Lecture 10: Equivalence Relations

Definition: Let \(X \) be a set \((X \neq \emptyset) \), an equivalence relation on \(X \) is a relation on \(X \) such that:
1. Reflexive: \(a \sim a \) for all \(a \in X \).
2. Symmetric: If \(a \sim b \), then \(b \sim a \).
3. Transitive: If \(a \sim b \) and \(b \sim c \), then \(a \sim c \).

Example: \(X = \mathbb{Z} \), the relation \(a \sim b \) is even, \(a - b \) is divisible by 2.

Non-example: \(X = \mathbb{Z} \), relation \(a \sim b \) if \(a < b \). This is not an equivalence relation.

Proposition 6.24: (module n) Let \(\mathbb{Z} \) be the set of integers. Then, \(\mathbb{Z} \) is an equivalence relation if \(a \sim b \) is divisible by \(n \). Then:
1. It is reflexive: \(a \sim a \) is divisible by \(n \).
2. It is symmetric: If \(a \sim b \), then \(b \sim a \).
3. It is transitive: If \(a \sim b \) and \(b \sim c \), then \(a \sim c \).

\[a \equiv b \pmod{n} \iff a - b = kn \] for each \(k \in \mathbb{Z} \).

Example: \(x \equiv 3 \pmod{5} \), \(0 \equiv 4 \), \(11 \equiv 2 \), \(19 \equiv -1 \), \(3 \equiv 4 \).