
MAT 265: PROBLEM SET 4

DUE TO FRIDAY NOV 13 AT 9:00PM

Abstract. This is the fourth problem set for the graduate course Mathematical
Quantum Mechanics in the Fall Quarter 2020. It was posted online on Sunday Nov
1 and is due Friday Nov 13 at 9:00pm via online submission.

Purpose: The goal of this assignment is to review and practice the Schrödinger for-
mulation of Quantum Mechanics, canonical quantization and the Heisenberg group,
as learnt in Mathematical Quantum Mechanics (MAT265). In particular, we would
like to become familiar with many examples of basic quantum mechanical systems,
including the free particle, a harmonic oscillator and the hydrogen atom, and finding
stationary states, expected values and standard deviations.

Task and Grade: Solve two of the six problems below. Each Problem is worth 50
points.The maximum possible grade is 100 points. Despite the task being two prob-
lems, I strongly encourage you to work on all the problems.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

Textbook: We use “A Brief Introduction to Physics for Mathematicians” by I. Dol-
gachev, which is freely available in the course website.

Problem 1. (Standard Deviation as Uncertainty) Consider a state µ = Pψ, ψ ∈
L2(R,C) for a quantum particle in a line and A ∈ L∈(R,C) an observable. By defini-
tion, its standard deviation is

σµ(A) :=
√
Eµ(A2)− Eµ(A)2.

(a) Show that σµ(A)2 = Eµ(A− Eµ(A))2.

(b) Deduce from Part (a) that σµ(A) = ‖(A−Eµ(A))ψ‖L2 . Prove that the standard
deviation vanishes σµ(A) = 0 iff ψ is an eigenstate of the observable A.

The basic lesson from Parts (a) and (b) is that the standard deviation is the math-
ematical quantity that models the physical idea of uncertainty. This is in line with
Heisenberg’s inequality, as described in class. We now continue with a simple example:
an electron in the hydrogen atom in the simplest possible state.
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(c) Let a0 be the Bohr radius, which is about about half an Ångstrom1. An electron
moves in R3

(x,y,z) around a hydrogen nucleus, located at the origin. One of its

ground states2 µ is given by

ψ(x, y, z) =
1√
πa3

0

e−r/a0 , r ∈ R+,

where r =
√
x2 + y2 + z2 is the distance from the electron to the nucleus.

Show that the expectations Eµ(x̂), Eµ(ŷ) and Eµ(ẑ) vanish, and thus the elec-
tron is expected to be at the origin (x, y, z) = (0, 0, 0).3

(d) Show that Part (c) is not a problem. Namely, show that the uncertainty of
finding the electron at the nucleus is strictly positive, i.e. σµ(x̂) > 0.

(e) Even better, show that the uncertainty of the position operator x̂ is exactly the
Bohr radius. (This is why this radius is important.)

(f) (Optional) Show that the same applies to the momentum operators, p̂x, p̂y and
p̂z, i.e. their expectation value at the ground state ψ is zero, but again with
positive uncertainty.

Physically, the lesson from Parts (c) through (f) is that in the simplest possible state
ψ for the electron, the expectation is to find the electron at origin and at rest. Nev-
ertheless, since the standard deviation of the positions is Bohr radius a0, the electron
is actually somewhere at distance a0 from the origin. (If you like the hydrogen atom,
you are welcome to continue with Problem 7.)

Problem 2. (Free Particle in S1
R) Let m,R ∈ R+ and consider a free quantum particle

of mass m moving on an R-radius circle S1
R := {z ∈ C : |z| = R)} = Rq/(2πRZ). Since

the classical Hamiltonian is H(q, p) = p2/2m, (q, p) ∈ T ∗S1
R, the canonically quantized

Hamiltonian is

Ĥ : L2(S1,C) −→ L2(S1
R,C), Ĥ(f) := − ~

2mR2
∂2
q (f).

(a) Show that the possible energies of the system in a stationary state are

En =
~2n2

2mR2
, n ∈ N ∪ {0}.

(b) Prove that the corresponding stationary states can be written in the form

ψn(q, t) = C · einθe−iEnt/~, n ∈ Z, t ∈ R+,

and find the normalizing constant C ∈ R+.

(c) Consider the pure state µn = Pψn(q,t). Compute the expected energies Eµn(Ĥ),
expected momenta Eµn(p̂) and their standard deviations.

1Approximately 0.529177 · 10−10m.
2The energy at this ground state is E1 ' −13.6057eV , the lowest possible energy.
3This would be a problem, as the nucleus is fixed to be there.
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(d) What is the expected value when observing the position operators

q̂1φ = (cos θ) · φ, q̂2φ = (sin θ) · φ
if the system is at the pure state µn ? What about the standard deviations
σµn(q̂1) and σµn(q̂2) for these two observables ?

