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The importance of being contact

There exists a smooth path between two points in the plane R

Question: Can we also trace this path if we are skating or driving?

How to Parallel Park

Turn
the wheel

Yes, parallel parking exists and skaters can move between any points!

Remark: Cats are also indebted to this phenomenon.
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Legendrian knots

The plane field £ spanned by the two directions of motion is locally:

Figure : Contact structures are obtained by gluing this plane field.

Embedded curves in R3 tangent to the plane field: Legendrian knots
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The precise definitions

Consider a distribution of 2—planes in 3—space:
o Integrable: the 2—planes are the tangent spaces of a family of surfaces.

Integrable
Distribution

Figure : The distribution 7 is integrable.

o No Integrable: no integral surface exists, even locally.

Figure : The distribution & = ker(dz — ydx) is non—integrable.
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If dae = 0 on &, then there exists a surface S with TS = €.

If dae # 0 on &, the only possible submanifolds tangent to £ are knots.
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Integrability and algebra

Is there a method to verify that a given £ = ker « is contact ?

Theorem (Deahna 1849, Clebsch 1866, Frobenius 1877)

Let Y be a 3—fold and £ = keraw C TY a 2—plane distribution. Then the
rank of da|s measures integrability:

If dae = 0 on &, then there exists a surface S with TS = €.

If dae # 0 on &, the only possible submanifolds tangent to £ are knots.

Corollary
Let (Y,&) be a 3—fold and ¢ = keraw C TY. Then:

| \

& is contact <= a A da # 0.

A\

Now it is time to thank your multivariable calculus teachers!
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A central advantage

Suppose we have a knot A C R3(x, y, z), we need 3—dimensions:

& &

Consider the contact structure £ = ker(dz — ydx) and a Legendrian knot
TAC ¢ = (dz—ydx)|7Aa =0 =y = dz/dx

Thus on A we can recover y ) as the slope.

W 5
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Modern Applications

The study of these plane fields has significant implications in:

o Low dimensional topology: Property P for knots, Cerf's [, =0,
Heegaard—Floer Homologies and knot invariants.

=B

o Complex geometry: J(complex affine manifolds) are contact.

Plus, mirror symmetry links to algebraic geometry.

@ Graph theory: This is new! We have just discovered an invariant of a
cubic graph, which enhances its chromatic polynomial to a DGA.
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Existence & Classification

The main goal is the existence and classification of contact structures.
o Existence. Conjectured by S.S. Chern (1966).

Theorem (Lutszartinet 72-3D, C.-Pancholi-Presas 13-5D, Borman-Eliashberg-Murphy 14-nD)

Any almost contact manifold admits a contact structure.

e Classification. Even on the sphere S2™*! infinitely many! (Ustilovsky).

Figure : D. Bennequin (1983), M. Gromov (1985) and Y. Eliashberg (1987).

Since 1985, we have become very good at distinguishing contact
structures using pseudoholomorphic invariants (e.g. A,-categories).
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Classification of Legendrian Knots

The fundamental question: is it possible for two smoothly isotopic

knots to not be isotopic as Legendrians ?
Legendrian isotopies are realized by the following moves:

Move I

-

Move 11

>\ X

Move III

Now pseudoholomorphic invariants shall distinguish them!
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Methods to distinguish

M. Gromov's idea, quite brilliant, is to count solutions of a PDE !
This is the perturbed Cauchy—Riemann equation in (Y x R, J):

o Contact structures: boundary conditions are periodic orbits.

o Legendrian knots: boundary conditions are tangential chords.

tangential chord

This constructs a differential graded algebra (A, 9).
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The trefoil knot

The DGA structure (A, ) is an invariant of the Legendrian knot.

@ The generators are the chords: A =TFy(a, b, x,y, z).
@ The degree is a rotation number: |x| =|y| =|z| =01 |a| = |b| = 1.

@ The differential: Ja = 1+ xyz + x + z counts holomophic disks.

a

Homework: 0b=1+x+z+xyzidx =0y =0z=0.
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F. Presas

The Zig—Zag Team
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2. If (Y,€) and (Y,n) have the zig—zag unknot property.
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The Zig-Zag

In 2014 there were 5 types of constructions of contact structures with
the same invariants. Are the contact structures the same?

Theorem (M12,CMP14: The Zig—Zag Criterion)
Let (Y,&) be a contact structure and Ny, Ay C (Y, &) two Legendrians.

1. If Ay = Ao have a zig—zag, and are smoothly isotopic:

Then Ny = N\, are Legendrian isotopic.

2. If (Y,€) and (Y,n) have the zig—zag unknot property.
Then (Y,&) = (Y, &) are contact isomorphic.

Today’s Tenet: If you can find a zig—zag, then you can classify.
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The Scheme

‘ Basic guide to study contact topology and Legendrian knots

1. First we compute invariants: pseudoholomorphic curves, constructible
sheaves, A,,—structures and a plethora of algebraic beasts.

