Augmentations, Fillings, and Clusters

Daping Weng

Michigan State University

November 2020

Joint work with Honghao Gao and Linhui Shen

arXiv:2008.10793, arXiv:2009.00499

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q ♡ 1/30

1 Legendrian Links and Exact Lagrangian Fillings

2 Chekanov-Eliashberg DGA and Augmentation Variety

3 Double Bott-Samelson Cells and Cluster Varieties

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ^{2/30}

4 Admissible Fillings and Cluster Charts

Legendrian Links and Exact Lagrangian Fillings

< □ ▶ < 酉 ▶ < 差 ▶ < 差 ▶ 差 ♪ S < 3/30

Definition

Equip \mathbb{R}^3_{xyz} with the standard contact 1-form $\alpha = dz - ydx$.

Definition

A Legendrian link is an embedded closed 1-dimensional submanifold $\Lambda\subset\mathbb{R}^3_{xyz}$ such that $\alpha|_\Lambda=0.$

There are two useful projections when studying Legendrian links.

- Front projection $\pi_F : \mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xz}$; *y* can be recovered by $y = \frac{dz}{dx}$.
- Lagrangian projection $\pi_L : \mathbb{R}^3_{xyz} \to \mathbb{R}^2_{xy}$; z can be recovered by $z = \int y dx$.

Example

A Legendrian unknot.

Example

For any positive braid $\beta \in Br_n^+$, its rainbow closure Λ_β is naturally a Legendrian link.

Symplectization and Exact Lagrangian Cobordism

A contact manifold can be viewed as the boundary of a symplectic manifold. The symplectic manifold \mathbb{R}^4_{xyzt} with symplectic form $\omega = d(e^t \alpha)$ is a symplectization of the standard contact \mathbb{R}^3_{xyz} .

Definition

Let Λ_{\pm} be two Legendrian links. An *exact Lagrangian cobordism* $L : \Lambda_{-} \to \Lambda_{+}$ is a Lagrangian surface $L \subset \mathbb{R}^{4}_{xyzt}$ such that

- *L* is asymptotically Λ_{\pm} at $\mathbb{R}^3_{xyz} \times (\pm \infty)$;
- the 1-form $e^t \alpha|_L = df$ for some function f on L that are asymptotically constant.

An exact Lagrangian cobordism $L: \emptyset \to \Lambda$ is also called an *exact Lagrangian filling*.

Distinguishing Exact Lagrangian Fillings

- By a result of Chantraine [Cha10], all exact Lagrangian fillings are topologically the same.
- We would like to distinguish exact Lagrangian fillings up to Hamiltonian isotopy.
- Another question: does there exist a Legendrian link with infinitely many non-Hamiltonian isotopic fillings?
- In 2020, different groups came up with examples with infinitely many fillings, answering the last question:
 - **R**. Casals and H. Gao [CG20] (January): any torus (n, m)-link except (2, m), (3, 3), (3, 4) and (3, 5).
 - R. Casals and E. Zaslow [CZ20] (July): rainbow closures of an infinite family of 3-strand braids.
 - H. Gao, L. Shen and W. [GSW20] (September): rainbow closures of positive braids β other than those are associated with quivers of finite type.
 - R. Casals and L. Ng (upcoming): certain family of Legendrian links including some (-1)-closures of positive braids that are not necessarily rainbow closures of positive braids.
- Among the four projects above, the first two are based on the theory of microlocal sheaves [STZ17, STWZ19], and the latter two are based on symplectic field theory [EHK16]. Surprisingly (or not surprisingly), all of the four projects have direct or indirect connection to cluster theory.

Quiver from Positive Braids

Below are what we call standard ADE links.

Br_2^+	Br_3^+							
A _r	D _r	E_6	E_7	E_8				
s_1^{r+1}	$s_1^{r-2}s_2s_1^2s_2$	$s_1^3 s_2 s_1^3 s_2$	$s_1^4 s_2 s_1^3 s_2$	$s_1^5 s_2 s_1^3 s_2$				

Theorem (Gao-Shen-W)

If the rainbow closure of a positive braid is not Legendrian isotopic to a split union of unknots and connect sums of standard ADE links, then it admits infinitely many non-Hamiltonian isotopic exact Lagrangian fillings.