(e) Give an example of an eigenstate for the energy operator Ĥ which is not an
eigenstate for the momentum operator p̂.

(f) At t = 0, a quantum particle in a circle S1
R, R = 1, is at the state Pϕ where

ϕ(θ, 0) =
√

2 ·

(
1√
3
· sin θ +

√
2

3
· cos(3θ)

)
.

Show that ϕ is a superposition of energy eigenstates ψn(θ, 0). Compute the
possible values of its momentum p̂ and each of the probabilities for these values
of being observed.

(g) Let the state in Part (f) evolve for one second, until t = 1. Compute the possi-
ble values of its momentum p̂ and each of the probabilities for these values of
being observed.

Problem 3. (The Heisenberg Group) Consider a quantum particle moving in a line
Rq, subject to a potential, the Hilbert space being V = L2(R,C). In this problem
we study the algebraic framework behind the canonical quantization q̂ and p̂ of the
position observable q, and the momentum observable p, both classical observables
q, p ∈ C∞(T ∗R).

Consider the Heisenberg group

G := {A ∈ GL3(R) : A = Mαβγ, α, β, γ ∈ R}, where Mαβγ =

 1 α γ
0 1 β
0 0 1

 .

(a) Show that G is a Lie group and its center is

Z(G) = {A ∈ G : A = M00γ, γ ∈ R}.
(b) Prove that the matrices

q =

 0 0 0
0 0 1
0 0 0

 , p =

 0 1 0
0 0 0
0 0 0

 , z =

 0 0 1
0 0 0
0 0 0


generate the Lie algebra g = TeG of the Heisenberg group G, known as the
Heisenberg Lie algebra. Show also that they satisfy the so-called Heisenberg
relations:

[q, p] = z, [z, q] = 0, [z, p] = 0.

This is the Lie algebra way of talking about the fact that in quantum mechanics
we want {q̂, p̂}~ = 1 where z plays the role of a constant (the identity operator),
and it corresponds to the center Z(G).
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(c) Consider the vector space space L2(R,C) and the map

ρ~ : G −→ Aut(L2(R,C)), ρ~(Mαβγ)ψ(q) := ei~γeiβqψ(q + ~α).

Show that ρ~ is a representation, i.e. a group morphism.
(Optional: Show that ρ~ is irreducible.)

(d) Compare the representation ρ~ with the canonical quantization:

q̂ψ = qψ, p̂ψ = −i~∂qψ, ψ ∈ L2(R,C).

Namely, compare the operators ρ~(M1,0,0) and ρ~(M0,1,0) with the unitary one-
parametric groups associated to the Hermitian operators q̂, p̂ ∈ O(L2(R,C)).4

(e) Consider the map A : G −→ G given by A(Mα,β,γ) = M−β~−1,α~,γ−αβ. Show
that this is a Lie group automorphism, and it is the identity in the center Z(G).

(f) By Part (d), the two representations ρ~ and A∗(ρ~) coincide in the center, and
thus by the Stone-Von Neumann Theorem, they must be equivalent. That is,
there exists5 a unitary operator F acting on L2(R) such that

Fρ~(g)F = A∗(ρ~)(g), ∀g ∈ G.
Show that F is the classical Fourier transform.6

Problem 4. (Weyl’s Canonical Quantization) Let us consider a classical system with
a particle in Rq, so that phase space is T ∗R ∼= R2

q,p and the algebra of observables is

given by O(T ∗R2) = C∞(T ∗R2). As discussed in lecture, the canonical quantization
of an observable f ∈ O(T ∗R2) is given by the operator

Afψ(q) =
1

2π

∫
R

∫
R
F(f)(u,w)eiuqeiw∂q(e−i~uw/2ψ(q))dudw, ψ = ψ(q) ∈ L2(R,C),

where F(f) denotes the Fourier transform of f . In the following Parts, Af is understood
as an integral operator acting on distributions, and note that F(f) typically will be a
distribution.

(a) Compare the integral opeartors Aq and Ap with the canonical quantization
q̂ψ(q) = qψ(q) and p̂ψ(q) = −i~ψ(q).

(b) Express the operators Apq and Aqp in terms of a polynomial G(q,−i~∂q) on the
formal variables q,−i~∂q.

(c) Describe the quantization of the observable f(q, p) = q2p2.

