Schubert calculus and Lagrangian correspondences

Iva Halacheva
(Northeastern University)
joint with Allen Knutson, Paul Zinn-Justin

UC Davis Algebraic geometry seminar November 4, 2020

Grassmannians I

General setup: partial flag varieties

- G complex algebraic group, $T \subset B \subset G, W=N(T) / T$,
- For $B \subset P$ a parabolic, $(G / P)^{T} \cong W_{P} \backslash W \cong W / W_{P}$.

Multiplication and restriction for $H_{T}^{*}(G / P)$ in a "nice" (Schubert) basis. For $H \leq G$ with parabolic $Q=H \cap P$ and torus S :

$$
\begin{array}{ll}
H / Q \hookrightarrow G / P \quad \Rightarrow \quad H_{S}^{*}(G / P) \rightarrow H_{S}^{*}(H / Q) \\
\text { E.g. } \quad H_{T}^{*}(G / P) \otimes H_{T}^{*}(G / P) \rightarrow H_{T}^{*}(G / P) \\
& H_{T}^{*}(G / P) \otimes H_{T}^{*}(G / R) \rightarrow H_{T}^{*}(G /(P \cap R))
\end{array}
$$

Grassmannian setting: G classical (type $A / B / C / D$), P maximal.
E.g. $\operatorname{Gr}(k ; n)=G L_{n} / P_{k, n-k} \cong\left\{V \subseteq \mathbb{C}^{n} \mid \operatorname{dim} V=k\right\}$ $\operatorname{Sp} \operatorname{Gr}(k ; 2 n)=S p_{2 n} / P_{k, 2 n-k}^{S p} \cong\left\{V \subseteq \mathbb{C}^{2 n} \mid \operatorname{dim} V=k, V \subseteq V^{\perp}\right\}$

Schubert classes

Schubert classes For $\pi \in W_{P} \backslash W$, the corresp. Schubert class is

$$
S_{\pi}:=\left[\overline{X_{\pi}^{o}}\right] \in H_{T}^{*}(G / P), \quad X_{\pi}^{o}=B^{-} \pi^{-1} P / P \cong \mathbb{A}^{\operatorname{dim} G / P-\ell(\pi)}
$$

Then $\left\{S_{\pi}\right\}_{\pi \in W_{P} \backslash W}$ freely generate $H_{T}^{*}(G / P)$ as an $H_{T}^{*}(p t)-\bmod$.
Classical question: Determine the structure constants,

$$
S_{\lambda} \cdot S_{\mu}=\sum_{v} c_{\lambda \mu}^{v} S_{v}
$$

Note: if $G / P \cong \operatorname{Gr}(k ; n)$, then (in H^{*}, not H_{T}^{*}) $V_{\lambda} \otimes V_{\mu}=\bigoplus_{v} V_{v}^{\oplus c_{\lambda \mu}^{\nu}}$

$$
c_{\lambda \mu}^{\nu}=\text { the Littlewood-Richardson coefficients for } G L_{k}
$$

E.g. $\operatorname{In} \operatorname{Gr}(2 ; 4),\left(H_{T}^{*}(p t) \cong \mathbb{Z}\left[y_{1}, y_{2}, y_{3}, y_{4}\right]\right)$:

$$
\left.S_{\square} \cdot S_{\square}=S_{\square}+S_{\square}+\left(y_{2}-y_{3}\right) S_{\square} \quad \text { (in } H_{T}^{*}\right)
$$

Grassmannian puzzles

Let $\lambda, \mu, v \in \operatorname{Gr}(k ; n)^{T} \cong 0^{k} 1^{n-k}$ (binary strings).
A puzzle P of type (λ, μ, v) is a tiling of ν_{v} by the pieces:

$$
\begin{aligned}
& (\underset{2}{2}, 4,20, \text { their rotations }) \stackrel{\omega}{\mapsto} 1 \\
& \left(\hat{V}_{i}(\text { the equivariant piece })\right) \stackrel{\omega}{\mapsto} y_{i}-y_{j} .
\end{aligned}
$$

E.g.