Chekanov-Eliashberg DGA and Augmentation Variety

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 → 의 へ ペ 8/30

Definition

Double points in a Lagrangian projection $\pi_L(\Lambda)$ are called *Reeb chords*. In other words, each Reeb chord corresponds to a pair of points in Λ with the same x- and y-coordinates.

Example

Below are depictions of the unique Reeb chord of the Legendrian unknot example in its Lagrangian projection and front projection.

Definition of the Chekanov-Eliashberg dga

We follow [Che02, ENS02] for the construction of the CE dga. Let Λ be an **oriented** Legendrian link **each of whose components has rotation number 0**. We decorate $\pi_L(\Lambda)$ with marked points t_i away from crossings, such that each link component of Λ contains at least (a lift of) one such marked point.

- As an algebra, the CE dga A(Λ) is a Z₂-algebra freely generated by the Reeb chords in π_L(Λ) and formal variables t_i^{±1} associated with the marked points.
- The degrees of the formal variables $t_i^{\pm 1}$ are 0; the degrees of the Reeb chords are give by the Maslov potential.
- The differential is given by a counting of pseudo-holomorphic disks in $\pi_L(\Lambda)$.

$$\partial b = \sum_{c_1,\ldots,c_n} \sum_{u \in \mathcal{M}(b;c_1,\ldots,c_n)} w(u).$$

Example

Consider the following Legendrian trefoil Λ .

- As an algebra, $\mathcal{A}(\Lambda)$ is generated freely over \mathbb{Z}_2 by $t_i^{\pm 1}$, b_i , and a_i .
- The grading on the generators are

$$t_i^{\pm 1} = |b_i| = 0, \qquad |a_i| = 1.$$

• Note that $\mathcal{A}(\Lambda)$ is concentrated in non-negative degrees, so automatically

$$\partial b_i = \partial t_i^{\pm 1} = 0.$$

For ∂a_1 and ∂a_2 :

$$\partial a_1 = t_1^{-1} + b_1 + b_3 + b_1 b_2 b_3,$$

$$\partial a_2 = t_2^{-1} + b_2 + t_1 + b_2 b_3 t_1 + t_1 b_1 b_2 + b_2 b_3 t_1 b_1 b_2$$

Definition

Let Λ be a Legendrian link and let $\mathcal{A}(\Lambda)$ be its CE-dga. Let \mathbb{F} be an algebraically closed field of characteristic 2. An *augmentation* is a dga homomorphism $\epsilon : \mathcal{A}(\Lambda) \to \mathbb{F}$ where \mathbb{F} is concentrated at degree 0 and equipped with the trivial differential. The *augmentation variety* $\operatorname{Aug}(\Lambda)$ is defined to be the moduli space of augmentations of $\mathcal{A}(\Lambda)$.

- Note that an augmentation ϵ basically assigns \mathbb{F} -values to the degree 0 generators of $\mathcal{A}(\Lambda)$ subject to the conditions $\partial a = 0$ for degree 1 Reeb chords a. Therefore augmentation varieties are always affine varieties.
- If $\mathcal{A}(\Lambda)$ is concentrated in non-negative degrees, then

$$\operatorname{Aug}(\Lambda) \cong \operatorname{Spec} H_0(\mathcal{A}^c(\Lambda)),$$

where ^{*c*} stands for the commutatization of $\mathcal{A}(\Lambda)$.

Example

In our last example, we have $\partial a_1 = t_1^{-1} + b_1 + b_3 + b_1 b_2 b_3$ and $\partial a_2 = t_2^{-1} + b_2 + b_1 + b_2 b_3 t_1 + t_1 b_1 b_2 + b_2 b_3 t_1 b_1 b_2$. Setting these two equations to 0 cuts out a 3-dimensional affine variety in $\mathbb{F}^3_{b_1,b_2,b_3} \times (\mathbb{F}^{\times})^2_{t_1,t_2}$.

Augmentation Varieties of Positive Braid Closures

For a positive braid $\beta \in \operatorname{Br}_n^+$, Λ_β has n + l number of Reeb chords in total. There are l Reeb chords coming from the crossings of β , which we denote by b_k $(1 \le k \le l)$, and n Reeb chords coming from the right cusps, which we denote by a_i . Their gradings are $|b_k| = 0$ and $|a_i| = 1$.