(d) Let c1, c2 ∈ C be two constants and consider the polynomial

g(q, p) = (c1q + c2p)
n

4Recall Stone’s Theorem, establishing a correpsondence between Hermitian operators H and uni-
tary 1-parametric subgroups eiHt.

5In fact, since ρ~ is irreducible, Schur’s lemma imples that the intertwiner must be unique.
6Note that Stone-Von Neumann also proves that the Fourier transform F is unitary, which is

Parseval’s Theorem.
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in the q, p variables. Compare the quantization Ag(q,p) of the polynomial g with
the (non-commutative) polynomial G(q, ∂q) = (c1q − i~c2∂q)

n.

(e) Let us consider a constant observable f ∈ O(T ∗R), for instance f(q, p) ≡ 1.
What is its quantization A1 ?7

Problem 5. (The Harmonic Oscillator Revisited) The one-dimensional quantum har-
monic oscillator consists of a particle of mass m vibrating near the origin at frequence
ω in a line Rq, where q denotes the distance to the origin. The Hilbert space if

V = L2(R,C) and the energy operator Ĥ ∈ O(V ) reads

Ĥψ(q, t) = − ~
2m

∂2
qψ(q, t) +

mω2

2
q2 · ψ(q, t).

In lecture, we solve this problem using ladder operators, which essentially brings alge-
braic methods from representation theory of Lie algebras to find all necessary quan-
tities, including the stationary states ψn(q, t). Instead, in this problem, we will find
ψn(q, t) directly via differential equations.

(a) The stationary states ψstat(q, t) are solutions of the eigenvalue problem

− ~
2m

∂2
qψstat(q, t) +

mω2

2
q2 · ψstat(q, t) = Λ · ψstat(q, t), Λ ∈ R+.

Show that the equation above rescales to

−∂2
xψstat(x, t) + x2ψstat(x, t) = λ · ψstat(q, t),

if we perform the change of coordinates x = q
√

mω
~ and re-write λ := 2Λ

~ω .

(b) For |x| � 1, this equation tends to −∂2
xψstat(x, t) + x2ψstat(x, t) ' 0, and thus

it makes sense to take the ansatz

ψstat(x, t) = ex
2/2h(x), h ∈ C∞(R).

Show that, under the ansatz above, h = h(x) must satisfy

−∂2
xh+ 2x∂xh+ h = λ · h.

(c) Find the possible (admissible) solutions for h in Part (b). Here is a suggestion:
expand h(x) in a power series in x, conclude it must be a polynomial and find
the possible coefficients.

(d) Conclude that, in fact, the stationary states are indexed by a natural number
n ∈ N ∪ {0}, and are of the form

ψn(q, t) = ex
2/2 ·

(
1√
2nn!

4

√
mω

π~

)
·Hn(x),

where Hn(x) is the nth Hermite polynomial.

7Note that the Fourier transform of 1 is a distribution, so it is crucial to understand Af as an
integral operator for distributions.
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(e) Plot the functions ψn(x, 0) and their probability distributions ‖ψn(x, 0)‖2, as
functions of Rx, for the first few values n = 0, 1, 2, 3, 4, 5, 6. Describe the gen-
eral pattern of ‖ψn(x, 0)‖2.8

Deduce that a quantum particle with energy ~ω/2 might be found in positions
x ∈ R that a classical particle in that energy level would never be in.

(f) What is the expected value of the energy in the pure state µn = Pψn(x,t) ?

(g) Classically, the lowest possible energy of a (classical) harmonic oscillator is
E = 0, with the particle at the origin and at rest. Is this the case for the
quantum harmonic oscillator ? Apart from a mathematical argument, give also
a possible physics intuition based on the Heisenberg uncertainty principle.

Similarly, the possible energies for the classical harmonic oscillator form a con-
tinuum E ∈ R≥0, is this the case for the quantum harmonic oscillator ?

(h) (Optional) Find the expected position Eµn(x̂) and expected momenta Eµn(p̂x)
in the two stationary states ψ0(x, t) and ψ1(x, t). (Or if you have a physical
guess, go with it !)

Problem 6. (Free Particle in S2) Let us consider a quantum free particle of mass m
moving in the 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Consider spherical coordinates (r, θ, φ) ∈ R3, given by

x = r sin θ cosφ, y = r sin θ cosφ, r cos θ,

where r2 = x2 + y2 + z2 is the distance to the origin.

(a) Show that the Laplacian operator ∆2 = ∂2
x+∂2

y+∂2
z , which quantizes the kinetic

energy (up to a constant), reads

∆2ψ =
1

sin2 θ
∂2
θψ +

1

sin θ
∂θ(sin θ · ∂θψ), ψ = ψ(θ, φ) ∈ L2(S2,C).

when restricted to the sphere S2.

