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Grassmannians I

General setup: partial flag varieties

G complex algebraic group, T ⊂ B ⊂ G, W = N(T)/T ,
For B ⊂ P a parabolic, (G/P)T � WP\W � W/WP .

Multiplication and restriction for H∗T (G/P) in a “nice” (Schubert)
basis. For H ≤ G with parabolic Q = H ∩ P and torus S:

H/Q ↪→ G/P ⇒ H∗S(G/P)→ H∗S(H/Q)

E.g. H∗T (G/P) ⊗ H∗T (G/P)→ H∗T (G/P)

H∗T (G/P) ⊗ H∗T (G/R)→ H∗T (G/(P ∩ R))

Grassmannian setting: G classical (type A/B/C/D), P maximal.

E.g. Gr(k ; n) = GLn/Pk ,n−k � {V ⊆ Cn | dim V = k }

SpGr(k ; 2n) = Sp2n/P
Sp
k ,2n−k � {V ⊆ C

2n | dim V = k ,V ⊆ V⊥}
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Schubert classes

Schubert classes For π ∈ WP\W , the corresp. Schubert class is

Sπ :=
[
Xo
π

]
∈ H∗T (G/P), Xo

π = B−π−1P/P � Adim G/P−`(π).

Then {Sπ}π∈WP\W freely generate H∗T (G/P) as an H∗T (pt)–mod.

Classical question: Determine the structure constants,

Sλ · Sµ =
∑
ν

cνλµSν

Note: if G/P � Gr(k ; n), then (in H∗, not H∗T ) Vλ ⊗ Vµ =
⊕

ν V
⊕cνλµ
ν

cνλµ= the Littlewood-Richardson coefficients for GLk

E.g. In Gr(2; 4), (H∗T (pt) � Z[y1, y2, y3, y4]):

S · S = S + S + (y2 − y3)S (in H∗T )
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Grassmannian puzzles

Let λ, µ, ν ∈ Gr(k ; n)T � 0k 1n−k (binary strings).
A puzzle P of type (λ, µ, ν) is a tiling of

ν

µλ by the pieces:(
0

00 ,
1

11 ,
10

01 , their rotations
)

w
7→ 1

 1 0

10

ji

(the equivariant piece)

 w
7→ yi − yj .

E.g.
11

1
01

10
11

1
11

1

11
1

01
10

11
1

10

00
0

11
1

w
7→ w(P) =

∏
p ∈ puzzle
pieces of P

w(p) = y1 − y2 ∈ Z[y1, . . . , yn]
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Schubert calculus via puzzles I

Theorem (Knutson-Tao ’03, many extensions since)

For λ, µ ∈ 0k 1n−k , the product of Sλ and Sµ in H∗T (Gr(k ; n)) is

Sλ · Sµ =
∑
ν

w

 ν

µλ

 Sν, for w

 ν

µλ

 =
∑

P∈(λ,µ,ν)

w(P) ∈ H∗T (pt).

E.g. S0101 · S0101 = S0110 + S1001 + (y2 − y3)S0101
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Scattering diagrams

[Zinn-Justin (ZJ) ’09, Wheeler–ZJ ’16, Knutson–ZJ ’17]

Reinterpret puzzles as (dual) scattering diagrams involving
(rational) 5-vertex R-matrices and fusion. Upgrade to the
6-vertex model.

w =
y1

y2

y3

y4 y1

y2

y3

y4

y3y2y1 y4

: (C3)⊗4⊗(C3)⊗4 → (∧2C3)⊗4

Recast AJS/Billey formula for restriction to T -fixed points Sλ|µ.
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Schubert calculus via puzzles II

Theorem (H–Knutson–Zinn-Justin ’18)

Let λ ∈ 0j1n−j , µ ∈ 0k 1n−k , ν ∈ 0j(10)k−j1n−k , defining equivariant
Schubert classes Sλ,Sµ,Sν on Gr(j; n), Gr(k ; n), Fl(j, k ; n)
respectively. The product in H∗T (Fl(j, k ; n)) can be computed as:

π∗j (Sλ) · π∗k (Sµ) =
∑
ν

w

 ν

µλ

 Sν

Fl(j, k ; n)
πj

yy

πk

&&
Gr(j; n) Gr(k ; n)
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Example

For instance, for Fl(1, 2; 3), Gr(1; 3), and Gr(2; 3):

