
SOLUTIONS TO PROBLEM SET 5

MAT 108

Abstract. These are the solutions to Problem Set 5 for MAT 108 in the Fall Quarter
2020. The problems were posted online on Wednesday Nov 11 and due Friday Nov 20.

Problem 1. (Project 10.20 in textbook) Let (xn) be a sequence of real numbers which
is decreasing and bounded below. Show that xn converges.

Solution. This second half of the Monotone Convergence Theorem follows from the
first half (similar in style to Problem 1 of Problem Set 5). Let (xn)n∈N be a sequence
which is decreasing and bounded below. The first condition means that xn+1 ≤ xn for
all n ∈ N, and the second condition means that there exists R ∈ R such that xn ≥ R
for all n ∈ N.

Consider a new sequence (yn)n∈N defined by

yn = −xn.
Then, for all n ∈ N, we have

−yn+1 = xn+1 ≤ xn = −yn,
so yn+1 ≥ xn. Therefore, (yn) is increasing. Similarly,

−yn = xn ≥ R,

so yn ≤ −R. Therefore, (yn) is bounded above. By the Monotone Convergence
Thereorem, (yn) converges to some real number L ∈ R.

We claim that (xn) converges to −L. Let ε > 0. Then there exists a natural number
n0 ∈ N such that

|yn − L| < ε

for all n ≥ n0. Therefore, for all n ≥ n0, we have

|xn − (−L)| = | − yn + L| = |yn − L| < ε,

which completes the proof.
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Problem 2. (20 points, 5 each) Consider the following four sequences of real numbers:

xn =
2n+ 1

3n− 4
, yn =

1

n!
, zn =

n!

nn
, wn =

3n2 − 1

n2 + n
.

In this exercise, you must use the ε-definition of the limit (Definition in Section 10.4)
to show the following statements.

(a) Show that lim
n→∞

xn = 2/3,

(b) Show that lim
n→∞

yn = 0,

(c) Show that lim
n→∞

zn = 0,

(d) Show that lim
n→∞

wn = 3.

In each of these four cases above, you must write a complete detailed and self-contained
proof that the limit is the one stated. Each can be done directly from the definition.

Be clear in the use of ε, the quantifiers and the indices when you write the four proofs
above. In particular, write clearly what you are given and what you must prove when
writing down the definition of each of the limits.

Solution.

(a) Let ε > 0. Let N ∈ N satisfy N > 11
3ε

+ 4
3
. For n ≥ N , we have∣∣∣∣2n+ 1

3n− 4
− 2

3

∣∣∣∣ =
11

3|3n− 4|
<

11

|3n− 4|
≤ 11

|3N − 4|
< ε.

(b) Let ε > 0. Choose N ∈ N such that 1
N
< ε. For n ≥ N , we have∣∣∣∣ 1

n!
− 0

∣∣∣∣ ≤ 1

n
≤ 1

N
< ε.

(c) We first look at the sequence zn. We can rewrite it as follows.

n!

nn
=
n

n
· n− 1

n
· · · 1

n

We use Proposition 10.23(iv) so we consider the limit of each sequence
{

k
n

}
where 1 ≤ k ≤ n as n approaches infinity. Notice that

n

n
· n− 1

n
· · · 1

n
≤ 1 · 1 · · · 1

n

so it suffices to look at the sequence
{

1
n

}
. Let ε > 0. Choose N ∈ N such that

1
N
< ε. For n ≥ N , we have∣∣∣∣ 1n − 0

∣∣∣∣ ≤ 1

N
< ε.

Hence, we get

0 ≤ lim
n→∞

n!

nn
= lim

n→∞

n

n
· lim
n→∞

n− 1

n
· · · lim

n→∞

1

n
≤ 1 · 1 · · · lim

n→∞

1

n
= 0
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so

lim
n→∞

n!

nn
= 0.

(d) Let ε > 0. Let N ∈ N satisfy N > 3
ε
. For n ≥ N , we have∣∣∣∣3n2 − 1

n2 + n
− 3

∣∣∣∣ =
3n+ 1

n2 + n
<

3

n
≤ 3

N
< ε.

Problem 3. (10+10 points) Consider the following two sequences of real numbers

xn =
4n− 3

2n
, yn =

1

12
+

1

22
+

1

32
+ . . .+

1

n2
.