For the crossing i_k between the i_k th and i_k + 1st strands, we associate an $n \times n$ matrix $Z_{i_k}(b_k)$ of the form

< □ > < @ > < E > < E > E の Q @ 13/30

Let $\beta = (i_1, \ldots, i_l)$ be a positive braid in Br_n^+ . Define $M := Z_{i_1}(b_1) Z_{i_2}(b_2) \cdots Z_{i_l}(b_l)$.

Theorem (Gao-Shen-W)

The homology $H_0(\mathcal{A}(\Lambda_\beta))$ is generated by $b_1, \dots, b_l, t_1^{\pm 1}, \dots, t_n^{\pm 1}$, modulo the relations $t_k^{-1} = M_k$ for $1 \le k \le n$, where M_k is the Gelfand-Retakh quasi-determinant [GR91] of the upper-left $k \times k$ submatrix of M with respect to the (k, k)-entry.

Corollary (Gao-Shen-W.)

Let M^c be the matrix obtained by abelianizing entries of the matrix M. Then the augmentation variety $\operatorname{Aug}(\Lambda_\beta)$ is isomorphic to the non-vanishing locus of $\prod_{m=1}^n \Delta_m(M^c)$ in $\mathbb{F}_{b_1,\ldots,b_l}^l$, where Δ_m denotes the determinant of the $m \times m$ submatrix at the upper left corner.

We recognize that the non-vanishing locus stated above is isomorphic to a double Bott-Samelson cell, which is known to be a cluster variety.

Double Bott-Samelson Cells and Cluster Varieties

<□ > < □ > < □ > < 三 > < 三 > 三 の < ⊙ 15/30

Double Bott-Samelson Cells

Double Bott-Samelson cells were introduced in a joint work with L. Shen [SW19]. Let G be a Kac-Peterson group with a pair of opposite Borel subgroups B_{\pm} . Denote $xB_{\pm} \xrightarrow{w} yB_{\pm}$ if $x^{-1}y \in B_{\pm}wB_{\pm}$ and denote $xB_{-} \xrightarrow{w} yB_{+}$ if $x^{-1}y \in B_{-}wB_{+}$.

$$P_{i_1} \underset{B_+}{\times} P_{i_2} \underset{B_+}{\times} \cdots \underset{B_+}{\times} P_{i_l} = \bigsqcup_{j \leq i} (B_+ s_{j_1} B_+) \underset{B_+}{\times} (B_+ s_{j_2} B_+) \underset{B_+}{\times} \cdots \underset{B_+}{\times} (B_+ s_{j_m} B_+)$$

 $[x_1,\ldots,x_m] \in \left(B_+s_{j_1}B_+\right) \underset{B_+}{\times} \cdots \underset{B_+}{\times} \left(B_+s_{j_m}B_+\right) \text{ gives rise to a unique sequence}$

$$B_+ \xrightarrow{s_{j_1}} x_1 B_+ \xrightarrow{s_{j_2}} x_1 x_2 B_+ \xrightarrow{s_{j_3}} \cdots \xrightarrow{s_{j_m}} x_1 \cdots x_m B_+.$$

Denote left cosets of B_+ as B^i and denote left cosets of B_- as B_j . Let $U_{\pm} := [B_{\pm}, B_{\pm}]$. Denote left cosets of U_+ as A^i and denote left cosets of U_- as A_i .

Definition (Shen-W.)

Let (β, γ) be a pair of positive braids associated to G and let $i = (i_1, \ldots, i_l)$ and $j = (j_1, \ldots, j_m)$ be words of β and γ . The decorated double Bott-Samelson cell is

$$\operatorname{Conf}_{\beta}^{\gamma}(\mathcal{C}) = \left\{ \begin{array}{cc} A_{0} \xrightarrow{s_{j_{1}}} B_{1} \xrightarrow{s_{j_{2}}} \cdots \xrightarrow{s_{j_{m}}} B_{m} \\ | & | \\ B^{0} \xrightarrow{s_{i_{1}}} B^{1} \xrightarrow{s_{i_{2}}} \cdots \xrightarrow{s_{i_{l}}} B^{l} \end{array} \right\} \middle| G$$