π∗1(S101) · π∗2(S100) = S10,0,1 · S1,0,10

= (y1 − y2)S1,0,10 + S1,10,0
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Grassmann duality

Grassmann duality
There is a ring isomorphism (from a homeom. of Grassmannians):

H∗T (Gr(k ; 2n)) � H∗T (Gr(2n − k ; 2n)), Sλ 7→ Sλ

Sλ · Sµ ↔ Sµ · Sλ λ = (reverse λ and switch 0↔ 1)

ν

µλ
Dual
←−−→

ν
λµ :=

reflect through vertical axis
and swap 0 and 1

For instance,
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Branching from A to C

We are interested in the cohomology pullback of the inclusion

SpGr(k ; 2n)
ι

↪−−−−→ Gr(k ; 2n).

Involution: Sp2n = GLσ2n, for J = Antidiag(−1, . . . ,−1, 1, . . . , 1),

σ : GL2n → GL2n, X 7→ J−1(X−1)trJ

Main question: ι∗(Sλ) =
∑
ν cλνSν cλν =??

Pragacz ’00: (building on work of Stembridge) positive tableau
formulæ for H∗(Gr(n; 2n))→ H∗(SpGr(n; 2n))

Coşkun ’11: positive geometric rule for H∗(Gr(k ; 2n))



Background and motivation Puzzles A branching rule MO and SSM classes Some results

A combinatorial branching rule

Theorem (H–Knutson–Zinn-Justin ’18)

For λ ∈ 0k 12n−k , H∗T (Gr(k ; 2n))
ι∗

−→ H∗T (SpGr(k ; 2n)) takes Sλ to

ι∗(Sλ) =
∑
ν

w
(
λ
ν

)
Sν

where w
(
λ
ν

)
∈ H∗T (pt) = Z[y1, . . . , yn] is computed via R- and

K-matrices from the 5–vertex model, and fusion.

Note: λ
ν is half of a “self-dual” puzzle under Grassmann duality.

w

 1 0

10

ji

 =

yi − yj , j ≤ n

yi + y2n+1−j , n < j
w

X

Y

 = 1 (X ,Y) = (0, 1), (1, 0)
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Example and goal

Example: ι∗(S110101) = (y2 − y3)S10,1,0 + S10,1,1 + S1,10,0
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Goal: generalize to the 6–vertex model,
understand the underlying geometry,

obtain a generalized puzzle rule.
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6-vertex upgrade

Non-compact, symplectic resolution upgrade: We upgrade the
Grassmannians G/P to their cotangent bundles T∗G/P.

Additional puzzle pieces and RGR(a):

10
1010 and its rotation,

0 10

010
,

10 1

101 , (equivariant pieces).



0∨0 0∨10 0∨1 10∨0 10∨10 10∨1 1∨0 1∨10 1∨1

0∧0 1 0 0 0 0 0 0 ~
~−a 0

0∧10 0 0 0 1 0 0 0 0 ~
~−a

0∧1 0 0 0 0 0 0 a
~−a 0 0

10∧0 0 a
~−a 0 0 0 0 0 0 0

10∧10 0 0 ~
~−a 0 1 0 0 0 0

10∧1 ~
~−a 0 0 0 0 0 0 1 0

1∧0 0 0 1 0 ~
~−a 0 0 0 0

1∧10 0 0 0 0 0 a
~−a 0 0 0

1∧1 0 0 0 ~
~−a 0 0 0 0 1
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Maulik–Okounkov classes

For a regular circle action S y T∗G/P and a fixed pt. λ ∈ W/WP ,
the Maulik–Okounkov stable envelope construction produces a
cycle

MOλ = BBλ +
∑
µ≤λ

aλ,µBBµ, aλ,µ ∈ Z≥0

BBλ = Attr(λ) = CXo
λ := conormal bundle of the Bruhat cell Xo

λ .

This in turn gives a class [MOλ] ∈ H∗T×C×(T∗G/P) � H∗T (G/P)[~].

Segre–Schwartz–MacPherson:

SSMλ =
[MOλ]

[zero section]
∈ H̃0

T×C×(T∗G/P)

⇒ SSMλ = ~−`(λ)Sλ + l.o.t(~) ⇒ Sλ = lim
~→∞

(SSMλ · ~
`(λ))

Structure constants: cνλµ = lim
~→∞

((c′)νλµ · ~
`(λ)+`(µ)−`(ν))
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Geometric interpretation

A Lagrangian correspondence L between two symplectic

manifolds A and B, A
L
←→ B, is:

A Lagrangian cycle L in (−A) × B
(equivalently L in A × (−B)).