Schubert calculus via puzzles I

Theorem (Knutson-Tao '03, many extensions since)

For $\lambda, \mu \in 0^{k} 1^{n-k}$, the product of S_{λ} and S_{μ} in $H_{T}^{*}(\operatorname{Gr}(k ; n))$ is

$$
\text { E.g. } S_{0101} \cdot S_{0101}=S_{0110}+S_{1001}+\left(y_{2}-y_{3}\right) S_{0101}
$$

Scattering diagrams

[Zinn-Justin (ZJ) '09, Wheeler-ZJ '16, Knutson-ZJ '17]

- Reinterpret puzzles as (dual) scattering diagrams involving (rational) 5 -vertex R-matrices and fusion. Upgrade to the 6 -vertex model.

$$
:\left(\mathbb{C}^{3}\right)^{\otimes 4} \otimes\left(\mathbb{C}^{3}\right)^{\otimes 4} \rightarrow\left(\wedge^{2} \mathbb{C}^{3}\right)^{\otimes 4}
$$

- Recast AJS/Billey formula for restriction to T-fixed points $\left.S_{\lambda}\right|_{\mu}$.

Schubert calculus via puzzles II

Theorem (H-Knutson-Zinn-Justin '18)

Let $\lambda \in 0^{j} 1^{n-j}, \mu \in 0^{k} 1^{n-k}, v \in 0^{j}(10)^{k-j} 1^{n-k}$, defining equivariant Schubert classes $S_{\lambda}, S_{\mu}, S_{\nu}$ on $\operatorname{Gr}(j ; n), \operatorname{Gr}(k ; n), F I(j, k ; n)$ respectively. The product in $H_{T}^{*}(F I(j, k ; n))$ can be computed as:

$$
\pi_{j}^{*}\left(S_{\lambda}\right) \cdot \pi_{k}^{*}\left(S_{\mu}\right)=\sum_{v} w(\underbrace{}_{v} \underbrace{}_{\nu}) S_{v}
$$

Example

For instance, for $\operatorname{Fl}(1,2 ; 3), \operatorname{Gr}(1 ; 3)$, and $\operatorname{Gr}(2 ; 3)$:

$$
\begin{aligned}
\pi_{1}^{*}\left(S_{101}\right) \cdot \pi_{2}^{*}\left(S_{100}\right) & =S_{10,0,1} \cdot S_{1,0,10} \\
& =\left(y_{1}-y_{2}\right) S_{1,0,10}+S_{1,10,0}
\end{aligned}
$$

Grassmann duality

Grassmann duality
There is a ring isomorphism (from a homeom. of Grassmannians):

$$
\begin{aligned}
& H_{T}^{*}(\operatorname{Gr}(k ; 2 n)) \cong H_{T}^{*}(\operatorname{Gr}(2 n-k ; 2 n)), \quad S_{\lambda} \mapsto S_{\bar{\lambda}} \\
& S_{\lambda} \cdot S_{\mu} \leftrightarrow S_{\bar{\mu}} \cdot S_{\bar{\lambda}} \quad \bar{\lambda}=(\text { reverse } \lambda \text { and switch } 0 \leftrightarrow 1) \\
& \text { reflect through vertical axis } \\
& \text { and swap } 0 \text { and } 1
\end{aligned}
$$

For instance,

Branching from A to C

We are interested in the cohomology pullback of the inclusion

$$
\operatorname{SpGr}(k ; 2 n) \stackrel{\iota}{\longleftrightarrow} \operatorname{Gr}(k ; 2 n) .
$$

Involution: $S p_{2 n}=G L_{2 n}^{\sigma}$, for $J=\operatorname{Antidiag}(-1, \ldots,-1,1, \ldots, 1)$,

$$
\sigma: G L_{2 n} \rightarrow G L_{2 n}, X \mapsto J^{-1}\left(X^{-1}\right)^{\mathrm{tr}} J
$$

Main question: $\iota^{*}\left(S_{\lambda}\right)=\sum_{\nu} c_{\nu}^{\lambda} S_{v} \quad c_{\nu}^{\lambda}=? ?$

- Pragacz '00: (building on work of Stembridge) positive tableau formulæ for $H^{*}(\operatorname{Gr}(n ; 2 n)) \rightarrow H^{*}(\operatorname{SpGr}(n ; 2 n))$
- Coşkun '11: positive geometric rule for $H^{*}(\operatorname{Gr}(k ; 2 n))$

A combinatorial branching rule

Theorem (H-Knutson-Zinn-Justin '18)

For $\lambda \in 0^{k} 1^{2 n-k}, H_{T}^{*}(\operatorname{Gr}(k ; 2 n)) \xrightarrow{\iota^{*}} H_{T}^{*}(\operatorname{SpGr}(k ; 2 n))$ takes S_{λ} to

$$
\iota^{*}\left(S_{\lambda}\right)=\sum_{v} w(\not \subset \dot{\chi}) S_{v}
$$

where $w\left(\mathcal{L}_{2}^{*}\right) \in H_{T}^{*}(p t)=\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ is computed via R - and
K-matrices from the 5-vertex model, and fusion.
Note: $\quad \underset{\sim}{\chi}$ is half of a "self-dual" puzzle under Grassmann duality.
$w\binom{\overbrace{i}}{, \gamma_{j}}=\left\{\begin{array}{ll}y_{i}-y_{j}, & j \leq n \\ y_{i}+y_{2 n+1-j}, & n<j\end{array} \quad w\left(\begin{array}{l}x \\ \vdots \\ \vdots\end{array}\right)=1 \quad(X, Y)=(0,1),(1,0)\right.$

