
MAT 265: PROBLEM SET 3

DUE TO FRIDAY OCT 30 AT 9:00AM

Abstract. This is the third problem set for the graduate course Mathematical
Quantum Mechanics in the Fall Quarter 2020. It was posted online on Oct 16
and is due Friday Oct 30 at 9:00am via online submission.

Purpose: The goal of this assignment is to review and practice Poisson brackets and
Lie algebras from Mathematical Quantum Mechanics (MAT265). In particular, we
would like to become familiar with many examples of Poisson structures, including
those in the dual Lie algebra g∗.

Task and Grade: Solve two of the six problems below. Each Problem is worth 50
points.The maximum possible grade is 100 points. Despite the task being three prob-
lems, I strongly encourage you to work on all the problems.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

Textbook: We will use “A Brief Introduction to Physics for Mathematicians” by I.
Dolgachev. Please contact me immediately if you have not been able to get a copy of
any edition.

Problem 1. (Poisson Brackets and Cross Products) Let us consider (R3,×), where ×
is the cross product, and (so(3), [·, ·]) the space of (3× 3)-skew-symmetric matrices

so(3) := {A ∈M3(R) : At + A = 0}
endowed with the bracket [A,B] = AB −BA, A,B ∈ so(3).

(i) Prove that (R3,×) is a Lie algebra, i.e. v × w is bilinear, skew-symmetric and
satisfies the Jacobi identity.

(ii) Prove that (so(3), [·, ·]) is a Lie algebra, i.e. so(3) is closed under [·, ·], and the
bracket [·, ·] is bilinear, skew-symmetric and satisfies the Jacobi identity.

(iii) Show that the map

ϕ : (R3,×) −→ (so(3), [·, ·]), ϕ(x1, x2, x3) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .

is an isomorphism of Lie algebras, i.e. ϕ is an isomorphism of R-vector spaces
and it is a Lie algebra morphism: ϕ(v × w) = [ϕ(v), ϕ(w)].
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(iv) Consider g∗ = so(3)∗ and note that x1, x2, x3 ∈ g∗. Let f, g ∈ C∞(so(3)∗).
Show that the bracket

{f, g}(x1, x2, x3) = det

∥∥∥∥∥∥
x1 x2 x3
∂x1f ∂x2f ∂x3f
∂x1g ∂x2g ∂x3g

∥∥∥∥∥∥
is a Poisson bracket on g∗ = so(3)∗.

Hint: One can certainly compute directly. A more conceptual approach is to
show that the right-hand side of the equality is actually1 x([df0, dg0]), where
0, x ∈ so(3)∗. Then the necessary properties follow from (ii).

(v) Consider I1, I2, I3 ∈ R+, I1 < I2 < I3, and the functions f, g ∈ C∞(so(3)∗):

f(x1, x2, x3) =
x21
2I1

+
x21
2I2

+
x23
2I3

, g(x1, x2, x3) = x21 + x21 + x23.

Compute the matrices df0, dg0 ∈ so(3) and their Lie bracket [df0, dg0]. Relate
the resulting computation to the constants of motion of a rigid body.

(vi) (Optional) In the article “On teaching mathematics”, V.I. Arnol’d asserts “The
Jacobi identity (which forces the heights of a triangle to cross at one point) is
an experimental fact [...]”. Show that the Jacobi identity for (R3,×) implies
that the three altitudes of a triangles intersect at exactly one point.2

Problem 2. (The Spherical Pendulum). In this problem we study the spherical
pendulum, a mass m = 1 moving friction-less on the surface of the 2-sphere

S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
The only force acting is gravity and the constraint to S2. The Hamiltonian is

H(x, y, z, px, py, pz) = K + U =
1

2

(
p2x + p2y + p2z

)
+ z,

where (x, y, z, px, py, pz) ∈ T ∗R3 are coordinates in T ∗R3. The Hamiltonian system is
thus given by (T ∗S2, H|T ∗S2), with configuration space S2 and phase space T ∗S2.

