
MAT 265: PROBLEM SET 5

DUE TO FRIDAY DEC 11 AT 9:00PM

Abstract. This is the fifth problem set for the graduate course Mathematical Quan-
tum Mechanics in the Fall Quarter 2020. It was posted online on Monday Nov 23
and is due Friday Dec 11 at 9:00am at 9:00pm via online submission.

Purpose: The goal of this assignment is to review and practice the path integral,
quantum propagators and the basics of field theory. In particular, we would like to
become familiar with examples of computations with the path integral, classical fields
(namely Klein-Gordon, Yang-Mills and Chern-Simons) and some of their quantizations.

Task and Grade: Solve two of the six problems below. Each Problem is worth 50
points.The maximum possible grade is 100 points. Despite the task being two prob-
lems, I strongly encourage you to work on all the problems.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

Textbook: We use “A Brief Introduction to Physics for Mathematicians” by I. Dol-
gachev, which is freely available in the course website.

Problem 1. (The 1-dimensional Free Particle: Again!) Consider a quantum particular
with mass m ∈ R+ moving in the real line R. Let K(q, t; q0, 0) be the propagator from
(expected) position q0 ∈ R at time t0 = 0 to (expected) position x ∈ R at time t. The
Lagrangian is thus

L(q, q̇) =
m

2
q̇2.

In this problem, we allow ourselves to work with path integrals.

(1) Using the canonical quantization for quantum mechanics, show that the prop-
agator is given by

K(q, t;x0, 0) =

√
m

2πi~t
eim(q−q0)2/(2t~).

(2) Now using the path integral, show that the propagator is given by

K(q, t;x0, 0) =

√
m

2πi~t
eim(q−q0)2/(2t~).

(This is an example where finding the propagator via classical quantum mechan-
ics is simpler than with the path integral. In general, path integrals are usually
more efficient, as one does not need to solve the Schrödinger equation.)
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(3) Compute the general propagator K(q, t; q0, t0) starting at the point q0 at time
t0 and ending at q in time t.

(4) Show that the wavefunction ψ(q, t) = K(q, t; 0, 0) satisfies ψ(q, 0) = δ(q) and
interpret this result physically.

(5) Show that the Green function G(q, t; q0, 0) for the Schrödinger equation1 is

G(q, t; q0, t0) =
u0(t− t0)

i~
K(q, t; q0, t0).

Namely, show that

i~∂tG(q, t; q0, t0) =

(
− ~2

2m
∂2q ·G(q, t; q0, t0)

)
· δ(q − q0)δ(t− t0).

where u0 is the Heaviside step function centered at 0.

Problem 2. (Courtesy of A. Waldron) Solve each of the three parts below:

(1) Compute the expected value of the operators x̂ and p̂ with respect to the coher-

ent state |z〉 = eza
†|z〉. Show that this state saturates Heisenberg’s uncertainty

bound.

(2) The position space propagator for the harmonic oscillator used to compute the
probability that a quantum spring evolves from an initial position xi to a final
one xf in time t is given by

K(xf , xi; t) =
1√

2πi~ sin t
exp

(
−

(xf − xi)2 + (x2f + x2i )(cos ∆t− 1)

2i~ sin t

)
.

Use the coherent state propagator result to derive this expression.

(Hint: compute the wavefunction of the state |z〉 as a function of x.)

(3) Use Feynman diagrams to compute as many terms as you (reasonably) can in
the asymptotic series expansion of the integral

K(g) :=

∫ ∞
−∞

dx e−
1
2
x2− g

4!
x4 .

Use your result to compute the first few terms in the asymptotic series for
logK(g). Try to express this also as a sum of diagrams and comment on any
patterns you happen to observe.