In this exercise we will show that they are convergent.

(a) Show that (xn) is eventually decreasing and bounded below. By eventually
decreasing it is meant that

xn+1 ≤ xn, for large enough n ∈ N.

(b) Show that (yn) is increasing and bounded above.

Observation: By the Monotone Convergence Limit, you have proven that the limit of
(yn) actually exists. It is a real challenge to show that it is actually π2/6.

Solution.

(a) We have

xn =
4n− 3

2n

so the next term is

xn+1 =
4(n+ 1)− 3

2n+1
=

4n+ 1

2n+1
.

Notice that

xn =
2(4n− 3)

2n+1
.

For n large enough, 2(4n − 3) > 4n + 1. In fact, this happens when n > 1.
Thus, xn+1 > xn so (xn) is eventually decreasing. This sequence is bounded
below because xn > 0 for all n ∈ N.

(b) The sequence (yn) is increasing because

yn =
1

12
+ · · ·+ 1

n2
<

1

12
+ · · ·+ 1

n2
+

1

(n+ 1)2
= yn+1.

We now show it is bounded above. Note 1
n2 <

1
n(n−1) = 1

n−1 −
1
n
. Then,

1

22
+ · · ·+ 1

n2
<

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n− 1
− 1

n

)
= 1− 1

n
.

By adding 1
12

to both sides, we obtain

1

12
+

1

22
+ · · ·+ 1

n2
< 2− 1

n
.
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Problem 4. (10+10 points) Consider the following sequence, defined recursively:

xn+1 =
xn
2

+ 1, ∀n ∈ N, x1 = 1.

(a) Show that (xn) is increasing and bounded above.

(b) Prove that (xn) converges and find its limit.

Solution.

(a) We use induction to prove (xn) is increasing. If n = 1, then x2 = 3
2
> 1 = x1.

Now assume xk+1 > xk. We have

xk+2 =
xk+1

2
+ 1 >

xk
2

+ 1 = xk+1.

We now show it is bounded above by 2 using induction. When n = 1, x2 =
3
2
< 2. Assume xk < 2. Then,

xk+1 =
xk
2

+ 1 <
2

2
+ 1 = 2.

(b) We see that (xn) is bounded below by 1. By Theorem 10.19, we conclude this
sequence converges. We claim the limit is 2. Let ε > 0. Then,

|xn+1 − 2| =
∣∣∣xn

2
+ 1− 2

∣∣∣ =

∣∣∣∣xn − 2

2

∣∣∣∣ =

∣∣∣∣xn−1 − 2

22

∣∣∣∣ = · · · =
∣∣∣∣x1 − 2

2n

∣∣∣∣ .
The last few equalities follow from the definition of (xn). For example,

xn − 2

2
=

(
xn−1

2
+ 1
)
− 2

2
=
xn−1 − 2

22
.

We are given x1 = 1 so we consider the sequence
(

1
2n

)
. Set N ∈ N such that

1
N
< ε. This sequence converges to 0 because∣∣∣∣ 1

2n
− 0

∣∣∣∣ < 1

n
<

1

N
< ε

for n ≥ N . Therefore,
|xn+1 − 2| < ε.
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Problem 5. (5+10+5 points) Prove the following three statements:

(a) Any convergent sequence (xn) is bounded.

(b) Let (xn) and (yn) be two convergent sequences, and suppose that their limits
are xn −→ L and yn −→ M . Show that the sequence (xn + yn), obtained by
summing them termwise, is a convergent sequence, and in fact

xn + yn −→ (L+M).

(c) There exist bounded sequences which are not convergent.

Solution.

(a) Let (xn)n∈N be a sequence convergent to L ∈ R. Setting ε = 1 in the definition
of limit (choosing 1 is completely arbitrary), we know that there exists a natural
number n0 ∈ N such that

|xn − L| < 1

for all n ≥ n0. This simplifies to

L− 1 < xn < L+ 1

for all n ≥ n0. Consider the set of remaining terms

A := {xn : n < n0} = {x1, x2, . . . , xn0−1}.

Let R+ and R− be the maximum and minimum, respectively, of the set

A ∪ {L− 1, L+ 1},

Note that R+ and R− exist because the set A∪{L−1, L+1} is finite, having at
most n0 + 1 elements. Now consider an arbitrary member xn of our sequence.
If n < n0, then n ∈ A, so

R− ≤ min(A) ≤ xn ≤ max(A) ≤ R+.

