Lecture 18: Free particle in S^2, hydrogen atom & other models

Monday: A problem $(R^3$ with $SO(3)$ symmetry $V(r)$ breaks into $\rightarrow \left[\frac{-1}{2m} \Delta + V(r) \right] \psi = E \psi$

(1) study of invar for $SO(3)$

$L^2 \rightarrow SO(3)$ gives L^2 of dim 2

no imp revealed by x_{cm} anharmon.

Lorentz symmetry $Y_{l,m}$, for m fixed.

(2) 4D radial problem of hydrogen

stationary states: at least $l \geq 0$, $l = m \leq 0$ but now

more data needed because of 1D r-Schrodinger eq.

\[L^2(r) - \frac{k^2}{r^2} - 2z^2 = E_m \rightarrow \text{say exist if } E = E_m = \frac{l^2}{2m}, \text{for } m = 0 \]

In conclusion, the static states are:

3 labels

\[\psi_{n, l, m} \]

\[Y_{n, l, m}(\theta, \phi) = Y_{l, m}(\theta, \phi) \]

\[\psi_{n, l, m}(r) \]

\[n, l, m \]

Hydrogen atom: the potential is $V(r) = -\frac{Z^2}{r}$

C constant depends on charge, mean, etc.

\[\psi_{n, l, m} = Y_{l, m}(\theta, \phi) \]

\[E = \frac{n^2}{2m}, \text{for } m = 0 \]

\[Y_{l, m}(\theta, \phi) = \frac{1}{\sqrt{2^l l!}} \sum_{m=-l}^{l} \frac{(-1)^m}{\sqrt{(2l+1)}} \frac{\Gamma(l+m+1)}{\Gamma(l-m+1)} P_l^m(\cos \theta) e^{i m \phi} \]

\[Y_{l, m}(\theta, \phi) = \frac{1}{\sqrt{2^l l!}} \sum_{m=-l}^{l} \frac{(-1)^m}{\sqrt{(2l+1)}} \frac{\Gamma(l+m+1)}{\Gamma(l-m+1)} P_l^m(\cos \theta) \]

In fact $Y_{l,m}(\theta, \phi)$ is an eigenfunction of Δ

\[\Delta Y_{l,m} = -\lambda Y_{l,m} \]

In fact $\Delta Y_{l,m} = -\lambda Y_{l,m}$

For the old model: $SU(2)$ & $SU(3)$: what are the invariants?

For $SU(3)$ the invariants are labeled by p, q: the space is isomorphic to $\text{dim } D(p,q) = \frac{1}{2}(p+1)(q+1)(p+q+2)$

Rank: $\text{dim } SU(2) = 3$, $\text{dim } SU(3) = 8$.

In $SU(3)$:

A group homomorphism ρ:

\[\rho \in \text{dim } SU(3) \]

Example of $D(3,0)$, $p = 3$ quarks

10 dimensional $q = 0$ antiquarks