Abstract. These are the solutions to Problem Set 4 for MAT 108 in the Fall Quarter 2020. The problems were posted online on Wednesday Nov 4 and due Friday Nov 13.

Problem 1. (Proposition 8.53) Prove that every non-empty subset of \(\mathbb{R} \) that is bounded below has a greatest lower bound.

Solution. Let \(A \) be a nonempty subset of \(\mathbb{R} \) that is bounded below. Construct a new set \(\tilde{A} = \{-a | a \in A\} \). This set is bounded above because \(l \) being a lower bound of \(A \) implies \(-l \) is an upper bound of \(\tilde{A} \). In other words, \(l \leq a \) for all \(a \in A \) and negating this gives \(-l \geq -a \) for all \(a \in A \). By the Completeness Axiom, \(s = \sup \tilde{A} \) exists. We claim \(-s = \inf(A) \). By definition, \(s \) being a supremum of \(\tilde{A} \) implies \(-a \leq s \) for all \(a \in \tilde{A} \). Multiply this inequality by \(-1\) to get \(a \geq -s \). Hence, \(-s \) is a lower bound of \(A \). Moreover, it has to be our greatest lower bound. If not, then suppose \(-t \) is the infimum of \(A \) so \(-t \leq a \) for all \(a \in A \). This would imply \(t \geq -a \), i.e. the supremum of \(\tilde{A} \) is \(t \), a contradiction.

Problem 2. (20 points, 5 each) Find the least upper bound \(\sup(A) \), and the greatest lower bound \(\inf(A) \) of the following subsets of the real numbers \(\mathbb{R} \):

(a) \(A = (-3.2, 7) \subseteq \mathbb{R}, \) i.e. \(A = \{x \in \mathbb{R} : -3.2 < x \text{ and } x < 7\} \subseteq \mathbb{R}. \)

(b) \(B = (-3.2, 7] \subseteq \mathbb{R}, \) i.e. \(A = \{x \in \mathbb{R} : -3.2 < x \text{ and } x \leq 7\} \subseteq \mathbb{R}. \)

(c) \(C = (0, \infty) \subseteq \mathbb{R}, \) i.e. \(A = \{x \in \mathbb{R} : 0 < x\} \subseteq \mathbb{R}. \)

(d) \(D = (-\infty, 4] \subseteq \mathbb{R}, \) i.e. \(A = \{x \in \mathbb{R} : x \leq 4\} \subseteq \mathbb{R}. \)

Solution. We will make use of the fact that the average of two distinct real numbers lies strictly between those two numbers. That is, for real numbers \(a < b \), we have

\[
a = \frac{a}{2} + \frac{a}{2} < \frac{a}{2} + \frac{b}{2} < \frac{b}{2} + \frac{b}{2} = b,
\]

so

\[
(0.1) \quad a < \frac{a+b}{2} < b.
\]

(a) We claim that \(\inf(A) = -3.2 \) and \(\sup(A) = 7 \). It is clear from the definition of \(A \) that these give a lower bound and upper bound, respectively. Let \(u \) be a lower bound for \(A \), and suppose for the sake of contradiction that \(u > -3.2. \)
Since u is a lower bound for A, we also have
$$u \leq 0 < 7.$$
Consider the average $r := \frac{-3.2 + u}{2}$, which, by (0.1) satisfies
$$-3.2 < r < u < 7,$$
so $r \in A$. Since $r < u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq -3.2$ after all. Therefore, -3.2 is the greatest lower bound for A, as desired.

Similarly, Let v be an upper bound for A, and suppose for the sake of contradiction that $v < 7$. Since v is an upper bound for A, we also have
$$v \geq 0 > -3.2.$$
Consider the average $r := \frac{v + 7}{2}$, which, by (0.1) satisfies
$$-3.2 < v < r < 7,$$
so $r \in A$. Since $r > v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq -3.2$ after all. Therefore, -3.2 is the least upper bound for A, as desired.