(i) Show that J = xpy − ypx is a conserved quantity and give a physical interpre-
tation of J . Deduce that the motion of a particle in phase space must occur on
the fiber of the smooth map3

µ := (H, J) : T ∗S2 −→ R2.

(ii) Consider the curve τ ⊆ R2 given as the image of

τ : R \ (−1, 1) −→ R2, τ(s) =

(
s2

2
− 3

s2
, s− 1

s3

)
.

Show that the image of µ(T ∗S2) is given by the closure of the upper connected
component of R2 \ τ , i.e. the region equal or above the curve τ ⊆ R2.

1Note that df0 is a linear function on T0g
∗ ∼= g∗, thus canonically an element of g ∼= g∗∗.

2This is called the orthocenter of the triangle.
3This is an example of a momentum map.
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(iii) Describe the physical motion corresponding to the two level sets µ−1(1, 0) and
µ−1(−1, 0). What is particular to the physical motion corresponding to the
level sets of the form µ−1(h, 0) ?

(iv) Study the fibers of the map µ, i.e. the level sets µ−1(c), where c ∈ R2.

(v) Describe the 3-space given as the pre-image µ−1(R× {0}).

(vi) (Optional) Describe the 3-space given as the pre-image µ−1(R× {2}).

Problem 3. (An integrable system discovered in 2017)4 The phase space of the Hamil-
tonian system is the symplectic manifold5

S2 × S2 := {(x1, y1, z1;x2, y2, z3) ∈ R3 × R3 : x21 + y21 + z21 = 1, x22 + y22 + z22 = 1},
and symplectic form ω = ωst⊕ 2ωst where ωst is the area-1 2-form, i.e. a volume form,
on S2. This can be described as the restriction of the volume form ω = dx1dy1dz1 ⊕
2(dx2dy2dz2) of R3 × R3 to S2 × S2. The Hamiltonian of the system is

H(x1, y1, z1;x2, y2, z3) :=
z1 + z2

4
+

1

2
(x1x2 + y1y2).

(1) Show that J = z1 + 2z2 is a constant of motion.

(2) Consider the moment map µ = (H, J) : S2×S2 −→ R. Show that µ has exactly
four singular points at (pN , pN), (pS, pN), (pN , pS), (pS, pS), where pN , pS ∈ S2

are the North and South poles pN = (0, 0, 1), pS = (0, 0,−1).

(3) Give a sketch of the image im(µ) ⊆ R2.

(4) Show that the regular level sets of H : S2×S2 −→ R are topologically either S3

or S2×S1. (Hint: Use the map µ and its image im(µ) as studied in (2) and (3).)

(5) Prove that H−1(0) is not a regular level set. Discuss the topology of regular
level sets H−1(ε), H−1(−ε), right above and below H−1(0), ε ∈ R+ small.

(6) (Optional) Explain why (5) does not contradict one of the principles of Morse
theory: crossing a singular level set of a generic function f : M −→ R with a
unique critical point at that level set must give a different homotopy type for
the level sets above than that of the level sets below.

4It appeared in the article “A family of compact semitoric systems with two focus-focus singulari-
ties”, by S. Hohloch, J. Palmer in the Journal of Geometric Mechanics, 2018, 10(3): 331-357.

5Note that this is not a cotangent bundle, but rather it comes from taking a quotient of a certain
magnetic cotangent bundle T ∗S3 ∼= S3 × S2 by S1-symmetries, through a process called symplectic
reduction.
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Problem 4. (The Lotka-Volterra Equations are Hamiltonian) In population dynamics,
we consider the populations x1(t), . . . , xn(t) ∈ R+ of n species at a given time t ∈ R≥0.
The Lotka-Volterra predator-prey model (1910 & 1925) gives the following system of
n non-linear differential equations

x′i(t) = αixi(t) +
n∑
j=1

βijxi(t)xj(t).

Suppose that the matrix (βij) ∈Mn(R) is skew-symmetric and invertible.

