
SOLUTIONS TO PROBLEM SET 3

MAT 108

Abstract. These are the solutions to Problem Set 3 for MAT 108 in the Fall Quarter
2020. The problems were posted online on Wednesday Oct 14 and due Friday Oct
23.

Problem 1. Consider a play-off tournament with 2n players. In the first round of
this tournament teams are paired-up and each team plays a unique game. Let an be
the number of possible pairings for this first round. Describe the first 10 terms of the
sequence (an), n ∈ N, and find the recursion that an satisfies.

Solution. Given 2n players, there are 2n− 1 ways to pair someone with person 1. We
are then left with 2n− 2 people so the next person has 2n− 3 possible choices. If we
keep repeating this, then we see that there are a total of (2n − 1) · (2n − 3) · · · 3 · 1
pairings. The recursive formula is then

a2n = (2n− 1)a2n−2.

where a2n represents the number of ways to pair 2n players. Note if n = 1, then there
is one way to pair 2(1) = 2 players. Using this fact, we can compute the first ten terms
of the sequence using our recursive formula above.

Problem 2. (10+10 points) Consider a unit square divided into four squares, of equal
area and sides. From this division, remove the square in the upper right part, leaving
the initial unit square with a 1/4 of its area removed. See the second piece in Figure
1.

Now, repeat this process with the remaining three squares which were part of the initial
subdivision and have not been removed. You will obtain the third piece in Figure 1.
Keep iterating this process, and let an be the number of filled squares in the nth step.

Figure 1. The sequences of squares in Problem 2 for n = 1, 2, 3 and 4.

The first step is to consider the square, so a1 = 1. Figure 1 depicts the cases a1, a2, a3
and a4, and we see that the sequence thus starts with

(a1, a2, a3, a4, . . .) = (1, 3, 9, 27, . . .).

(a) Find the recursion satisfied by an. Given a closed formula for an.
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(b) Let An the area covered by the orange squares, i.e. the squares which have
not been removed, in the nth step. So A1 = 1, A2 = 3/4 and so on. Find the
recursion satisfied by An and give a closed formula for An.

Solution. For a fixed number c ∈ R, the recursion rn+1 = c · rn with initial value
r1 = a has solution rn given by

rn = a · cn−1.
To prove it, notice that this formula gives us r1 = a · c0 = a and satisfies

rn+1 = a · c(n+1)−1 = a · cn = a · c · cn−1 = c · (a · cn−1) = c · rn,

as desired

(a) Given the nth diagram in this sequence, each orange square will be replaced
in the next iteration by exactly 3 orange squares in the (n + 1)th diagram.
Therefore, our recursion is

an+1 = 3 · an,

with initial value a1 = 3. By the general discussion above, a closed formula for
an is

an = 3n+1.

(b) Let bn be the number of squares in the nth diagram. Then An = an/bn. Each
step separates a given square into a 2× 2 sub-grid, so the sequence bn satisfies

bn+1 = 4 · bn+1

with initial value b1 = 1. Therefore, the area covered by the orange squares
satisfies the recursion

An+1 =
an+1

bn+1

=
3 · an
4 · bn

=
3

4
· An

with initial value A1 = a1
b1

= 1
1

= 1. By the general discussion above, a closed
formula for An is

An =

(
3

4

)n−1

.

Problem 3. (10+10 points) Let n, k ∈ N be natural numbers with k ≤ n.

(a) Show that the following formula holds(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

This is Corollary 4.20 in the Textbook, you can either give a proof by induction,
direct computation or by combinatorial interpretation.

(b) Show that the following formula holds(
n

k

)
=

(
n

n− k

)
,

either by induction, direct computation or by combinatorial interpretation.

Solution.
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(a) We give a combinatorial proof. Let the left hand side count the number of ways
to choose k people from a class having n students and 1 professor. There are(
n
k

)
choices that do not include the professor and

(
n

k−1

)
choices that do include

the professor. Note we are only selecting k − 1 students for the latter option
because we already chose the professor as our first person. The result then
follows.