(b) Show that the equation for the stationary states Y (θ, φ) is separable, and thus
we can write

Y (θ, φ) = Θ(θ)Φ(φ),

for some solutions of the stationary eigenvalue problem.

(c) In the separation of Part (b), prove that the admissible solutions for Φ(φ) are

Φn(φ) =
1√
2π
einφ, n ∈ Z.

8Then go to our course website, and you will finally understand the picture !
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(d) Show that Θ(θ) satisfies

− n2

sin2 θ
Θ(θ) +

2mE

~2
Θ(θ) +

1

sin θ
∂θ(sin θ · ∂θΘ(θ)), n ∈ Z,

if Y (θ, φ) is a stationary state with expected energy E. (The solutions to this
classical ODE are Legendrian polynomials in cos θ.)

(e) Conclude that

2mE

~2
= l(l + 1), l ∈ N ∪ {0}, n ∈ Z ∩ [−l, l],

and thus the possible energies are indexed as

El =
~2

2m
l(l + 1), l ∈ N ∪ {0}.

(f) (Optional) The stationary states Y (θ, φ)nl ∈ L2(S2,C) are called spherical har-
monics. They are not harmonic functions, try to discover why they are called
harmonics.

Problem 7. (The Hydrogen Atom)9 In this problem we study an electron moving
around a hydrogen nucleus. The former has mass m ' 9.1 · 10−31kg and is allowed to
move in R3, whereas the latter lies at rest and is located at the origin (0, 0, 0) ∈ R3.10

Let us consider spherical coordinates (r, θ, φ) ∈ R3 as in Problem 4, the potential
energy for the electron (due to Coulomb’s law) is given by

V (r, θ, φ) =

(
e2

4πε0

)
· −1

r
,

where e ' 1.6 · 10−19C is the magnitude of the electron’s electric charge, and ε0 '
8.854 · 10−12C2/(Jm) is the vacuum permittivity11.

(a) Show that the canonical quantization of the classical Hamiltonian is

Ĥψ(r, θ, φ) = − ~
2mr2

(
∂r(r

2∂rψ) +
1

sin2 θ
∂2
θψ +

1

sin θ
∂θ(sin θ · ∂θψ)

)
−
(

e2

4πε0

)
· 1

r
,

where ψ = ψ(r, θ, φ) ∈ L2(R3,C).

(b) Let us find the stationary states using separation of variables, i.e. ψ(r, θ, φ) =
R(r)Θ(θ)Φ(φ). First, show that the quantity

Eθ,φ :=
−~2

Θ(θ)Φ(φ)
·
(

1

sin2 θ
∂2
θ (Θ(θ)Φ(φ)) +

1

sin θ
∂θ(sin θ · ∂θ(Θ(θ)Φ(φ)))

)
9This is a heavily computational problem, only try if you have done Problem 4 and really like

solving ODEs. The first four Parts (a)-(d) are reasonable, for Part (e) you should have also tried
Problem 3.

10The understanding of the possible energy levels of this electron tells us the photons that a
hydrogen atom may absorb or emit, which is crucial for many quantum experiments involving hydrogen
atoms.

11That is, the capability of an electric field to permeate a vacuum.
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is a constant. Similarly, show that

Eφ :=
−~2

Φ
∂φ(Φ(φ)),

is a constant.

(c) Use Part (b) to conclude that Φ(φ) = einφ, n ∈ Z, and thus Eφ = (n~)2.

(d) Using Parts (b) and (c) deduce that

Θ(θ)Φ(φ) = Y n
l (θ, φ),

are the spherical harmonics from Problem 4, and thus Eθφ = l(l + 1)~2. Note
that in this case we also have the inequality l ≥ |n|.

(e) Complete the study of the stationary states by finding R(r), which will be
indexed by two numbers k, l ∈ Z with k > l and l as above. These are often
written as Rkl, so that the stationary states end up being written as

ψk,l,n(r, θ, φ) = Rkl(r)Y
n
l (θ, φ).

The main lesson here is that they are indexed by three numbers k, l, n ∈ Z
such that |n| < l < k, and that the motion essentially breaks into the spherical
harmonics (which govern the motion of a free particle in S2) and a radial com-
ponent.

(f) Show that the possible energies of the stationary states are

Ek =
E

k2
, k ∈ N,

where E = −~2 · (2ma2
0)−1 ' −13.605eV is the lowest energy. Note that these

only depend on k, and are much simpler than ψk,l,n. This is what you should
remember the most from the hydrogen atom.