Decorated Double Bott-Samelson Cells

For a point in $\operatorname{Conf}_{\beta}^{e}(\mathcal{C})$, we can use the *G*-action to move the configuration such that the left vertical edge is $U_{-} - B_{+}$. There are \mathbb{A}^{1} -many flags that are $s_{i_{1}}$ away from

 $B_+,$ and they can be parametrized as $z_{i_1}(q_1)B_+,$ where $z_i(q)=arphi_iigg(egin{array}{c} q&-1\ 1&0 \end{array}igg).$

In order for $U_- - z_{i_1}(q_1) \cdots z_{i_l}(q_l)B_+$ to hold, we need all principal minors of $z_{i_1}(q_1) \cdots z_{i_l}(q_l)$ to be non-zero.

Theorem (Gao-Shen-W.)

For $G = SL_n$, the map $\gamma^*(q_i) = b_i$ defines a canonical isomorphism $\gamma : \operatorname{Aug}(\Lambda_\beta) \xrightarrow{\cong} \operatorname{Conf}^e_\beta(\mathcal{C})$ (over characteristic 2). Moreover, this canonical isomorphism does not depend on the choice of word i for β .

We proved in [SW19] that double Bott-Samelson cells, both decorated and undecorated, are cluster varieties. By a pull-back through γ , we obtain a cluster variety structure on Aug (Λ_{β}).

Crash Course on Cluster Varieties

- Cluster theory began with the invention of cluster algebras by Fomin and Zelevinsky [FZ02]. Fock and Goncharov introduced cluster varieties [FG09] as geometric counterparts of cluster algebras.
- There are two types of cluster varieties, one is called K2 or A, and the other one is called Poisson or X. We will focus on the A type today.
- A cluster variety is an affine variety together with an atlas (up to codimension 2) of open torus charts called *cluster charts*.
- Each torus chart α is equip with a set of *cluster coordinates* $(A_{i;\alpha})$ and a quiver Q_{α} . The cluster coordinates are indexed by the vertex set of the quiver Q_{α} .
- Charts are glued via a process called *cluster mutation*. For any (unfrozen) vertex k of Q_{α} , the cluster mutation μ_k relates α to another cluster chart α' , and their cluster coordinates are related by

$$A_{i;\alpha'} = \begin{cases} \frac{1}{A_{k;\alpha}} \left(\prod_{\substack{j \to k \\ \text{in } Q_{\alpha}}} A_{j;\alpha} + \prod_{\substack{k \to j \\ \text{in } Q_{\alpha}}} A_{j;\alpha} \right) & \text{if } i = k, \\ A_{i;\alpha} & \text{otherwise.} \end{cases} \xrightarrow{k} Q_{\alpha'}$$

On the other hand, their quivers $Q_{\alpha'}$ and Q_{α} are related by a *quiver mutation* at the quiver vertex k.

Admissible Fillings and Cluster Charts

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ Q (~ 19/30

Admissible Fillings

- Ekholm, Honda, and Kálmán [EHK16] constructed a contravariant functor Φ^* from the cobordism category of Legendrian links in the symplectization \mathbb{R}^4_{xyzt} to the category of dga's, mapping Λ to $\mathcal{A}(\Lambda)$.
- They further proved that if two exact Lagrangian cobordisms $L, L' : \Lambda_{-} \rightarrow \Lambda_{+}$ are Hamiltonian isotopic, then the induced dga homomorphisms Φ_{L}^{*} and $\Phi_{L'}^{*}$ are chain-homotopic, which then implies that they induce equal homomorphisms between the 0th homologies

$$\Phi_{L}^{*} = \Phi_{L'}^{*} : H_{0}\left(\mathcal{A}\left(\Lambda_{+}\right)\right) \to H_{0}\left(\mathcal{A}\left(\Lambda_{-}\right)\right).$$

• Consequently, if the dga $\mathcal{A}(\Lambda_{\pm})$ are concentrated in non-negative degrees, then Hamiltonian isotopic exact Lagrangian cobordisms induce an equal augmentation variety morphisms

$$\Phi_{L} = \Phi_{L'} : \operatorname{Aug}(\Lambda_{-}) \to \operatorname{Aug}(\Lambda_{+}).$$

- In this project, we focus on a special family of exact Lagrangian fillings which we call *admissible fillings*. They are compositions of the following:
 - saddle cobordisms;
 - cyclic rotations;
 - braid moves;
 - filling an unknot.