(b) We prove this using direct computation.(
n

k

)
=

n!

(n− k)!k!
=

n!

(n− k)!(n− (n− k))!
=

(
n

n− k

)
Problem 4. (5+5+5+5 points) Let a, b ∈ N be natural numbers.

(a) What is the coefficient of a5b6 in the expansion of (a+ b)11 ?

(b) Show that the following formula holds

k=n∑
k=0

(−1)k
(
n

k

)
= 0.

(c) Show that the following formula holds

k=n∑
k=0

(
n

k

)
= 2n.

(d) Show that a set with n elements has exactly 2n distinct subsets.

Hint: For Part (d), interpret the equality in (c) combinatorially.

Solution.

(a) The binomial theorem tells us that

(a+ b)11 =
11∑
k=0

(
11

k

)
akb11−k.

The a5b6 term occurs for k = 5, so the coefficient in front of a5b6 is(
11

5

)
= 462.

(b) Consider the binomial expansion

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k.

Evaluating at a = −1 and b = 1, we have

((−1) + 1)n =
n∑

k=0

(
n

k

)
(−1)k · 1n−k.
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Using ((−1) + 1)n = 0n = 0 and 1n−k = 1 for any k, we arrive at the desired
equation.

(c) Now take a = b = 1 in the binomial expansion. We arrive at

(1 + 1)n =
n∑

k=0

(
n

k

)
1k · 1n−k,

which simplifies to the desired equation.

(d) Let X be a set with n elements. Specifying a subset A of X (which may be
empty, all of X, or anything in between) is the same thing as choosing some
elements of X to be in our set A. Specifically, if A has exactly 0 ≤ k ≤ n
elements, then specifying A is the same thing as choosing k elements from our
n element set X. There are

(
n
k

)
possible ways to make this selection, so there

are
(
n
k

)
subsets of X which have exactly k elements.

The total number of subsets of X is the number of subsets of X with 0 elements,
plus the number of subsets of X with 1 element, plus the number of subsets of
X with 2 elements, and on and on, up to the number of subsets of X with all
n elements. By the above discussion, these numbers are

(
n
0

)
,
(
n
1

)
,
(
n
2

)
,. . . ,

(
n
n

)
,

so the total number of subsets of X is
k=n∑
k=0

(
n

k

)
.

By Part (c), this is 2n.

Note: There is a way to prove this result without using Part (c). Specifying a
subset A ⊆ X is the same thing as looking at each element x ∈ X individually,
and deciding whether x is or is not in A. Therefore, specifying a subset A is
the same as making n independent binary choices, and there are 2n ways to do
this.

Since this alternative proof did not use Part (c), it can be combined with the
first proof to give an alternative proof of Part (c).

Problem 5. (20 points) Let us consider parenthesis, as used in a sentence for the
written English language. The only rule for a single parenthesis is that it must open,
we write ”(” for that, and it must close, in which case we write ”)”.

If we use a parenthesis inside another parenthesis, we must make sure that we close
the parenthesis inside first, before closing the external parenthesis. Otherwise it is
not correctly written. For instance, ()() is correct, but )(() is not correct. Let Pn be
the number of ways in which n parenthesis can be written correctly. The start of the
sequence is

(P0, P1, P2, P3, . . .) = (1, 1, 2, 5, . . .),

corresponding to no parenthesis, which gives P0 = 1, the unique parenthesis (), which
gives P1 = 1, P2 = 2 because we can write ()() and (()) and finally there are five ways,
P3 = 5, of correctly writing three parenthesis:

()()(), ()(()), (())(), (()()), ((())).
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Show that Pn satisfy the following recursion

Pn+1 =
n∑

k=0

PkPn−k.

