list of indices {i1, . . . , il} for the crossings of β and the number of strands n. For each
k ∈ [1, l − 1], this function outputs:

(1) Morse data: the differential ∂k between the kth and (k + 1)th crossing, its associated rook
matrix in the top-dimensional cell for its maximal ruling, and the corresponding signed prod-
uct of Bruhat numbers as displayed in the right hand side of Equation (1.1).

(2) Cluster data: the braid matrix associated to the braid consisting of the first k crossings,
and the cluster variable associated to the kth crossing, as displayed in the left hand side of
Equation (1.1).

In particular, the reader can use it to quickly verify the equality the Comparison Lemma in any
reasonably sized example.

3.1. 2-stranded case. Consider the 2-stranded braid word β = σl
1 ∈ Br+2 . In this 2 × 2 case, a

matrix in SL2 explicitly factorizes as

(3.1)

(
a b
c d

)
=

(
1 a

c
0 1

)(
0 b− ad

c
c 1

)(
1 d

c
0 1

)
=

(
1 a

c
0 1

)(
0 − 1

c
c 1

)(
1 d

c
0 1

)
3This is in line with the fact that the cochain complex C∗(L, k)[1] is equivalent to the cotangent complex at the

trivial local system in the moduli of pseudoperfect objects for the category of ∞-local systems on L.
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if c ̸= 0, and otherwise factorizes as

(3.2)

(
a b
0 d

)
=

(
a 0
0 d

)(
1 b

a
0 1

)
=

(
a 0
0 1

a

)(
1 b

a
0 1

)
.

Since n = 2, there is only one type of crossing σij , with index ij = i∗j = 1. Therefore, in the above
notation for the entries, Equations (3.1) and (3.2) imply that the Bruhat numbers are c and 1/c
if c ̸= 0, or a and 1/a otherwise. In particular, in the open top-dimensional chart associated to a
maximal ruling, where the Bruhat numbers are non-vanishing, the only non-trivial product of Bruhat
numbers is the entry c itself. In short, the right hand side of Equation (1.1) is simply β1(fk), which
can be computed as the lower-left entry of ∂k = P1(zk) · · ·P1(z1)w0, k ∈ [1, l]. This entry coincides
with the upper-left entry of the braid matrix Bσk(z1, . . . , zk) = B1(z1) · · ·B1(zk): such upper-left
entry is Ak(z1, . . . , zk) by [CGG+25b, Section 3.7], and thus Equation (1.1) is verified.

Remark 3.1. In this 2-stranded case, the resulting functions in the z-variables are related to Euler
continuants, e.g. cf. [Hug23, Section 2.2.5] or [Boa18, Section 5]. □

3.2. A 3-stranded example. Consider the 3-stranded braid word β = σ1σ2σ1σ2σ
2
1σ

2
2σ1. Let us

consider the Morse function fx with x-coordinate right after the x-coordinate of the seventh crossing
of β. This crossing is σ2 and thus i7 = 2 and i∗7 = n−i7 = 1 as n = 3. By the discussion in Section 2.3,
the associated Morse differential can be written as

∂7 = P2(z7)P1(z6)P1(z5)P2(z4)P1(z3)P2(z2)P1(z1)w0 : Z3 −→ Z3

which reads as

∂7 =

 z2z5 − 1 z1z5 z5
z2z4 − z3 z1z4 − 1 z4

z2 − (z2z5 − 1) z6 + (z2z4 − z3) z7 −z5z6z1 + z1 − (1− z1z4) z7 −z5z6 + z4z7 + 1

 .

In the locus where the polynomial δ := −z5z6z2 + z4z7z2 + z2 + z6 − z3z7 is non-zero, ∂7 we can
factorized as ∂7 = U1RU2 where

U1 := δ−1

 1 (z2z5 − 1) z7 + z1 (z4z7 − z3z5z7 + 1) z2z5 − 1
0 1 z3 − z2z4
0 0 1

 ,

R := δ−1

 0 0 1
0 z5z6z2 − z2 + z1z3 + z1z4z6 − z1z3z5z6 − z6 0
δ2 0 0

 ,

U2 := δ−1

 1 z7 + z1 (z5z6 − z4z7 − 1) −z5z6 + z4z7 + 1
0 1 z4z6 + z3 (1− z5z6)
0 0 1

 .

The right hand side of Equation (1.1), which in this case is simply the first Bruhat number β1(fx) as
i∗7 = 1, is the lower left entry of the rook matrix R: it thus equals β1(fx) = δ. The left hand side of
Equation (1.1), which is the cluster variable A7(z1, . . . , z7), is the second leading principal minor of
the braid matrix B := Bσ1σ2σ1σ2σ2

1σ2
(z1, . . . , z7), as i7 = 2. This braid matrix which reads

B =

(
z2 − z1z3 + (−z2z5 + z1 (z3z5 − z4) + 1) z6 z1 + (z2z5 + z1 (z4 − z3z5) − 1) z7 −z2z5 + z1 (z3z5 − z4) + 1

z3 (z5z6 − 1) − z4z6 (z4 − z3z5) z7 + 1 z3z5 − z4
z5z6 − 1 −z5z7 z5

)
.

Therefore A7(z1, . . . , z7) = δ and Equation (1.1) holds.

3.3. A 4-stranded example. Consider the 3-stranded braid word β = σ1σ2σ3σ1σ3σ2σ1σ3σ
2
2σ1. Let

us consider the Morse function fx with x-coordinate right after the x-coordinate of the seventh crossing
of β. This crossing is a σ1 and thus i7 = 1 and i∗7 = n− i7 = 3 as n = 4. By Section 2.3, the associated
Morse differential is

∂7 = P1(z7)P2(z6)P3(z5)P1(z4)P3(z3)P2(z2)P1(z1)w0 : Z4 −→ Z4
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which reads

∂7 =


−z3 −z2 −z1 −1
−z3z7 −z2z7 − 1 −z1z7 −z7
−z3z6 −z4 − z2z6 −z1z6 − 1 −z6
1− z3z5 −z2z5 −z1z5 −z5

 .

In the locus where

δ1 := 1− z3z5, δ2 := z4 (1− z3z5) + z2z6, δ3 := z3z5 − z2z7 + z1 (z4z7 − z6)− 1,

are non-zero, ∂7 we can factorized as ∂7 = U1RU2 where

R :=


0 0 0 δ−1

3

0 0 −z3z5+z2z7+z1z6−z1z4z7+1
z4(1−z3z5)+z2z6

0

0 −z3z5z4+z4+z2z6
z3z5−1 0 0

1− z3z5 0 0 0

 ,

and see the code above for U1 and U2. Therefore, given that i∗7 = 3 and the rook matrix R above, the
right hand side of Equation (1.1) in this case is

β1(fx)β2(fx)β3(fx) = δ1 ·
δ2
δ1

· δ3
δ2

= δ3.

i.e. the product of the first three entries of R from the lower-left corner. The left hand side of
Equation (1.1), i.e. the cluster variable A7(z1, . . . , z7), is the first leading principal minor of the braid
matrix B := Bσ1σ2σ3σ1σ3σ2σ1

(z1, . . . , z7), since i7 = 1. This braid matrix is

B =


z3z5 − z2z7 + z1 (z4z7 − z6)− 1 z2 − z1z4 z1 −z3

z4z7 − z6 −z4 1 0
z7 −1 0 0
z5 0 0 −1

 .

Thus A7(z1, . . . , z7) = δ3 as well, illustrating Equation (1.1).
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