If T y A ,B and L is T–invariant, then

H∗T (A)
(πA )∗

−−−−→ H∗T (A × B)
∪[L ]
−−−→ H∗T (A × B)

(πB )∗
−−−−→ H∗T (B) � H∗T (B)

Note: In our setting, will work with T∗G/P.
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Examples

1 Symplectic reduction
For T ⊆ G y X Hamiltonian action, have a moment map
X

µ
−→ g∗. Take a regular point a for µ s.t. a ∈ (g∗)G Let

Z = µ−1(a), Y = µ−1(a)//G. Then X ←↩ Z � Y .
[Marsden-Weinstein ’74] ∃! symplectic structure on Y s.t.
Z ⊆ (−X) × Y is Lagrangian.

2 Maulik–Okounkov stable envelopes
Suppose S y X is a sympl. res. with a circle action.
Let C be a fixed point component.
The stable envelope construction produces a certain
Lagrangian cycle L = Attr(C) + . . . in (−C) × X .
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Correspondences from graphs

General setting

Let A
f
−→ B be a morphism of oriented manifolds. Γ(f)=graph of f .

Γ(f)tr ⊆ B × A is a correspondence inducing f∗ : H∗(B)→ H∗(A).

Examples:

Diagonal inclusion M
∆

↪−−−→ M ×M. Then Γ(∆)tr induces

H∗(M) ⊗ H∗(M)
m
−→ H∗(M).

The graph of the inclusion Fl(j, k ; n) ↪→ Gr(j; n) × Gr(k ; n)
induces multiplication

H∗(Gr(j; n)) ⊗ H∗(Gr(k ; n))
m
−→ H∗(Fl(j, k ; n)).

The graph of SpGr(k ; 2n)
ι
↪−→ Gr(k ; 2n) induces the restriction

H∗(Gr(k ; 2n))→ H∗(SpGr(k ; 2n)).
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Lifting to cotangent bundles

Assume we have a torus action T y A ,B. We have the following
commutative diagram of correspondences. It allows us to study the
bottom row in cohomology via the symplectic setting of the top row.

T∗B T∗A

B A

C(Γ(f))tr

Γ(ιB )

Γ(f)tr

Γ(ιA )

H̃∗T×C×(T∗B) H̃∗T×C×(T∗A)

H̃∗T×C×(B) H̃∗T×C×(A)
f∗

β α

β
[B⊆T∗B]

α
[A⊆T∗A ]
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The Sp2n case

Theorem in progress (H–Knutson–Zinn-Justin ’20)

There are Lagrangian correspondences

λ
L1
−−→ T∗Gr(k ; 2n)

L2
−−→ T∗OGr(2n − k ; 4n)

L3
−−→ T∗SpGr(k ; 2n)

that compute the restriction of SSM classes, and together with the
6-vertex R- and K-matrices and fusion realize a puzzle rule.

L1 = MOλ is the stable envelope for the circle action

S1 � Diag(t , t2, . . . , t2n).

L2 = Attr(T∗Gr(k ; 2n)) is the stable envelope for the circle

S2 � Diag(t , . . . , t , t−1, . . . , t−1).

L3 is obtained by symplectic reduction.
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Symplectic reduction I

Consider the parabolic P =

{[
A 0
C D

]
∈ O(4n) = O(4n, J)

}
where

J is the form given by, for J′ = Antidiag(1, . . . , 1,−1, . . . ,−1),

J =

[
0 J′

(J′)tr 0

]
We have Rad(P) < O(4n) and:

O(4n)y T∗OGr(2n − k ; 4n)→ o(4n)∗ → rad(p)∗ � o(4n)/p

(X =

[
A B
C D

]
,V) 7→X 7→ B

This gives a P–equivariant and Rad(P)–invariant map,

µ : T∗OGr(2n − k ; 4n)→ o(4n)/p.
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Symplectic reduction II

The Levi L � GL(2n) < P has a subgroup Sp(2n) that preserves
the fiber {B = 1} of µ, and we get

Sp(2n)y µ−1(1)/Rad(P) � T∗SpGr(k ; 2n)

The isomorphism is given by:(
X =

[
A B
C D

]
,V

)
7→ (Y = A + D,W = V⊥ ∩ (0 ⊕ C2n))
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The end

Thank you!
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