Solution. Suppose we want to correctly write n + 1 parentheses. To prove that
Pn+1 satisfies the recursion above, it suffices to construct a bijection from Pn+1 to⋃n

k=0 Pk × Pn−k. Let s be our desired string. Let’s start with our first parenthesis
”(.” We know this must be closed off so write s = (a)b where a and b are unique
strings with na and nb correctly written parentheses, respectively. Since there are
n + 1 parentheses and we have one represented by the red parenthesis, it follows that
na + nb is the number of ways to correctly write (n + 1)− 1 = n parentheses. Hence,
our desired map sends our string s to the pair [a, b]. Suppose na = k and nb = n− k.
We then see that there are PkPn−k ways to correctly write s = (a)b. Therefore, we
have Pn+1 =

∑n
k=0 PkPn−k.

As an example, if n = 3, then we have

P2+1 = P0P2 + P1P1 + P2P0,

which corresponds to

a = 0, b = 2 a =1, b = 1 a = 2, b = 0.

()()(), ()(()) (())() (()()), ((()))

Problem 6. (20 points) A triangulation of a polygon in the plane is a subdivision of
the polygon into triangular pieces by adding edges that go between vertices. Let Cn

be the number of triangulations of a polygon in the plane with n + 2 sides. Find a
recursion for Cn+1 in terms of the previous elements in the sequence.

Example: C1 are triangulations of the triangle, and there is only one, so C1 = 1.
This correspond to the first row in Figure 2. The next term C2 counts the number
of triangulations of a square, we can add either of the two diagonals to divide into
triangles, so there are two ways and C2 = 2. This corresponds to the second row in
Figure 2. Figure 2 depicts the fact that C3 = 5 and C4 = 14. The sequence thus starts
as

(C1, C2, C3, C4, . . .) = (1, 2, 5, 14, . . .)

Hint: Establish a bijection between the set of triangulations and the ways of ordering
parenthesis. This will allow you to conclude that the Cn satisfy the same recursion as
in numbers in Problem 5.
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Figure 2. Triangulations of polygons of n+ 2 sides for n = 1, 2, 3 and
4, appearing in Problem 6. The first row is n = 1, triangulations of a
triangle, the second row is n = 2, which are triangulations of a square.
The third row is the case n = 3, which are triangulations of a pentagon
and the fourth and fifth rows depict the n = 4 case, triangulating an
hexagon.

Solution.To standardize the enumeration of triangulations of a polygon, we will con-
sider any (n + 2)-gon to have a horizontal base edge L with vertex x on the left and
vertex y on the right. Label the remaining vertices 0, 1, . . . , n − 1, starting from the
vertex clockwise from x and increasing clockwise (so vertex n− 1 is adjacent to y).

By convention, define C0 = 1, which we will think of as counting the single ”empty”
triangulation on a single edge (which you can think of as a “2-gon” whose sides have
been collapsed onto each other). We will prove the identity

(0.1) Cn =
n∑

k=0

CkCn−k

using a bijection similar to that in the solution to Problem 5. Let Bn be the set of all
triangulations of an (n+ 2)-gon, and set B0 = {∅} to be the set with a single element,
the empty triangulation on one edge. Notice that |Bn| = Cn (where |Bn| refers to the
cardinality of Bn, i.e. the number of elements of the set Bn), so to prove 0.1 it suffices
to provide a bijection

ϕ : Bn −→
n⋃

k=0

Bk ×Bn−k
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To define ϕ on a triangulated (n+ 3)-gon W ∈ Bn, we must associate to W an ordered
pair (X, Y ) ∈ Bk × Bn−k. The base edge L of W is the edge of a unique triangle T
with vertices x and y. Let k be the label of the remaining vertex of T , and note that
k ∈ {0, 1, . . . , n}. Deleting the edge L, we are left with two triangulated polygons
which intersect at the single vertex k. One of these polygons–call it X–contains the
vertices x, 0, 1, . . . , k, and the other–call it Y –contains the vertices k, k + 1, . . . , n, y.