Problem 3. (Electromagnetic Field as U(1)-Gauge Theory) In this problem, we
derive Maxwell’s equations for electromagnetism in the vacuum from the Yang-Mills
Lagrangian with gauge group G = U(1). Let R3 have coordinates (q1, q2, q3), with
associated space-time R3 × Rt, and consider the electric field and magnetic fields:

1Recall that the Green function of a PDE is the solution obtained when you have a δ source.
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E(q, t) = E1dq1 + E2dq2 + E3dq3, B(q, t) = (B1dq2dq3 +B2dq3dq1 +B3dq1dq2),

where Ei, Bi ∈ C∞(R3 × Rt). Note that E ∈ Ω1(R3 × Rt) is a 1-form and B ∈
Ω2(R3×Rt) is a 2-form.2 Let ∗ : Ωk(R3) −→ Ω3−k(R3) and Let ∗ : Ωk(R4) −→ Ω4−k(R4)
denote the Hodge star operator in R3 and R3 × R. For instance, in R3 we will have

∗dq1 = dq2dq3, ∗dq2 = dq3dq1, ∗dq3 = dq1dq2.

Maxwell’s equations in the vacuum read

dB = 0, dE = (∂tB), d(∗E) = 0, ∗d(∗B) = − 1

c2
∂tE,

where c is the speed of light.3 The Hodge star operator is applied as forms in R3, and
thus sends 1-forms to 2-forms, and viceversa.

(1) First, show that the equations above are equivalent to the Maxwell equations
we teach in vector calculus:

∇ · E = 0, ∇ ·B = 0, ∇× E = −∂tB, ∇×B =
1

c2
∂tE.

(2) Let d∗ := ∗d∗ denote the adjoint of d, and consider the operator ∆ := dd∗+d∗d.
Show that ∆ is the Laplace operator in (R3, gst) where gst is the standard flat
metric.

(3) Show that the electric and magnetic fields solve the wave equation:

1

c2
∂2tE −∆E = 0,

1

c2
∂2tB −∆B = 0.

(4) Let us consider the electromagnetic field4 in space-time R3 × Rt:

F = B + E ∧ dt ∈ Ω2(R3 × Rt).

Show that Maxwell’s Equation are equivalent to

dF = 0, d(∗F ) = 0,

i.e. F is a closed (dF = 0) and co-closed (d(∗F ) = 0) 2-form.

(5) Deduce from Part (4) that Maxwell’s Equations are Lorentz invariant. That
is, any isometry of Minkowski space (R3 × Rt, gMink), gMink = gst − dt ⊗ dt,
preserves these equations.

(6) Since F ∈ Ω2(R3×Rt) is a closed 2-form, there exists a 1-form A ∈ Ω1(R3×Rt)
such that dA = F . Physically, A is known as the electromagnetic potential.5

Show that Maxwell’s Equations in terms of A just read d∗dA = 0.

2In case you might have been taught that E,B where vector-fields, note that we could have dualized
by letting (E1, E2, E3) and (B1, B2, B3) be components of a vector field.

3Since waves in the vacuum propagate at the speed of light.
4You may start to appreciate the versality with which the word field is used. Here a field means a

2-form. Two lines above it meant a 1-form or a 2-form, and a Yang-Mills field will mean something
else. Welcome to physics.

5The 1959 Aharonov-Bohm effect (check it out, it is cool!) shows that the electromagnetic potential
is a physically meaningful quantity: it can be measured.
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(7) Show that the Euler-Lagrangian equations for the Yang-Mills Lagrangian for
G = U(1) are Maxwell’s Equations. Namely, Maxwell’s Equations are the
equations on A for the critical points of the functional

L(A) :=

∫
R3×R

FA ∧ (∗FA)dµ,

are where FA = dA is the curvature of the electromagnetic potential A ∈
Ω1(R3 × Rt).

Disclaimer: Technically, A should be a iR-valued 1-form, as the Lie algebra
u(1) = iR is the imaginary axis. In this problem, we can forget about that, but
for a Yang-Mills theory with Lie Group G one should study g-valued 1-forms.
Similarly, the curvature FA will in general be dA + [A,A]/2, where [A,A] just
happens to vanish for an Abelian Lie group.

Problem 4. (Klein-Gordon Field Theory) Let us consider a theory in R3 × Rt with
fields being real scalar functions ϕ : R3 × Rt −→ R, and the Lagrangian being

L(ϕ) :=
1

2

∫
R3

(
(∂tϕ)2 − |∇ϕ|2 −m2ϕ2

)
dq1dq2dq3.