(b) The proof is nearly identical to Part (a). We claim that $\inf(B) = -3.2$ and $\sup(B) = 7$. It is clear from the definition of B that these give a lower bound and upper bound, respectively. Let u be a lower bound for B, and suppose for the sake of contradiction that $u > -3.2$. Since u is a lower bound for B, we also have
$$u \leq 7.$$
Consider the average $r := \frac{-3.2 + u}{2}$, which, by (0.1) satisfies
$$-3.2 < r < u \leq 7,$$
so $r \in B$. Since $r < u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq -3.2$ after all. Therefore, -3.2 is the greatest lower bound for B, as desired.

Similarly, Let v be an upper bound for B, and suppose for the sake of contradiction that $v < 7$. Since v is an upper bound for B, we also have
$$v \geq 0 > -3.2.$$
Consider the average $r := \frac{v + 7}{2}$, which, by (0.1) satisfies
$$-3.2 < v < r < 7,$$
so $r \in B$. Since $r > v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq -3.2$ after all. Therefore, -3.2 is the least upper bound for B, as desired.Alternatively, notice that $\max(B) = 7$, so a Proposition from Discussion 6 tells us that $\sup(B) = 7$.

(c) We claim that $\inf(C) = 0$ and that C has no supremum. The proof the the former is by now standard. It is clear from the definition of C that 0 is a lower bound. Let u be a lower bound for C, and suppose for the sake of contradiction that $u > 0$. Consider the average $r := \frac{0 + u}{2}$, which, by (0.1) satisfies
$$0 < r < u,$$
so \(r \in C \). Since \(r < u \), this contradicts the fact that \(u \) is a lower bound, so we conclude that \(u \leq 0 \) after all. Therefore, 0 is the greatest lower bound for \(C \), as desired.

To show that \(C \) has no supremum, we show that it has no upper bounds (this suffices because suprema are, in particular, upper bounds). Indeed, let \(x \in \mathbb{R} \). If \(x \leq 0 \), then \(x < 1 \), but \(1 \in C \), so \(x \) is not an upper bound for \(C \). Otherwise, \(x > 0 \), and we have \(x < x + 1 \), but \(x + 1 > x \) is in \(C \), so \(x \) is again not an upper bound. Having excluded all possible real numbers as upper bounds, we conclude that \(C \) has no upper bound.

(d) We claim that \(\text{sup}(D) = 4 \) and that \(D \) has no infimum. The proof the the former is by now standard. It is clear from the definition of \(D \) that 4 is an upper bound. Let \(v \) be an upper bound for \(D \), and suppose for the sake of contradiction that \(v < 4 \). Consider the average \(r := \frac{v + 4}{2} \), which, by (0.1) satisfies

\[
v < r < 4,
\]

so \(r \in D \). Since \(r > v \), this contradicts the fact that \(v \) is a lower bound, so we conclude that \(v \geq 4 \) after all. Therefore, 4 is the greatest lower bound for \(C \), as desired. Alternatively, notice that \(\text{max}(D) = 4 \), so a Proposition from Discussion 6 tells us that \(\text{sup}(D) = 4 \).

To show that \(D \) has no infimum, we proceed as in Part (c) by showing that it has no lower bound (this suffices because infima are, in particular, lower bounds). Indeed, let \(x \in \mathbb{R} \). If \(x > 4 \), then—because \(4 \in D \)—\(x \) is not a lower bound for \(D \). Otherwise, \(x \leq 4 \), and we have \(x > x - 1 \), but \(x - 1 < x \leq 4 \) is in \(D \), so \(x \) is again not a lower bound. Having excluded all possible real numbers as lower bounds, we conclude that \(D \) has no lower bound.

Problem 3. (10+10 points) Consider the set of real numbers

\[
N = \left\{ 3 - \frac{1}{n} : n \in \mathbb{N} \right\}.
\]

Find \(\text{inf}(N) \) and \(\text{sup}(N) \).