2. If same invariants, then try the Zig—Zag criterion.

We now have gained knowledge on Legendrian knots:

Time to use it !

Mirror Symmetry
Complex Geometry
Graph Theory

Contact Topology




Symplectic Topology
Today's Applications

‘Symplectic Topology of Affine Hypersurfaces‘




Symplectic Topology
Today's Applications

‘Symplectic Topology of Affine Hypersurfaces‘

o First, an affine hypersurface is the zero set of a polynomial:

E={(x,y)€C?®: y?>=x(x—1)(x—13)} CC?



Symplectic Topology
Today's Applications

‘Symplectic Topology of Affine Hypersurfaces‘

o First, an affine hypersurface is the zero set of a polynomial:
E={(x,y)eC?: y>=x(x-1)(x—-13)}CC?
@ Second, we will approach symplectic topology as

“study of complex geometry up to perturbations”.

so we care about Ey = {(x,y) € C2: y2=x(x—1)(x =N}



Symplectic Topology

Today's Applications

‘Symplectic Topology of Affine Hypersurfaces‘

o First, an affine hypersurface is the zero set of a polynomial:
E={(x,y)eC?: y>=x(x-1)(x—-13)}CC?
@ Second, we will approach symplectic topology as

“study of complex geometry up to perturbations”.

so we care about Ey = {(x,y) € C2: y2=x(x—1)(x =N}
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[ ]
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From Legendrian Knots to Complex manifolds

(CE 2012, CM 2016) The main correspondence
Legendrian Knots <> Affine Hypersurfaces

(=) How to go from Legendrian knots to complex manifolds?

Legendrian ll& {zyz+x+2=0} C C3

trefoil knot '

complex
variety

The crucial fact: boundary of an affine complex manifold is contact.
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From Complex Manifolds to Legendrian Knots

Theorem (CM 2016 — The Dictionary)

(«<=) From the affine complex manifold to a Legendrian knot.

Proof.
First choose a Lefschetz fibration 7 : X — C.

1. Fix a basis of exact Lagrangian spheres {L;,...,L,} in the fiber F.

2. Choose a second Lefschetz fibration p : F — C and express these
Lagrangian spheres {L;} as matching paths for the fibration p.

3. Given a vanishing cycle V; C (F, )\), draw the embedded path p(V;).

4. Now plane combinatorics: express each matching path p(V;) as a
word in half-twists along the matchings paths of the {L;}.

5. Draw the front projection of their Legendrian lifts. O
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The Koras—Russell hypersurface

Theorem (CM 2016)
The exotic Koras—Russell Cubic C deforms to C3.

where here C = {x + x?y + 22 + w? = 0} C C*.
Proof: Let us translate the problem to the study of a Legendrian knot by
applying the recipe to C = {x + x’y + 22 + w3 =0} C C*

Lefschetz

Zig—7ag

Legendrian

Handleslides
Braid groups . :
Knot theory Rei\f}[(gileeqlster

Hence, the Koras—Russell cubic is deformation equivalent to C3. O
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Danielewski Hypersurfaces

Let us now improve a result a recent result in algebraic geometry:

Theorem (2016)

The Danielewski varieties X, = {xy? + z> + w? = 0} are deformation
equivalent if a > 2. In addition, X1 ¢ X, if a > 2.

Proof: Let us translate the Danielewski hypersurfaces X, to Legendrians
knots. The corresponding knots are:

1. The DGA invariants: (A1, 91) = (C[t], 0t = 0), (A;,0,) =20, a > 2.
2. The Zig—zag criterion proves X, = X, if a,b > 2. O
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Mirror Symmetry

Theorem (2016)
The affine hypersurface X = {1 + x + z + xyz = 0} is self-mirror.

Proof: First, we draw its associated Legendrian knot

{zyz+oc+y+2=1}

Then we compute the pseudoholomorphic invariants:
(A,0) = (C{x,y,z,a,b), Oda=0b=xyz+x+y—+z-1)

Since the ring is commutative, the mirror is the algebraic manifold

) i} Clx,y,z
X* = Spec(H (A’a)):(xyz+x[+y-F]Z—1):X .
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Epilogue

‘ Contact topology and Legendrian knots‘

1. Pseudoholomorphic invariants: the DGA (A, d) of a Legendrian knot.

2. Zig—Zag criterion: it allows us to classify a subclass of Legendrians.

Symplectic Topology of Affine Hypersurfaces‘

Apply the correspondence to Legendrian knots:

{zyz+rc+y+2=1}

Then use (A, J) and zig—zags to prove results.
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The end

Thanks a lot!

“Buq TS 18 TR dmeLFiED vERsion)
Tor THe GERERAL QUeLIC.”
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