Therefore, X is a (k + 2)-gon and Y is a (n− k + 2)-gon. Separating the triangulated
polygons X and Y , orient them both so that the edges belonging to the deleted triangle
T are horizontal. Now (X, Y ) is a uniquely-defined element of Bk × Bn−k, as desired.
We then set ϕ(W ) = (X, Y ). Note that if k = 0, then X = ∅ is the empty triangulation
on a single edge, the unique element of B0. Similarly, if k = n, then Y = ∅ instead.

Figure 3

To prove that ϕ is a bijection, we will construct an inverse function

ψ :
n⋃

k=0

Bk ×Bn−k −→ Bn.

Let (X ′, Y ′) be an ordered pair in Bk ×Bn−k for some k ∈ {0, 1, . . . , n}. Attach X ′ to
Y ′ by gluing the y vertex of X ′ to the x vertex of Y ′. Now draw a new edge L which
connects the x vertex of ′X to the y vertex of Y ′. Recall that X ′ had k triangles, Y
had n − k triangles, and L created a single new triangle with the original base edges
of X ′ and Y ′.

Since we haven’t destroyed any triangles in the process, we now have n + 1 triangles
triangulating the newly-constructed (n + 3)-gon which we call W ′. Orienting W ′ so
that the edge L is horizontal, we have a uniquely-defined element of Bn, so we set
ψ(X ′, Y ′) = W ′. Note that if k = 0, we are gluing to Y ′ the single edge X ′, and then
completing the triangle. Similarly, if k = n, we are gluing to X ′ the single edge Y ′.

Figure 4
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From the diagrams above, it is clear that the “building” operation ψ is exactly the
inverse of the “decomposing” operation ϕ. That is, for any W ∈ Bn, we have
ψ(ϕ(W )) = W , and for any (X ′, Y ′) ∈

⋃n
k=0Bk ×Bn−k, we have ϕ(ψ(X ′, Y ′)). There-

fore, ϕ (and ψ) is a bijection, as desired.

Problem 7. The United States Postal Service in Davis delivers mail everyday to the
ten adjacent Campus Buildings located along Shields Avenue. Suppose that two ad-
jacent building never receive mail on the same day, but no more than two houses in a
row get no mail. How many different possibilities of mail delivery are there ?

Example: Imagine that there were only two buildings, instead of ten. Then there would
be three options for the mail being delivered:

(i) Neither building gets mail.

(ii) Only the first building receives mail.

(iii) Only the second building receives mail.

This tells us that there are three mail delivery possibilities for three buildings. �

Hint: Consider the possibilities in terms of the first two buildings, and build a recursion
that recursively gives you the answer for any given number of building. Then evaluate
your recursion for the case of ten buildings.

Solution. Define f(n) to be the number of ways to distribute mail to n buildings. We
break this problem up into two cases.

(i) Assume the first building receives mail. Then, since no two adjacent buildings
receive mail on the same day, the second building cannot receive any mail. If the third
building receives mail, then we know the fourth building cannot receive mail. On the
other hand, if the fourth building receives mail, the third building cannot receive mail.
Thus, there are f(n− 3) ways to deliver mail if the first building receives mail.

(ii) Assume the first building does not receive mail. If the second building does not
receive mail, then the third building must receive mail and vice versa. We use a similar
reasoning to conclude there are f(n− 2) ways to deliver mail if the first building does
not receive mail.

Therefore, our recursive equation is

f(n) = f(n− 2) + f(n− 3).

We then have the following.

f(1) = 2 f(4) = f(2) + f(1) = 5

f(2) = 3 f(5) = f(3) + f(2) = 7

f(3) = 4 f(6) = f(4) + f(3) = 9

f(7) = f(5) + f(4) = 12

f(8) = f(6) + f(5) = 16

f(9) = f(7) + f(6) = 21

f(10) = f(8) + f(7) = 28
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Problem 8. Consider a regular hexagon in the plane, as depicted in the upper left of
Figure 5. It has six vertices, which are depicted in red thick dots.

