Legendrian Knots & Lagrangian Fillings

R. Casals (UC Davis) @ MSU Geometry & Topology Seminar

Introduction

Def: The standard contact structure on \mathbb{R}^3 is the 2-plane field $\xi_{\mathbb{R}^3} = \ker \{ dz - y dx \}$. It compatifies to $(\mathbb{S}, \xi_\mathbb{S})$.

Def: A knot $K \subset (\mathbb{S}, \xi_\mathbb{S})$ is LEGENDRIAN if $TK \subset \xi_\mathbb{S}$.

Lagrangian Fillings

Def: A Lagrangian filling $L \subset (\mathbb{S}, \xi_\mathbb{S})$ is an embedded (nearly) Lagrangian surface in \mathbb{S}^3 with boundary $\partial L = K$. Can be a Legendrian, $\partial L = TK$.

Select Facts:
1. ∂L might not have a Lagrangian boundary.
2. Legendrians minimally intersect K.
3. The \mathbb{S}^3-Lagrangian up to Hamiltonian isotopy.

Classification

Thm: (Casals 2020) The Lagrangian twist links $N_{n, m} \subset (\mathbb{S}, \xi_\mathbb{S})$ have

- Infinitely many distinct Lagrangian fillings $\{N_{n, m}\}$
- All $N_{n, m}$ are Legendrian isotopic to $N_{1, m}$.

In fact, for $m = 3$, many Legendrian and satellites knots with this property.

2020 Development

Thm: (Casals 2020) There exists an abundance of Stein fillable \mathbb{C}^n-knots isomorphic to \mathbb{S}^3 with

- Only one Lagrangian isotopy class of genus g.
- (up to Lagrangian isotopy of genus g).

Subsequently:
- Legendrian-Seidel conjectures (Casals, Casals),
- Contact transformations & modularity (Casals, Casals),
- Closing the contact picture (Casals, Casals),
- And more! All these are challenges for further research and ongoing studies.
The End

Thank you!