Lecture 5 : Problems & Applications

Problems & Applications

1. Today, we finish Induction (recursion was next!)

- Sum of first n odd numbers
 \[\sum_{i=1}^{n} (2i-1) = n^2 \]
 (by induction)

2. Geometric Progressions
 - See real-world examples
 - How many regions if we tile n x n grid?

Problem 1: Show that \(\sum_{k=1}^{n} (2i-1) = n^2 \), \(\forall n \in \mathbb{N} \).

\[\text{Sol: } \]
- **Base Case**: \(n = 1 \), and the formula reads \(\sum_{i=1}^{1} (2i-1) = 1^2 \), so \(n=1 \) which is true.

- **Induction Step**: Assume \(\sum_{i=1}^{n} (2i-1) = n^2 \), we want to show \(\sum_{i=1}^{n+1} (2i-1) = (n+1)^2 \).

\[\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + 2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2 \]

Problem 2: Show that \(2^n \leq n! \) is true for \(\forall n \in \mathbb{N} \), \(n \geq 4 \).

\[\text{Sol: } \]
- By induction, we need to verify 2 steps:
 - **Base Case**: \(n=4 \), need to check \(2^4 \leq 4! \). Since \(16 \leq 24 \), the base case is true.
 - **Induction Step**: Assume \(2^k \leq k! \), we want to show \(2^{k+1} \leq (k+1)! \).

\[\sum_{i=1}^{n} (2i-1) + 2(n+1) - 1 = n^2 + 2n + 1 = (n+1)^2 \]

Problem 3 (Euclid): There are infinitely many primes.

\[\text{Sol: } \]
- By contradiction, assume the opposite: \(\exists \) finitely many primes.
- Try to reach a contradiction.

If we have finitely many primes, then we can write them as \(p_1, p_2, \ldots, p_k \).

Now consider a number \(\prod_{i=1}^{k} p_i + 1 \). Since it is not divisible by any of the primes up to \(p_k \), it must be a prime.

But if \(p \mid \prod_{i=1}^{k} p_i + 1 \), then \(p \\
\frac{\prod_{i=1}^{k} p_i + 1}{p} \)