Solution. We claim \(\text{sup}(N) = 3 \) and \(\text{inf}(N) = 2 \). Since \(3 > 3 - \frac{1}{n} \) for all \(n \in \mathbb{N} \), we know 3 is un upper bound for \(N \). We know for each \(\varepsilon > 0 \), there exists an \(n \in \mathbb{N} \) such that \(\frac{1}{n} < \varepsilon \). Then, \(3 - \frac{1}{n} > 3 - \varepsilon \) so \(3 - \varepsilon \) is not an upper bound for any \(\varepsilon > 0 \). Thus, 3 must be our least upper bound. Now we prove the infimum is 2. Note that 2 is a lower bound. Moreover, \(3 - \frac{1}{n+1} > 3 - \frac{1}{n} \geq 2 \) because \(\frac{1}{n+1} < \frac{1}{n} \) for all \(n \in \mathbb{N} \). Therefore, 2 is our greatest lower bound.
Problem 4. Consider the two following subsets of the real numbers
\[S = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} \subseteq \mathbb{R}, \quad T = \left\{ \frac{2n+1}{n+1} : n \in \mathbb{N} \right\} \subseteq \mathbb{R}. \]

Show that \(\sup(S) = 1 \), \(\sup(T) = 2 \) and \(\inf(T) = \frac{3}{2} \). Find \(\inf(S) \).

Solution. Define
\[s_n = \frac{n}{n+1} \quad \text{and} \quad t_n = \frac{2n+1}{n+1}. \]

Then we have the sequences \((s_n)_{n \in \mathbb{N}}\) and \((t_n)_{n \in \mathbb{N}}\). Note that
\[t_n = \frac{2n+1}{n+1} = \frac{n+n+1}{n+1} = \frac{n}{n+1} + \frac{n+1}{n+1} = s_n + 1, \]
so our sets are \(S = \{s_n : n \in \mathbb{N}\} \) and \(T = \{s_n + 1 : n \in \mathbb{N}\} \). We show that the sequence \((s_n)_{n \in \mathbb{N}}\) is monotone. Indeed, for each \(n \in \mathbb{N} \), we have
\[
\begin{align*}
s_{n+1} - s_n &= \frac{n+1}{n+2} - \frac{n}{n+1} \\
&= \frac{(n+1)(n+1) - (n+2)n}{(n+2)(n+1)} \\
&= \frac{1}{(n+2)(n+1)} \\
&\geq 0,
\end{align*}
\]
so \(s_{n+1} \geq s_n \). In particular,
\[
\begin{align*}
s_n - s_1 &= \frac{n}{n+1} - \frac{1}{2} = \frac{2n - (n+1)}{2(n+1)} = \frac{n-1}{2(n+1)} \geq 0,
\end{align*}
\]
since \(n \geq 1 \), so \(\frac{1}{2} = s_1 \leq s_n \). Therefore, \(\frac{1}{2} \in S \) is a lower bound for \(S \), and hence \(\inf(S) = \frac{1}{2} \) by a Proposition from Discussion 6.

By the proof of the Monotone Convergence Theorem, the limit of \((s_n)_{n \in \mathbb{N}}\) exists and is equal to \(\sup(S) \), so we now prove that \(\lim_{n \to \infty} s_n = 1 \). Let \(\varepsilon > 0 \), and let \(n_0 \in \mathbb{N} \) be such that \(\frac{1}{n_0} < \varepsilon \). Then, for all \(n \geq n_0 \) we have
\[
\begin{align*}
|1 - s_n| &= \left| 1 - \frac{n}{n+1} \right| = 1 - \frac{n}{n+1} = \frac{(n+1) - n}{n+1} = \frac{1}{n+1} \leq \frac{1}{n_0} < \varepsilon.
\end{align*}
\]

Note that in the second equality above we used the fact that \(n < n+1 \), which rearranges to \(1 - \frac{n}{n+1} > 0 \). This completes the proof that \(\sup(S) = \lim_{n \to \infty} s_n = 1 \).

The calculations for \(T \) follow from those for \(S \). The sequence \((t_n)_{n \in \mathbb{N}}\) is monotone because
\[
\begin{align*}
t_{n+1} - t_n &= (s_{n+1} + 1) - (s_n + 1) = s_{n+1} - s_n \geq 0
\end{align*}
\]
for all \(n \in \mathbb{N} \). In particular,
\[
\begin{align*}
t_n - t_1 &= (s_n + 1) - (s_1 + 1) = s_n - s_1 \geq 0
\end{align*}
\]
so \(\frac{3}{2} = \frac{3}{2} \in T \) is a lower bound for \(T \), and hence \(\inf(T) = \frac{3}{2} \) by a Proposition from Discussion 6.
By the proof of the Monotone Convergence Theorem, the limit of \((t_n)_{n \in \mathbb{N}}\) exists and is equal to \(\sup(T)\), so we now prove that \(\lim_{n \to \infty} t_n = 2\). Let \(\varepsilon > 0\), and let \(n_0 \in \mathbb{N}\) be such that \(\frac{1}{n_0} < \varepsilon\). Then, for all \(n \geq n_0\) we have

\[|2 - t_n| = |2 - (s_n + 1)| = |1 - s_n| < \varepsilon.\]

This completes the proof that \(\sup(T) = \lim_{n \to \infty} t_n = 2\).