(i) Let f1, f2 ∈ C∞(Rn). Show that

{f1, f2} :=
∑
i<j

βijxixj
(
∂xif1 · ∂xjf1 − ∂xif2 · ∂xjf1

)
is a Poisson bracket.

(ii) Find a Hamiltonian H ∈ C∞(Rn) such that the Lotka-Volterra system of dif-
ferential equations becomes

x′i(t) = {xi(t), H}, i ∈ [1, n].

Hint: Try with a linear combination of xi and ln(xi), i ∈ [1, n].

Problem 5 (Classical Lie Groups G and Their Lie algebras g) Let us consider the
following four matrix Lie groups:

GL(n,R) = {A ∈Mn×n(R) : det(A) 6= 0}, SL(n,R) = {A ∈Mn×n(R) : det(A) = 1},

SO(n,R) := {A ∈Mn×n(R) : 〈Av,Aw〉 = 〈v, w〉,∀v, w,∈ Rn} = {A ∈Mn×n(R) : AtA = Idn},

Sp(2n,R) := {A ∈M2n×2n(R) : ω(Av,Aw) = ω(v, w),∀v, w,∈ Rn} = {A ∈Mn×n(R) : AtΩA = Ω},

where Ω =

(
0 Idn
Idn 0

)
.

Geometrically, GL(n,R) are the linear automorphisms of Rn as a vector space. The
group SL(n,R) consists of those automorphisms which preserve volume and orienta-
tion. The group SO(n,R) consists of those automorphisms which preserve the stan-
dard inner product (the dot product), and the group Sp(n,R) consists of those au-
tomorphisms which preserve the standard symplectic form ωst, equivalently the skew-
symmetric matrix Ω.

(a) For each of the Lie groups G above, describe the vector space g := TeG.

(b) For each of the four example above, verify that g is closed under the matrix
commutator bracket:

[·, ·] : Mn(R)×Mn(R) −→Mn(R), [A,B] := AB −BA.

The pair (g, [·, ·]) is called a Lie algebra, as one can verify that [A,B] is bilin-
ear, skew-symmetric and satisfies the Jacobi identity, in line with Problem 1.(ii).
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(c) Consider f, g ∈ C∞(g∗) and their linear derivatives df, dg : g∗ −→ R at 0 ∈ g∗

where we identify T0g
∗ ∼= g∗. Note that we can consider them as elements

df, dg ∈ g, as g∗∗ ∼= g. Show that

{·, ·} : C∞(g∗)× C∞(g∗) −→ C∞(g∗),

{f, g}(ξ) := ξ([df, dg]), ∀ξ ∈ g,

is a Poisson bracket on C∞(g∗).6

(d) A function f ∈ C∞(g∗) is called a Casimir7 if {f, g} = 0 for all g ∈ C∞(g∗).
Find a Casimir for g = sln, ∀n ∈ N. (Start with n = 2.)

(e) (Optional) Find n Casimirs for each of the two orthogonal Lie algebras g =
so(2n) and g = so(2n+ 1) of skew-symmetric matrices.

Problem 6. (The Little Arnol’d-Liouville Theorem) Let F = (f1, . . . , fn) : M −→ Rn

be an integrable system on (M,ω). Consider a regular value c ∈ Rn of F , so that
F−1(c) ⊆M is a smooth compact submanifold.

(1) Let p ∈ F−1(c). Prove that gti(p) ∈ F−1(c), ∀t ∈ R, i ∈ [1, n].

(2) Show that the flows gti of the Hamiltonian vector fields Xfi are complete, i.e.
the flow exists for all time t ∈ R.

(3) Let p ∈ F−1(c). Show that the flows commute:

gt1i (gt2j (p)) = gt2j (gt1i (p)), t1, t2 ∈ R, ∀i, j ∈ [1, n].