The classical action in this field theory is thus

S(ϕ) :=

∫ t1

t0

L(ϕ)dt =
1

2

∫ t1

t0

∫
R3

(
(∂tϕ)2 − |∇ϕ|2 −m2ϕ2

)
dq1dq2dq3dt.

(1) Show that the Euler-Lagrange equation for this action functional is

(∂2t −∇2 +m2)ϕ = 0.

Note that this is an eigenvalue problem for the wave equation operator, the
so-called d’Alembert operator � = ∂2t −∇2.

(2) Find the solutions ϕ of this equation. (E.g. via Fourier transform.)

(3) The Hamiltonian in this classical field theory reads

H(ϕ, π) =
1

2

∫
R3

(
π2 + |∇ϕ|2 +m2ϕ2

)
dq1dq2dq3,

where π(q, t) = ∂tϕ(q, t) is the conjugate field. Show that

H(ϕ, π) =
1

(2π)3

∫
R3
τ

α(τ)∗α(τ)dτ1dτ2dτ3,

where we define ω(τ) = (τ 2 +m)1/2 and

α(τ) =

∫
R3

eiτ ·q(ω(τ)ϕ(q, t)− iπ(q, t))dq1dq2d3,

α(τ)∗ =

∫
R3

e−iτ ·q(ω(τ)ϕ(q, t) + iπ(q, t))dq1dq2d3.
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(4) The Hamiltonian H above gets quantized, thanks to Part (3), to the operator

Ĥ =
1

(2π)3

∫
R3
τ

a(τ)∗a(τ)dτ1dτ2dτ3,

where the two operators a(τ), a(τ)∗ quantize α(τ), α(τ)∗, that is:

a(τ) =

∫
R3

eiτ ·q
(
ω(τ)ϕ(q, t) +

δ

δϕ(q, t)

)
dq1dq2d3,

a(τ)∗ =

∫
R3

e−iτ ·q
(
ω(τ)ϕ(q, t)− δ

δϕ(q, t)

)
dq1dq2d3.

(5) Show that the quantum wavefunctional Ψ0, i.e. a quantum field, given by

Ψ0(ϕ) := exp

(
− 1

2(2π)3

∫
R3
τ

∫
R3
y

∫
R3
q

eiτ(q−y)φ(q, t)φ(y, t)ω(τ)

)
is a ground stated for the Klein-Gordon quantum field theory.

(6) (Optional) Find the vacuum to vacuum propagator for the Klein-Gordon quan-
tum field theory.

Problem 5. (Non-Abelian Yang-Mills) Let G be a Lie group. Consider the following
theory: fields are connections A ∈ Ω1(P ; g) on a G-principal bundle π : P −→ R3×Rt

and the Lagrangian is the Yang-Mills functional

L(A) :=

∫
R3×Rt

tr(FA ∧ (∗FA))dµ.

Since R3×Rt is topologically trivial, any G-bundle is just the product P = (R3×Rt)×G
and π is the projection onto the first factor R3 × Rt.

(1) Locally, any connection A can be written as a g-valued 1-form

A(q, t) = A1(q, t)dq1 + A2(q, t)dq2 + A3(q, t)dq3 + A4(q, t)dt, Ai(q, t) ∈ g.

Then the associated covariant derivative, whose integral yields parallel trans-
port, is DA := d+ A and the curvature reads FA := D2

A. Show that

FA = dA+
1

2
[A,A],

where [·, ·] is the Lie bracket of g extended to g-valued 1-forms via the formula:
[Aidxi, Bjdxj] := [Ai, Bj]dxidxj.

6

(2) Show that the critical points of the Yang-Mills Lagrangians L(A) are cut out
by the Euler-Lagrange equations

DAFA = 0, DA(∗FA) = 0.

Solutions to these equations are known as Yang-Mills connections and also as
instantons.7 There are many of them: they form an ∞-dimensional space M.

6Namely, you apply the bracket to theg-coefficients of the form, and wedge the form parts as usual.
7The notation “instanton” comes from a basic Morse theory fact, feel free to ask me about that.
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(3) Show that every connection A automatically satisfies DAFA = 0.
(This is known as the Bianchi identity in differential geometry.)