Problem 5. (10+5+5 points) Find an upper bound for each of the following three sets:

\[X = \left\{ \left(1 + \frac{1}{n}\right)^n : n \in \mathbb{N} \right\}, \quad Y = \left\{ \left(1 + \frac{1}{n^2}\right)^n : n \in \mathbb{N} \right\}, \quad Z = \left\{ \left(1 + \frac{1}{n}\right)^{n^2} : n \in \mathbb{N} \right\}.\]

Hint: Consider the following expansion

\[
\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{3}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).
\]

Solution.

(i) Let’s look at the expansion:

\[
\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{3}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).
\]

In discussion, we proved that as \(n\) becomes larger, the value of \(\frac{1}{n}\) becomes smaller and the infimum of the set \(\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}\) is thus 0. Therefore, each term in the parenthesis is bounded above by 1 so it suffices to consider

\[
\sum_{k=0}^{n} \frac{1}{k!}.
\]

Therefore, we have the following.

\[
\left(1 + \frac{1}{n}\right)^n \leq \sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2n} + \cdots
\]

\[
= 1 + \sum_{k=0}^{\infty} \frac{1}{2^k}
\]

\[
= 3
\]

The last equality follows since the sum of the infinite geometric series \(\sum_{k=0}^{\infty} \frac{1}{2^k}\) is \(\frac{1}{1-\frac{1}{2}} = 2\).
(ii) Notice that
\[
\left(1 + \frac{1}{n^2}\right)^n = \left(\left(1 + \frac{1}{n^2}\right)^{n^2}\right)^{1/n}.
\]

We know \(\left(1 + \frac{1}{n^2}\right)^{n^2}\) is bounded above by 3 from part (i). (If it’s difficult to see, replace \(n^2\) with a new variable \(z\), for instance.) It is enough to then consider \(3^{1/n}\). Using what we know about the behavior of \(\frac{1}{n}\), we conclude it is bounded above by 3.

(iii) We claim that this set has no upper bound. Notice that
\[
c_n := \left(1 + \frac{1}{n}\right)^{n^2} = \left(\left(1 + \frac{1}{n}\right)^{n^2}\right)^n.
\]

This is similar to part (ii). By the Binomial Theorem, we have
\[
\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = \binom{n}{0} \frac{1}{n^0} + \binom{n}{1} \frac{1}{n^1} + \sum_{k=2}^{n} \binom{n}{k} \frac{1}{n^k} = 1 \cdot 1 + n \cdot \frac{1}{n} + \sum_{k=2}^{n} \binom{n}{k} \frac{1}{n^k} \geq 2,
\]
so \(c_n \geq 2^n\). It now suffices to show that the sequence \((2^n)_{n \in \mathbb{N}}\) is unbounded, which we prove by showing that \(2^n \geq n\) using induction. (This proves it is not bounded above since the natural numbers is not bounded above.) For the base case, we have \(2^1 \geq 1\), which is true. Now assume \(2^k \geq k\). We then have
\[
2^{k+1} = 2^k \cdot 2 > k \cdot 2 \geq k + 1.
\]
The last inequality follows because \(2k \geq k + 1\) can be rewritten as \(k \geq 1\), which is true.

Problem 6. (10+10 points) Consider the subset \(C_0 = [0, 1] \subseteq \mathbb{R}\). Recursively, define the sets
\[
C_{n+1} = \frac{C_n}{3} \cup \left(\frac{2}{3} + \frac{C_n}{3}\right),
\]
for \(n \geq 1\), where, if we let \(A = [a, b]\), then the notation \(A/3\) describes the interval \([a/3, b/3]\) and the notation \(A + 2/3\) describe the interval \([a + 2/3, b + 2/3]\).

