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Grassmannians |

General setup: partial flag varieties

@ G complex algebraic group, Tc Bc G, W = N(T)/T,
@ For B c P aparabolic, (G/P)T = Wp\W = W/Wp.

Multiplication and restriction for H7(G/P) in a “nice” (Schubert)
basis. For H < G with parabolic Q = Hn P and torus S:

H/Q — G/P = Hg(G/P)— Hg(H/Q)
E.g. H7(G/P) ® Hy(G/P) — H7(G/P)
H;(G/P) ® H3(G/R) — H:(G/(P N R))
Grassmannian setting: G classical (type A/B/C/D), P maximal.
E.g. Gr(k;n) = GLn/Pkn-k ={VCC"| dimV = k}
SpGr(k; 2n) = Spgn/P,ign_k ={VCC? | dimV=k,VcCV4
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Schubert classes

Schubert classes For 7 € Wp\W, the corresp. Schubert class is

Sr = |X2| € HH(G/P), X0 =B n'P/P = Adm&/P=(n),
Then {Sq}rew,\w freely generate H;(G/P) as an H3(pt)-mod.

Classical question: Determine the structure constants,

Si-8,=>. ¢S
v

Note: if G/P = Gr(k; n), then (in H", not H:) V, ® V, = @, V"
c}ﬂ: the Littlewood-Richardson coefficients for GL
E.g. In Gr(2;4), (H(pt) = Z[y1, y2, y3, ya]):
SD‘SD:SDI+SH+(Y2—YS)SD (in H7)
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Grassmannian puzzles

Let A, u,v € Gr(k; n)™ = 0K1"¥ (binary strings).
A puzzle P of type (4,4, v) is a tiling of ﬂ by the pieces:

(ﬁ A ﬁ,theirrotations) &1

[ <,>(the equivariant piece)] . Yi—Y
iV

= w(P)= [ ] wlp) =y -ye €Zlys,....yl

p € puzzle
pieces of P

E.g.
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Schubert calculus via puzzles |

Theorem (Knutson-Tao '03, many extensions since)
For A,u € 0K1" the product of S, and S, in H;(Gr(k; n)) is

Si-S, = w[&] S,, for w[&]_ Z w(P) € Hx(pt).

Pe(A.u,v)

E.g. Sot01 - Soto1 = Sot10 + St001 + (V2 — ¥3)Sotof
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Scattering diagrams

[Zinn-dustin (ZJ) '09, Wheeler—ZJ ’16, Knutson-ZJ '17]

@ Reinterpret puzzles as (dual) scattering diagrams involving
(rational) 5-vertex R-matrices and fusion. Upgrade to the
6-vertex model.

5 . (C3)®4®(C3)®4 N (/\2@3)@4

@ Recast AJS/Billey formula for restriction to T-fixed points S,,.
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Schubert calculus via puzzles Il

Theorem (H-Knutson—Zinn-Justin '18)

Let A € 01", u e 0K1"K, v € 0/(10)k7/1"k, defining equivariant
Schubert classes S;, S,., S, on Gr(j; n), Gr(k; n), FI(j, k; n)
respectively. The product in H3(FI(j, k; n)) can be computed as:

(LA

FI(j, k; n)

N
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For instance, for FI(1,2;3), Gr(1;3), and Gr(2; 3):

71 (St01) - m5(S100) = Sto0.1 - St0.10
= (y1 - y2)S1,o,10 + 31,10,0
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Grassmann duality

Grassmann duality
There is a ring isomorphism (from a homeom. of Grassmannians):

H7(Gr(k;2n)) = Hy(Gr(2n-k;2n)), S+ Sy
Si1-S, e Sp- Sy 1 = (reverse 1 and switch 0 > 1)

/X Dual y/\y\ reflect through vertical axis
—> =
- £ and swap 0 and 1

For instance,
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Branching from A to C

We are interested in the cohomology pullback of the inclusion

SpGr(k;2n) LN Gr(k;2n).

Involution: Spsp, = GLS

o, for J = Antidiag(-1,...,-1,1,...,1),

o : Gloy — Glop, X — J (XY

Main question: | *(S,;) = 3, ¢/'S, cl =77

@ Pragacz '00: (building on work of Stembridge) positive tableau
formulee for H*(Gr(n; 2n)) — H*(SpGr(n;2n))

@ Coskun ’11: positive geometric rule for H*(Gr(k; 2n))
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A combinatorial branching rule

Theorem (H-Knutson—Zinn-Justin '18)

For A € 0120k, Hx(Gr(k; 2n)) <> H:(SpGr(k; 2n)) takes S, to

()=, w(gf) s,

where W(A) € Hy(pt) = Z[y1, ..., yn] is computed via R- and

K-matrices from the 5—vertex model, and fusion.

v

Note: 4{ is half of a “self-dual” puzzle under Grassmann duality.

w _ =Y j<n w[ ]1 (X,Y)=1(0,1),(1,0)
Yi+ Yent1—j, N<j :
I-I \/'
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Example and goal

Example: ¢*(S110101) = (Y2 — ¥3)S10,1.0 + S10,1.1 + S1,100

Goal: generalize to the 6—vertex model,
understand the underlying geometry,
obtain a generalized puzzle rule.
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6-vertex upgrade

@ Non-compact, symplectic resolution upgrade: We upgrade the
Grassmannians G/P to their cotangent bundles T*G/P.