(4) The symmetry group of the principal bundle is given by any section

φ̃ : R3 × Rt −→ P,

which in this case is tantamount to a function φ : R3×Rt −→ G. The symmetry
is given by multiplying the fiber G over p ∈ R3 × Rt by the element of the
Lie group φ(p) ∈ G. These symmetries are called gauge transformations, and
often denoted by g.8 Show that a gauge transformation acts on the covariant
derivative DA = d+ A as

DA 7−→ g(DA)g−1 = −dg · g−1 + gAg−1.

(5) Suppose that A is a Yang-Mills instanton and g is a gauge transformation.
Show that g(A) is also a Yang-Mills instanton.

Notice that the space of gauge transformations G is also infinite dimensional.
In Yang-Mills gauge theory, the space of Yang-Mills instantons M is infinite-
dimensional, and the space of it symmetries G is also infinite-dimensional. The
kicker is that the quotient M/G may be finite-dimensional. (E.g. it will be so
for anti-self-dual instantons.)

(6) Suppose that a connection A satisfies FA = (∗FA). Show that A is a Yang-
Mills instanton. Connections that satisfy FA = (∗FA) are known as self-dual
Yang-mills connections.

(7) (Optional)9 Let us consider G = SU(2) and c2(P ) the second Chern class of P .
Then the space of self-dual Yang-mills connections modulo gauge transforma-
tions has (virtual) dimension 8c2(P )− 3.

Problem 6. (Chern-Simons Field Theory) Let M be a 3-manifold, e.g. M = R3,
k ∈ N, G a Lie group and P a G-principal bundle. The space of Chern-Simons fields is
the space of connections on P . The Chern-Simons action on a field A is the quantity
S(A) ∈ R/(2πZ) is given by

S(A) := − k

2mπ

∫
M

tr

(
AdA+

2

3
A3

)
dµ.

(1) Show that the Chern-Simons functional is invariant under gauge transforma-
tions. (So S descends to the space of connections modulo the gauge group.)

(2) Prove that the critical points of S are given by flat connections, i.e. connections
A with zero curvature FA = 0.10

8This notation is meant to remind you that you are multiplying by an element g ∈ G at each fiber.
9This requires applying the Atiyah-Singer Index Theorem.
10Studying moduli spaces of flat connections in 3-manifold is really good business: it connects with

Teichmüller theory, representation theory and all sorts of differential geometries.
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(3) Let K ⊆M be a knot and ρ a representation of G. There is a natural observable
associated to the knot:

WK(A) = trρ

(
e
∫
K A
)
.

This observable, which inputs a Chern-Simons field A and outputs a number
WK(A), is known as a Wilson loop. Show that WK(A) is an invariant of the
isotopy class of the knot if A is a critical point for Chern-Simons.

(4) The partition function, i.e. the transition amplitude from vacuum at t = −∞
to vacuum at t =∞, in the path integral quantization is given by

Zcs(A) =

∫
eiS(A)dµA.

Consider a knot K ⊆M = S3, ρ the fundamental representation of G = SU(2)
and K0 ⊆ S3 the unknot. Then we can consider the modified partition function

Zcs(A;K) =

∫
WK(A)eiS(A)dµA.

Show that Zcs(A;K) divided by Zcs(A;K0) is the Jones polynomial of K.

(Hint: Show that it satisfies the Jones polynomial Skein relations. The variable

t in the Jones polynomial will be t = e
2πi
2+k ).

This is the start of a fruitful interaction between physics and 3-dimensional
topology. E.g. you can change the Lie group G = SU(2), or the representa-
tion, to another one, such as G = SU(N) and its infinitely many irreducible
(finite-dimensional) representations: then you get knot invariants known as the
(colored) HOMFLY-PT polynomials. Even better, in his paper “Khovanov Ho-
mology and Gauge Theory” (2012) E. Witten sketched how to obtain Khovanov
homology from a 4-dimensional (super-symmetric) Yang-Mills theory.)

(5) (Optional) Read E. Witten’s article “Quantum Field Theory and the Jones
Polynomial” (1989).


