Lecture 24: Yang-Mills Field Theory (gauge theory) - contains its name for the old model, quantization still open.

Ingredients:
- (H, g) Ram manifold, G a Lie group (abelian/non-abelian)
- a principal G-bundle, A connection, FA curvature

Def: The Yang-Mills functional is:
\[L_m(A) = \int \text{tr}(F_A \wedge F_A) \, d\mu_{\text{min}} \in \mathbb{R} \]
where A is a connection on a G-principal bundle. Each Lagrangian gives a set of motions. Always true: Branch.

The Yang-Mills eqn is:
\[d_A(gF_A) = 0 \]
and \(d_A F_A = 0 \).

B. Principal bundles: G a Lie group and \(B \) (base) a smooth manifold. \((B = M^4 \text{ for us}) \)

Def: A principal G-bundle is a smooth manifold \(P \) and a map \(\pi: P \rightarrow B \) such that \(\pi \) is locally trivial: \(\forall b \in B \exists \mathcal{U} \ni b \text{ open} \exists G \text{i.e. } \pi^{-1}(\mathcal{U}) \]

\[(b, \rho) \mapsto \pi(b)(\rho) \]

Rmk: The class of all G-bundles depends solely on any top. \(H^1(B; \pi_1(G)) \) tells you enough:
\[\text{eg. } H_1(U(1)) = H_1(\mathbb{R}) = \mathbb{Z}_2 \text{ for } \pi_1 \text{ of } \text{an } \text{U}(1) \text{-bundle on a } \text{sphere by } H^1(\mathbb{S}^2;\mathbb{Z}_2) = \mathbb{Z}_2 \]

Not take HRT25 and you can compute:
(P has a section iff \(P = B \times G \)).

1. \(P \) has a section if \(P \) is a G-bundle.
2. If \(P \to G \text{U}(1) \) is a map, one can create a \(U(1) \text{-bundle} \).
 Difficult from \(\text{but} \)...

3. **Associated bundle:** \(P \times_V \text{ fiber by } V \).

B.3. Parallel transport & Connections

Parallel Transport: assign to each path \(Y \text{ from } b \text{ to } b' \in B \) an isomorphism \(P_Y: G \rightarrow G \)

\[\pi_1(Y) \times \pi_1(Y) \]

\(\text{same with } v, v' \).

Connection: The idea is to give data (a \(g \)-valued 1-form) such that \(P_Y \) is given by solving an ODE for the data.

\[A \in \mathfrak{g} \text{-valued } 1 \text{-form} \]

\[\text{how to identify true fibers?} \]

\[\pi_1(Y) \times \mathfrak{g} \]

\(\pi_1(Y) \times \mathfrak{g} \) is an exact sequence.

Connection: the idea is to give data (a \(g \)-valued 1-form) such that \(P_Y \) is given by solving an ODE for the data.

\[A \in \mathfrak{g} \text{-valued } 1 \text{-form} \]

\[\text{The connection equation for } A \text{ is} \]
\[d_Ai = d + A \]

\[\text{Pf} \text{y is obtained by solving ODE} \]
\[d_A = 0. \text{ iff flat connection} \]