Example and goal

$\underline{\text { Example: }} \iota^{*}\left(S_{110101}\right)=\left(y_{2}-y_{3}\right) S_{10,1,0}+S_{10,1,1}+S_{1,10,0}$

Goal: generalize to the 6-vertex model, understand the underlying geometry, obtain a generalized puzzle rule.

6-vertex upgrade

- Non-compact, symplectic resolution upgrade: We upgrade the Grassmannians G / P to their cotangent bundles $T^{*} G / P$.
- Additional puzzle pieces and $R_{G R}(a)$:

Maulik-Okounkov classes

For a regular circle action $S \curvearrowright T^{*} G / P$ and a fixed pt. $\lambda \in W / W_{P}$, the Maulik-Okounkov stable envelope construction produces a cycle

$$
M O_{\lambda}=\overline{B B}_{\lambda}+\sum_{\mu \leq \lambda} a_{\lambda, \mu} \overline{B B}_{\mu}, \quad a_{\lambda, \mu} \in \mathbb{Z}_{\geq 0}
$$

$\mathrm{BB}_{\lambda}=\operatorname{Attr}(\lambda)=C X_{\lambda}^{0}:=$ conormal bundle of the Bruhat cell X_{λ}^{0}.
This in turn gives a class $\left[M O_{\lambda}\right] \in H_{T \times C^{\times}}^{*}\left(T^{*} G / P\right) \cong H_{T}^{*}(G / P)[\hbar]$.
Segre-Schwartz-MacPherson:

$$
\begin{gathered}
\operatorname{SSM}_{\lambda}=\frac{\left[M O_{\lambda}\right]}{[\text { zero section }]} \in \widetilde{H}_{T \times \text { © } \times}^{0}\left(T^{*} G / P\right) \\
\Rightarrow S_{S M}=\hbar^{-\ell(\lambda)} S_{\lambda}+\text { l.o.t }(\hbar) \Rightarrow S_{\lambda}=\lim _{\hbar \rightarrow \infty}\left(S S M_{\lambda} \cdot \hbar^{\ell(\lambda)}\right)
\end{gathered}
$$

Structure constants: $\quad c_{\lambda \mu}^{\nu}=\lim _{\hbar \rightarrow \infty}\left(\left(c^{\prime}\right)_{\lambda \mu}^{\nu} \cdot \hbar^{\ell(\lambda)+\ell(\mu)-\ell(\nu)}\right)$

Geometric interpretation

A Lagrangian correspondence L between two symplectic manifolds A and $B, A \stackrel{L}{\longleftrightarrow} B$, is:

A Lagrangian cycle L in $(-A) \times B$ (equivalently L in $A \times(-B)$).

If $T \curvearrowright A, B$ and L is T-invariant, then

$$
H_{T}^{*}(A) \xrightarrow{\left(\pi_{A}\right)^{*}} H_{T}^{*}(A \times B) \xrightarrow{\cup[L]} H_{T}^{*}(A \times B) \xrightarrow{\left(\pi_{B}\right)_{*}} H_{T}^{*}(B) \cong H_{T}^{*}(B)
$$

Note: In our setting, will work with $T^{*} G / P$.

Examples

(1) Symplectic reduction

For $T \subseteq G \curvearrowright X$ Hamiltonian action, have a moment map
$X \xrightarrow{\mu} \mathfrak{g}^{*}$. Take a regular point a for μ s.t. $a \in\left(\mathfrak{g}^{*}\right)^{G}$ Let $Z=\mu^{-1}(a), Y=\mu^{-1}(a) / / G$. Then $X \hookleftarrow Z \rightarrow Y$.
[Marsden-Weinstein '74] \exists ! symplectic structure on Y s.t. $Z \subseteq(-X) \times Y$ is Lagrangian.
(2) Maulik-Okounkov stable envelopes Suppose $S \curvearrowright X$ is a sympl. res. with a circle action.
Let C be a fixed point component.
The stable envelope construction produces a certain Lagrangian cycle $L=\overline{\operatorname{Attr}(C)}+\ldots$ in $(-C) \times X$.