(a) Describe and draw the sets \(C_1, C_2, C_3\) and \(C_4\) as a union of explicit intervals.

(b) Show that the intersection \(\cap_{n=1}^{\infty} C_n\) is non-empty.

Solution. Here is the extension of the notations \(A/3\) and \(A + 2/3\) for arbitrary sets. Let \(X \subseteq \mathbb{R}\) be an arbitrary subset, and let \(c\) be any real number. Then we define the new sets
\[
c \cdot X := \{c \cdot x : x \in X\} \subseteq \mathbb{R} \quad \text{and} \quad X + c := \{x + c : x \in X\} \subseteq \mathbb{R}.
\]
For $c \neq 0$, we also define $\frac{X}{c} := \frac{1}{c} \cdot X$.

(a) The set C_{n+1} is obtained from C_n by scaling all of C_n down to fit inside $[0, \frac{1}{3}]$, and then repeating this scaled copy in the translation to $[\frac{2}{3}, 1]$. It follows that C_{n+1} is given by deleting the open middle third of each interval in C_n. Explicitly,

\[
C_0 = [0,1] \\
C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \\
C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{5}{9}] \cup [\frac{7}{9}, 1] \\
C_3 = [0, \frac{1}{27}] \cup [\frac{2}{27}, \frac{1}{9}] \cup [\frac{2}{9}, \frac{7}{27}] \cup [\frac{8}{27}, \frac{5}{9}] \cup [\frac{5}{9}, \frac{19}{27}] \cup [\frac{20}{27}, \frac{8}{9}] \\
C_4 = [0, \frac{1}{81}] \cup [\frac{2}{81}, \frac{1}{27}] \cup [\frac{2}{27}, \frac{7}{81}] \cup [\frac{8}{81}, \frac{1}{9}] \cup [\frac{2}{9}, \frac{19}{81}] \cup [\frac{20}{81}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{25}{81}] \cup [\frac{26}{81}, \frac{1}{3}] \\
\quad \cup [\frac{2}{3}, \frac{50}{81}] \cup [\frac{52}{81}, \frac{19}{27}] \cup [\frac{20}{27}, \frac{61}{81}] \cup [\frac{62}{81}, \frac{7}{9}] \cup [\frac{8}{9}, \frac{73}{81}] \cup [\frac{74}{81}, \frac{25}{27}] \cup [\frac{26}{27}, \frac{79}{81}] \cup [\frac{80}{81}, 1].
\]

These are illustrated in Figure 1 below, taken from georgcantorbyelithompson.blogspot.com

![Figure 1](image-url)

Figure 1. The sets $C_0, C_1, C_2, C_3,$ and C_4.

(b) We will show that $0 \in C_n$ for all integers $n \geq 0$ by induction on n. For our base case $n = 0$, we have $0 \in [0,1] = C_0$ (it’s important that we’re working with closed intervals). As our inductive hypothesis, suppose $0 \in C_n$ for some integer $n \geq 0$. Then

\[
0 = \frac{0}{3} \in \frac{C_n}{3} \subseteq C_{n+1},
\]

so $0 \in C_{n+1}$. We conclude that $0 \in C_n$ for all $n \geq 0$, so $0 \in \bigcap_{n=0}^{\infty} C_n$, and consequently $\bigcap_{n=0}^{\infty} C_n$ is not empty.

Note: The set $C_n \subseteq \mathbb{R}$ is a union of 2^n disjoint closed intervals. The above argument works similarly to show that any of the endpoints of these intervals persist in the further sets $C_{n+1}, C_{n+2},$ etc. (and of course, they’re contained in $C_{n-1}, C_{n-2},$ etc. as well, since $C_0 \supset C_1 \supset C_2 \cdots$).

So each of these $2 \cdot 2^n$ points in the set C_n is in the intersection $\bigcap_{n=0}^{\infty} C_n$, and consequently the set $C := \bigcap_{n=0}^{\infty} C_n$ has infinitely many points! In fact, these persisting endpoints are the *only* elements of C. Notice the 2^{n+1} endpoints from C_n can all be written as rational numbers with common denominator 3^n.

The set $C := \bigcap_{n=0}^{\infty} C_n$ is called the Cantor set, and it exhibits a wide variety of strange phenomena that can occur in the real numbers \mathbb{R}.