Finally, if n ≥ n0, then

R− ≤ L− 1 ≤ xn ≤ L+ 1 ≤ R+.

Therefore, R− < xn < R+ for all n ∈ N, so (xn) is a bounded sequence.

(b) Let ε > 0. Then there exist natural numbers n1, n2 ∈ N such that

|xn − L| <
ε

2
for all n ≥ n1, and

|yn −M | <
ε

2
for all n ≥ n2.

Set n0 := max{n1, n2} (that is, n0 is the greater of the two numbers n1 and
n2). Then n0 ≥ n1 and n0 ≥ n2. Therefore, we have

|xn − L| <
ε

2
and |yn −M | <

ε

2
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for all n ≥ n0. Finally, we have

|(xn + yn)− (L+M)| = |xn − L+ yn −M |
≤ |xn − L|+ |yn −M |

<
ε

2
+
ε

2
= ε,

where we used the triangle inequality in the second line. Therefore,

|(xn + yn)− (L+M)| < ε

for all n ≥ n0, so we conclude that the sequence (xn + yn) converges to L+M .

(c) By Problem 6(a) below, the sequence xn = (−1)n is not convergent. Further-
more, {xn : n ∈ N} = {1,−1}, which is bounded (if you like, because it is
finite), so xn is bounded.

Problem 6. (5+5+5+5 points) Prove or disprove each of the statements.1

(a) The sequence xn = (−1)n is convergent.

(b) The sequence xn = (−1)n
n

is convergent.

(c) Let (xn) be a sequence such that the sequence |xn| of absolute values converges.
Then (xn) converges.

(d) Let (xn) and (yn) be two unbounded sequences. Then the product sequence
(xn · yn) is unbounded.

Solution.

(a) False. The sequence xn = (−1)n is not convergent. Suppose for the sake of
contradiction that xn converges to L for some L ∈ R. Then there exists an
n0 ∈ N such that

|xn − L| < 1

for all integers n ≥ n0 (here we take the special case ε = 1 in the definition of
limit). Notice that 2n0 ≥ n0 and 2n0 + 1 ≥ n0, so

1 > |x2n0 − L| = |(−1)2n0 − L| = |1− L| = |L− 1|
and

1 > |x2n0+1 − L| = |(−1)2n0+1 − L| = |−1− L| = |L+ 1|.
These imply that

0 < L < 2 and − 2 < L < 0,

respectively, which is a contradiction.

1If your claim is that a statement is false, then you must give a counter-example or an argument
showing that the statement is indeed mathematically incorrect.
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(b) True. We show that the sequence xn = (−1)n
n

converges to 0. Let ε > 0. There
exists an integer n0 ∈ N such that n0 > 1/ε. Then, for any integer n ≥ n0, we
have

|xn − 0| =
∣∣∣∣(−1)n

n

∣∣∣∣ =
1

n
≤ 1

n0

<
1

1/ε
= ε.

We conclude that |xn− 0| < ε for all n ≥ n0, so (xn) converges to 0, as desired.

(c) False. By part (a), the sequence xn = (−1)n is not convergent. But the se-
quence |xn| = |(−1)n| = 1 is constant, and therefore is convergent (by the
Monotone Convergence Theorem, if you like).

(d) False. Define two sequences (xn)n∈N and (yn)n∈N by

xn =

{
n if n is even

0 if n is odd
and yn =

{
0 if n is even

n if n is odd
.

Notice that {xn : n ∈ N} is the set of all even natural numbers, and {yn : n ∈
N} is the set of all odd natural numbers, so both sequences are unbounded.
However, the product (xnyn)n∈N has terms

xnyn =

{
n · 0 if n is even

0 · n if n is odd
= 0.

Therefore {xnyn : n ∈ N} = {0}, so this sequence is bounded.

Remark: Whenever you see a false statement, it’s always good to ask “why
did this fail?” In other words, how could you strengthen the hypotheses of the
statement so that the conclusion becomes true?

Notice that neither sequence in the counterexample above is monotone. If you
wanted to modify the original hypotheses to make the conclusion true, would it
be enough to assume that both sequences are monotone? What if you assume
that just one is monotone?