We choose these as building blocks because we can compute their functorial morphisms explicitly by based on methods developed by Eckholm-Honda-Kálmán [EHK16] and Sivek [Siv11].

Theorem (Gao-Shen-W.)

If L is an admissible filling of Λ_{β} , then $\Phi_L : \operatorname{Aug}(\emptyset, \mathcal{P}) \to \operatorname{Aug}(\Lambda_{\beta})$ is an open embedding of an algebraic torus, and the image of Φ_L coincides with a cluster chart of $\operatorname{Aug}(\Lambda_{\beta})$. Moreover, if two admissible fillings L and L' correspond to two distinct cluster seeds, then L and L' are not Hamiltonian isotopic.

Example

 $\operatorname{Aug}\left(\emptyset,\mathcal{P}\right)\cong\left(\mathbb{F}^{\times}\right)_{\rho_{1},\rho_{2},\rho_{3}}^{3}\longrightarrow\operatorname{Aug}\left(\Lambda_{(1,1,1)}\right)\subset\mathbb{F}_{b_{1},b_{2},b_{3}}^{3}.$

Example Continued

The Legendrian trefoil augmentation variety $\operatorname{Aug}(\Lambda_{(1,1,1)})$ is cut out from $\mathbb{F}^{3}_{b_{1},b_{2},b_{3}} \times \mathbb{F}^{\times}_{t_{1}}$ by the equation $t_{1}^{-1} + b_{1} + b_{3} + b_{1}b_{2}b_{3} = 0$. It has five clusters.

We have a calculator to compute Φ_L and the corresponding cluster for any admissible filling L of the rainbow closure of a positive braid.

Full Cyclic Rotation and Cluster DT Transformation

Definition

We define the *full cyclic rotation* $R : \Lambda_{\beta} \to \Lambda_{\beta}$ to be the exact Lagrangian cobordism that rotates the crossings of β one-by-one from right to left.

Theorem (Gao-Shen-W.)

The functorial isomorphism $\Phi_R : \operatorname{Aug}(\Lambda_\beta) \to \operatorname{Aug}(\Lambda_\beta)$ equals DT^2 , where DT is the cluster Donaldson-Thomas transformation on $\operatorname{Aug}(\Lambda_\beta)$.

The cluster DT transformation is a biregular automorphism on a cluster variety and it permutes the cluster charts on a cluster variety. It is known that if Q is an acyclic quiver of infinite type, then this permutation is of infinite order [LLMSS20].

Corollary (Gao-Shen-W.)

Suppose $\operatorname{Aug}(\Lambda_{\beta})$ has a quiver that is acyclic and of infinite type. Then for any admissible filling L of Λ_{β} , the set $\{R^k \circ L \mid k \ge 0\}$ is an infinite family of non-Hamiltonian isotopic exact Lagrangian fillings.

Most Positive Braid Closures Admit Infinitely Many Fillings

• For a general positive braid β , we employ an exhaustive argument in [GSW20] to show that if Λ_{β} is not Legendrian isotopic to a split union of unknots and connect sums of standard ADE links, then there exists a positive braid γ with an acyclic quiver of infinite type and with an admissible cobordism $K : \Lambda_{\gamma} \to \Lambda_{\beta}$.

- We also prove that the functorial morphism $\Phi_K : \operatorname{Aug}(\Lambda_\gamma) \to \operatorname{Aug}(\Lambda_\beta)$ is an open embedding that preserves the cluster structure.
- Therefore, by composing K with the infinitely many non-Hamiltonian isotopic admissible fillings of Λ_{γ} we get infinitely many non-Hamiltonian isotopic admissible fillings of the form $K \circ R^k \circ L$ for Λ_{β} as well.

- There is a characteristic 0 version of CE dga's and augmentation varieties. When Λ_β is decorated with only one marked point per link component, the characteric 0 augmentation variety Aug (Λ_β) is a symplectic variety.
- There is a Deohdar stratification on double Bott-Samelson cells [SW19], and there is a stratification on augmentation variety by normal rulings [HR14]. These two stratifications coincide under the canonical isomorphism γ .
- For any Legendrian link Λ one can also define an *augmentation stack* Aug_{st}(Λ) [NRSSZ15], and the augmentation stack possesses an unfrozen cluster X structure [STWZ19, SW19]. For any positive braid β, the projection map Aug (Λ_β) → Aug_{st} (Λ_β) coincides with the cluster theoretical map p : A → X^{uf}.