(4) Let p ∈ F−1(c). Show that the map

τ : Rn −→ F−1(c), τ(t1, . . . , tn) = (gt
n

n ◦ . . . ◦ gt
1

1 )(p)

is a local diffeomorphism. Conclude that τ−1(p) is a discrete subgroup of Rn.

(5) By using the classification of discrete subgroups of Rn, show that

F−1(c) ∼= S1× (n). . . ×S1,

i.e. the fiber F−1(c) is diffeomorphic to an n-torus.

(6) (Optional) Show that ω|F−1(c) ≡ 0, i.e. the fibers of F are Lagrangian.

Problem 7. (Poisson Brackets and Incompressible Fluids) In 1757, L. Euler modeled
the evolution of an inviscid flow, by studying the PDE satisfied by its flow velocity
vector v(x, t), x being the position of a fluid particle and t ∈ R≥0 its time evolution.8

If p is the pressure function and we assume mass density ρ ≡ 1, they read:

∂tv +∇vv = −∇p, div(v) = 0.

6You may assume that [·, ·] is a Lie bracket, as stated in (b).
7In particular, a Casimir is a constant of motion for any Hamiltonian of any physical system you

ever consider on g∗.
8Published in the “Principes généraux du mouvement des fluides” in the Mémoires de l’Académie

des Sciences de Berlin.
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These are known as Euler’s incompressible fluid equations, where ∇ is the gradient if
the fluid is in (Rn, gst), and in general it is the Levi-Civita connection of (M, g).

Let (M, g) be a Riemannian manifold, and for this problem you are welcome to choose
(M, g) = (Rn, gst), where gst is the standard flat metric, if you prefer. Let us consider
the group G of volume preserving diffeomorphisms

Diffµg(M) := {ϕ ∈ Diff(M) : ϕ∗(µg) = µg}, µg the volume form of g.

(i) Show that its Lie algebra g = TId Diffµg(M) is isomorphic to the vector space
of divergence-free vector fields on M :

TId Diffµg(M) ∼= {u ∈ Γ(TM) : div(v) = 0}.
Hint: First show that TId Diff(M) is isomorphic to the vector space of vector
fields on M . Then show that volume-preserving translates into div(v) = 0.

(ii) Let us consider the motion of a fluid particle, which is described by a path

ϕ : R −→ Diff(M), t 7−→ ϕ(·, t),
so that a fluid particle at p ∈ M moves to ϕ(p, t) at time t. Consider the
following L2-inner product:

〈X, Y 〉 :=

∫
M

〈X(p), Y (p)〉gdµg, X, Y ∈ g = TId Diffµg(M).

In particular, the kinetic energy of ϕ is

L(ϕ, ϕ̇) :=
1

2

∫
M

‖ϕ̇‖2gdµg.

Show that this inner product is right-invariant:

〈X ◦ ϑ, Y ◦ ϑ〉 = 〈X, Y 〉, ∀ϑ ∈ Diffµg(M).

(iii) By definition, we generalize to the infinite-dimensional setting by stating that
a trajectory ϕ : [0, 1] −→ Diffµg(M) is geodesic if it extremizes the length
functional

l(ϕ) =

∫ 1

0

√
〈ϕ̇, ϕ̇〉dt.

Note that we can ask the parametrization to be at constant speed 〈ϕ̇, ϕ̇〉, as
the value of the functional is independent of the parametrization.

Show that ϕ is a critical point for the Lagrangian given by the kinetic energy
above if and only if ϕ is a geodesic parametrized at constant speed.

(iv) Let ϕ be a geodesic Diffµg(M) parametrized at constant speed. Show that
v(t) := ϕ̇(t) ◦ ϕ(t)−1 is a solution to the Euler equations for incompressible
fluids

∂tv +∇vv = −∇p, div(v) = 0,

for some unique function p, up to additive constants.

Similar arguments lead to many other interesting PDEs. For instance, the same argu-
ment applied to the group of diffeomorphisms preserving a contact structure lead to
the Camassa–Holm equation, modeling waves in shallow water.