Correspondences from graphs

General setting

Let $A \xrightarrow{f} B$ be a morphism of oriented manifolds. $\Gamma(f)=$ graph of f. $\Gamma(f)^{t r} \subseteq B \times A$ is a correspondence inducing $f^{*}: H^{*}(B) \rightarrow H^{*}(A)$. Examples:

- Diagonal inclusion $M \xrightarrow{\Delta} M \times M$. Then $\Gamma(\Delta)^{t r}$ induces

$$
\boldsymbol{H}^{*}(M) \otimes H^{*}(M) \xrightarrow{m} H^{*}(M) .
$$

- The graph of the inclusion $F I(j, k ; n) \hookrightarrow \operatorname{Gr}(j ; n) \times \operatorname{Gr}(k ; n)$ induces multiplication

$$
\boldsymbol{H}^{*}(\operatorname{Gr}(j ; n)) \otimes \boldsymbol{H}^{*}(\operatorname{Gr}(k ; n)) \xrightarrow{m} H^{*}(F(j, k ; n)) .
$$

- The graph of $\operatorname{SpGr}(k ; 2 n) \stackrel{\iota}{\hookrightarrow} \operatorname{Gr}(k ; 2 n)$ induces the restriction

$$
H^{*}(\operatorname{Gr}(k ; 2 n)) \rightarrow H^{*}(\operatorname{SpGr}(k ; 2 n)) .
$$

Lifting to cotangent bundles

Assume we have a torus action $T \curvearrowright A, B$. We have the following commutative diagram of correspondences. It allows us to study the bottom row in cohomology via the symplectic setting of the top row.

The $S p_{2 n}$ case

Theorem in progress (H-Knutson-Zinn-Justin '20)

There are Lagrangian correspondences

$$
\lambda \xrightarrow{L_{1}} T^{*} \operatorname{Gr}(k ; 2 n) \xrightarrow{L_{2}} T^{*} \operatorname{OGr}(2 n-k ; 4 n) \xrightarrow{L_{3}} T^{*} \operatorname{SpGr}(k ; 2 n)
$$

that compute the restriction of SSM classes, and together with the 6 -vertex R - and K-matrices and fusion realize a puzzle rule.

- $L_{1}=M O_{\lambda}$ is the stable envelope for the circle action

$$
S_{1} \cong \operatorname{Diag}\left(t, t^{2}, \ldots, t^{2 n}\right)
$$

- $L_{2}=\operatorname{Attr}\left(T^{*} \operatorname{Gr}(k ; 2 n)\right)$ is the stable envelope for the circle

$$
S_{2} \cong \operatorname{Diag}\left(t, \ldots, t, t^{-1}, \ldots, t^{-1}\right)
$$

- L_{3} is obtained by symplectic reduction.

Symplectic reduction I

Consider the parabolic $P=\left\{\left[\begin{array}{ll}A & 0 \\ C & D\end{array}\right] \in O(4 n)=O(4 n, J)\right\}$ where J is the form given by, for $J^{\prime}=\operatorname{Antidiag}(1, \ldots, 1,-1, \ldots,-1)$,

$$
J=\left[\begin{array}{cc}
0 & J^{\prime} \\
\left(J^{\prime}\right)^{t r} & 0
\end{array}\right]
$$

We have $\operatorname{Rad}(P)<O(4 n)$ and:

$$
\begin{gathered}
O(4 n) \curvearrowright T^{*} O G r(2 n-k ; 4 n) \rightarrow o(4 n)^{*} \rightarrow \operatorname{rad}(p)^{*} \cong o(4 n) / p \\
\left(X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], V\right) \mapsto X \mapsto B
\end{gathered}
$$

This gives a P-equivariant and $\operatorname{Rad}(P)$-invariant map,

$$
\mu: T^{*} \operatorname{OGr}(2 n-k ; 4 n) \rightarrow o(4 n) / p .
$$

Symplectic reduction II

The Levi $L \cong G L(2 n)<P$ has a subgroup $S p(2 n)$ that preserves the fiber $\{B=\mathbb{1}\}$ of μ, and we get

$$
\operatorname{Sp}(2 n) \curvearrowright \mu^{-1}(\mathbb{1}) / \operatorname{Rad}(P) \cong T^{*} \operatorname{SpGr}(k ; 2 n)
$$

The isomorphism is given by:

$$
\left(X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right], V\right) \mapsto\left(Y=A+D, W=V^{\perp} \cap\left(0 \oplus \mathbb{C}^{2 n}\right)\right)
$$

The end

Thank you!