Thank You!

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 27/30

Bibliography I

Roger Casals and Honghao Gao.

Infinitely many Lagrangian fillings. Preprint, 2020. arXiv:2001.01334.

Baptiste Chantraine.

Lagrangian concordance of Legendrian knots. *Algebr. Geom. Topol.*, 10(1):63-85, 2010. arXiv:math/0611848, doi:10.2140/agt.2010.10.63.

Yuri Chekanov.

Differential algebra of Legendrian links. Invent. Math., 150(3):441-483, 2002. arXiv:math/9709233, doi:10.1007/s002220200212

Roger Casals and Eric Zaslow.

Legendrian weaves: N-graph calculus, flag moduli and applications, 2020. arXiv:2007.04943.

Tobias Ekholm, Ko Honda, and Tamás Kálmán.

Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS), 18(11):2627-2689, 2016. arXiv:1212.1519, doi:10.4171/JEMS/650.

John Etnyre, Lenhard Ng, and Joshua Sabloff.

Invariants of Legendrian knots and coherent orientations.

J. Symplectic Geom., 1(2):321-367, 2002. URL: http://projecteuclid.org/euclid.jsg/1092316653, arXiv:math/0101145.

Vladimir Fock and Alexander Goncharov.

Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4), 42(6):865-930, 2009. arXiv:math/0311245, doi:10.24033/asens.2112.

Bibliography II

Sergey Fomin and Andrei Zelevinsky.

Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497-529, 2002. arXiv:math/0104151, doi:10.1090/S0894-0347-01-00385-X.

I. M. Gelfand and V. S. Retakh.

Determinants of matrices over noncommutative rings. Funktsional. Anal. i Prilozhen., 25(2):13–25, 96, 1991. doi:10.1007/BF01079588.

Honghao Gao, Linhui Shen, and Daping Weng.

Positive braid links with infinitely many fillings. Preprint, 2020. arXiv:2009.00499.

Michael B. Henry and Dan Rutherford.

Ruling polynomials and augmentations over finite fields. Journal of Topology, 8(1):1-37, 07 2014. arXiv:1308.4662. arXiv:htps://academic.oup.com/jtopol/article-pdf/8/1/1/5096021/jtu013.pdf, doi:10.1112/jtopol/jtu013.

Kyungyong Lee, Li Li, Matthew Mills, Ralf Schiffler, and Alexandra Seceleanu.

Frieze varieties: a characterization of the finite-tame-wild trichotomy for acyclic quivers. *Adv. Math.*, 367:107130, 33, 2020. arXiv:1803.08459, doi:10.1016/j.aim.2020.107130.

Lenhard Ng.

Computable Legendrian invariants. *Topology*, 42(1):55–82, 2003. arXiv:math/0011265, doi:10.1016/S0040-9383(02)00010-1.

Lenhard Ng, Dan Rutherford, Vivek Shende, Steven Sivek, and Eric Zaslow.

Augmentations are sheaves. Preprint, 2015. arXiv:1502.04939.

Bibliography III

Steven Sivek.

A bordered Chekanov-Eliashberg algebra. J. Topol., 4(1):73-104, 2011. arXiv:1004.4929, doi:10.1112/jtopol/jtq035.

Vivek Shende, David Treumann, Harold Williams, and Eric Zaslow.

(ロト (日) (三) (三) (三) (30/30)

Cluster varieties from Legendrian knots. Duke Math. J., 168(15):2801–2871, 2019.

arXiv:1512.08942, doi:10.1215/00127094-2019-0027.

Vivek Shende, David Treumann, and Eric Zaslow.

Legendrian knots and constructible sheaves. Invent. Math., 207(3):1031-1133, 2017. arXiv:1402.0490, doi:10.1007/s00222-016-0681-5.

Linhui Shen and Daping Weng.

Cluster structures on double Bott-Samelson cells. Preprint, 2019. arXiv:1904.07992.