Let A and B be two adjacent side of the hexagon, and insert a smaller copy of the
same hexagon such that the A and B side of the copy are strictly included in the A
and B sides of the initial hexagon. This is depicted in the upper right of Figure 5.
Now the A and B sides of the initial copy have each been divided by a red dot (from
the smaller hexagon), so introduced a red dot in the middle of all its remaining edges.

Figure 5. The hexagons and points in Problem 8 for n = 1, 2, 3 and 4.

Iterate the above process, introducing an smaller copy of the hexagon inside the pre-
viously inserted copies, and adding red dots in the edges so that each hexagon has
exactly the same number of red dots per side. Let an be the number of vertices of the
resulting polygonal figure in the plane. The first four cases are depicted in Figure 5,
so the sequence begins with

(a1, a2, a3, a4, . . .) = (6, 15, 28, 45, . . .).

(a) Find a recursion for an.

(b) Find a closed formula for an.

Solution.

(a) Finding a recursion for an amounts to answering the question: given the diagram
with n hexagons, how many vertices are added to arrive at the next diagram
with n+ 1 hexagons?

To arrive at the next diagram, we insert a small hexagon inside all previously
drawn hexagons from the nth diagram. In particular, we add 3 vertices on the
newly-drawn edges (the vertices connecting the four new edges that we drew).
We also add a single vertex to each of the edges A and B. Together, these add
5 new vertices.

Finally, for each of the n hexagons from the nth diagram (i.e. all but the newest
hexagon), we add a vertex to each of the four sides not shared with any other
hexagon. Together, these add 4n vertices. Therefore,

(0.2) an+1 = an + 4n+ 5
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is our recursion for an+1 in terms of an.

Note: We can view the (n + 1)th diagram in a different, but equivalent way.
Rather than taking the nth diagram, adding an extra hexagon on the inside,
and then adding vertices to each edge, we can take the nth diagram and add
one hexagon on the outside. This new hexagon has 3 new corners (which get
vertices) and n vertices are added on each of the 4 new sides drawn. Finally,
one vertex must be added to each of the sides A and B. This gives the same
recursion as in Equation (0.2), but the process has the benefit that we only
have to modify two of our previously-drawn hexagons.

(b) We make the claim
an = (2n+ 1)(n+ 1).

To prove that this is correct, we verify that it obeys the recursion found in Part
(a). First, a1 = (2 · 1 + 1)(1 + 1) = 6, as desired. Next

an+1 − an = (2(n+ 1) + 1)((n+ 1) + 1)− (2n+ 1)(n+ 1)

= (2n2 + 7n+ 6)− (2n2 + 3n+ 1)

= 4n+ 5,

which implies Equation (0.2), as desired. Therefore, our guess (2n+1)(n+1) is
a closed formula for an, as it satisfies both the initial value a1 and the recursion
relation (0.2).

Note: This is not part of the proof, but here is an explanation for where the
guess an = (2n+1)(n+1) might come from. Iterating our recursion in Equation
(0.2), we are led to the following calculation:

an = 4(n− 1) + 5 + an−1

= 4(n− 1) + 5 + (4(n− 2) + 5 + an−2)

= 4((n− 1) + (n− 2)) + 5 · 2 + (4(n− 3) + 5 + an−3)

= 4((n− 1) + (n− 2) + (n− 3)) + 5 · 3 + (4(n− 4) + 5 + an−4)

...

= 4((n− 1) + (n− 2) + · · ·+ 3 + 2) + 5(n− 2) + (4 · 1 + 5 + a1)

= 4((n− 1) + (n− 2) + · · ·+ 3 + 2 + 1) + 5(n− 1) + 6

= 2n(n− 1) + 5(n− 1) + 6

= (2n+ 1)(n+ 1).

Notice that we used the identity
∑k

j=1 j = k(k+1)
2

in the fourth line from the
bottom, setting k = n− 1