@ Additional puzzle pieces and Rgr(a

mand its rotation, Q <> (equivariant pieces).

ovo ovio ovi 10v0 10vi0 10vi 1vo  1vi0  1vi
o [ 1 0 0O 0o 0 o 0 & o

oo | O 0 0 10 0 0o o0 &
oo | 0 0 0O 0 0 0 | & 0 0
100 | 0 & O 0 0 © 0 0 ©
a0 | 00 £ 0 1 0 0 0 0
a1 |G 0 0 0 0 o0 0 1 0
mwo [ 0 0 1 0 & o 0 0 0
wo | 0 0 0 0 0 & | 0 0 0
A1 0 0 0 & 0 0 0 0 1
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Maulik—Okounkov classes

For a regular circle action S ~ T*G/P and a fixed pt. 1 € W/Wp,
the Maulik—Okounkov stable envelope construction produces a
cycle
MO, = @/1 + Z aM@M, Ay € Z>0
p=sA
BB, = Attr(1) = CX{ := conormal bundle of the Bruhat cell X¢.

This in turn gives a class [MO,] € H, .(T*G/P) = H3(G/P)[A].

Segre—Schwartz—MacPherson:
[MO,]

SSM; = ———=_— c H% ..(T*G/P
1™ [zero section] € Hre(T°G/P)

= SSM, = ‘WS, +lot(n) =8, = lim (SSM, -1t

Structure constants: ¢, = lim ((¢')}, - A=)
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Geometric interpretation

A Lagrangian correspondence L between two symplectic
manifolds A and B, A < B, is:

A Lagrangian cycle L in (-A) x B
(equivalently L in A x (-B)).

If T~ A,Band L is T—invariant, then

HA) 22 s By 2 pea x By Y22 1By = Hi(B)

Note: In our setting, will work with T*G/P.
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Examples

@ Symplectic reduction
For T € G ~ X Hamiltonian action, have a moment map
x5 g*. Take a regular point a for u s.t. a € (g*)¢ Let
Z=u'(a), Y=u1a)//G. Then X < Z » Y.
[Marsden-Weinstein '74] 3! symplectic structure on Y s.t.
Z C (—X) x Y is Lagrangian.

@ Maulik—Okounkov stable envelopes
Suppose S ~ X is a sympl. res. with a circle action.
Let C be a fixed point component.
The stable envelope construction produces a certain
Lagrangian cycle L = Attr(C) +...in (-C) x X.
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Correspondences from graphs

General setting

Let A Bbea morphism of oriented manifolds. I'(f)=graph of f.
r(f) c B x A is a correspondence inducing f* : H*(B) — H*(A).

Examples:
@ Diagonal inclusion M <2, Mx M. Then M(A)" induces
H* (M) ® H*(M) > H*(M).

@ The graph of the inclusion FI(j, k; n) — Gr(j; n) x Gr(k; n)
induces multiplication

H*(Gr(j: n)) ® H*(Gr(k; n)) = H*(FI(j, k; n)).
@ The graph of SpGr(k;2n) < Gr(k; 2n) induces the restriction
H*(Gr(k;2n)) — H*(SpGr(k;2n)).
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Lifting to cotangent bundles

Assume we have a torus action T ~ A, B. We have the following
commutative diagram of correspondences. It allows us to study the
bottom row in cohomology via the symplectic setting of the top row.

tr
78 SEOVL g

r(LB)T M(ea )T
r(f)tr

B——> A
TXCX(T*B) — HTXCX(T*A) f\
| ]

H?XCX(B) e H*TXCX(A) [BST*B]

>R

=
N
—[R
=
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The Spo,, case

Theorem in progress (H-Knutson—Zinn-Justin '20)
There are Lagrangian correspondences

=5 T*Gr(k; 2n) = T*OGr(2n - k; 4n) = T*SpGr(k; 2n)

that compute the restriction of SSM classes, and together with the
6-vertex R- and K-matrices and fusion realize a puzzle rule.

@ L = MOj, is the stable envelope for the circle action
Sy = Diag(t, t?,...,t2").
@ L, = Attr(T*Gr(k; 2n)) is the stable envelope for the circle
So = Diag(t,....t,t7',...,t7").

@ L3 is obtained by symplectic reduction.
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Symplectic reduction |

Consider the parabolic P = {[é g € O(4n) = O(4n, J)} where
J is the form given by, for J* = Antidiag(1,...,1,-1,...,-1),
0o J
J= [(Jz)tr 0}

We have Rad(P) < O(4n) and:
O(4n) ~ T*OGr(2n - k;4n) — o(4n)* — rad(p)* = o(4n)/p

(xz[é g],V)HxHB

This gives a P—equivariant and Rad(P)—invariant map,

u: T*OGr(2n — k;4n) — o(4n)/p.
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Symplectic reduction I

The Levi L = GL(2n) < P has a subgroup Sp(2n) that preserves
the fiber {B = 1} of i, and we get

Sp(2n) ~ u~'(1)/Rad(P) = T*SpGr(k;2n)

The isomorphism is given by:

(x—[’g g],v)H(Y—AJrD,W—vLm(O@CZ”))
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Thank you!
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