Symplectic embeddings via algebraic capacities

Ben Wormleighton

WUSTL

Main references:

- Algebraic capacities, B. Wormleighton (2020)
- ECH embedding obstructions for rational surfaces, J. Chaidez & B. Wormleighton (2020)

Symplectic embeddings

- A central question in symplectic geometry is, given two symplectic manifolds (X, ω) and (X', ω') of the same dimension 2n, when does there exist a *symplectic embedding* between them?
- \blacksquare Namely, when does there exist a smooth embedding $\iota\colon X\to X'$ such that

$$\iota^*\omega' = \omega$$

• We write $(X, \omega) \stackrel{s}{\hookrightarrow} (X', \omega')$ when such an embedding exists.

• The first constraint we can find is *volume*:

$$(X,\omega) \stackrel{\mathsf{s}}{\hookrightarrow} (X',\omega') \Longrightarrow \operatorname{vol}(X,\omega) \le \operatorname{vol}(X',\omega')$$

where $\operatorname{vol}(X, \omega) := \int_X \omega^n$.

 However the volume constraint is not very close to being sharp in general.

Theorem (Gromov nonsqueezing)

Let $B^{2n}(r)$ be a 2n-dimensional ball of radius r and let $Z^{2n}(R)$ be a 2n-dimensional cylinder of cross-sectional radius R. Then

 $B^{2n}(r) \stackrel{\mathrm{s}}{\hookrightarrow} Z^{2n}(R) \text{ if and only if } r \leq R$

• As a result, to study symplectic embeddings more closely we will require more nuanced obstructions than the volume.

Example Define the *Gromov width*

$$c_G(X,\omega) := \sup\{r > 0 : B^{2n}(r) \stackrel{\mathsf{s}}{\hookrightarrow} (X,\omega)\}$$

- To give a sense of how symplectic embedding problems meet algebraic geometry, we consider the following construction of McDuff–Polterovich:
- Suppose $\coprod_{i=1}^{N} B^4(r_i) \stackrel{s}{\hookrightarrow} \mathbb{P}^2$. Excise the interiors of these balls and collapse their boundaries via the Hopf map to get N copies of \mathbb{P}^1 . This is just an N point blowup.
- The existence of such an embedding is equivalent to the divisor $H \sum r_i E_i$ on the N point blowup of \mathbb{P}^2 being representable by a symplectic form (e.g. ample).

- There are many other connections between symplectic embeddings and algebraic geometry, for instance:
 - Various authors relate the Gromov width of polarised varieties to Seshadri constants
 - Brendel–Mikhalkin–Schlenk construct 'exotic' embeddings of cubes via toric degenerations of del Pezzo surfaces

...

Outline

For the remainder of this talk we will:

- discuss more general obstructions to symplectic embeddings ('symplectic capacities')
- discuss analogs in algebraic geometry ('algebraic capacities')
- use this algebraic perspective to solve problems.

Symplectic capacities

Let S be some class of symplectic spaces of dimension 2n including the ball $B^{2n}(r)$. We say that a function $c \colon S \to \mathbb{R}$ is a *capacity* if:

$$(X,\omega) \stackrel{s}{\hookrightarrow} (X',\omega') \Longrightarrow c(X,\omega) \le c(X',\omega')$$

$$c(X, \alpha \omega) = \alpha \cdot c(X, \omega)$$

•
$$c(B^{2n}(1)) > 0.$$

Some contact geometry

Consider a (2n-1)-manifold Z.

- A contact form on Z is a 1-form λ with $\lambda \wedge (d\lambda)^{n-1} > 0$
- The Reeb vector field is determined by $\begin{cases} d\lambda(R,-)=0\\ \lambda(R)=1 \end{cases}$
- A *Reeb orbit* is a closed orbit of R; that is, a map $\gamma : \mathbb{R}/T\mathbb{Z} \to Z$ with $\gamma'(t) = R(\gamma(t))$

Example

Define the ellipsoid with symplectic radii a, b to be

$$E(a,b) := \{(z_1, z_2) \in \mathbb{C}^2 : \frac{\pi |z_1|^2}{a} + \frac{\pi |z_2|^2}{b} \le 1\}$$

We often write $z_j = x_j + iy_j$.

Example

Let $Z = \partial E(a, b)$.

 \blacksquare A contact form on Y is the restriction of the Liouville form

$$\lambda = \frac{1}{2} \sum_{j=1}^{2} (x_j dy_j - y_j dx_j)$$

The corresponding Reeb vector field is

$$R = \frac{2\pi}{a} \frac{\partial}{\partial \theta_1} + \frac{2\pi}{b} \frac{\partial}{\partial \theta_2}$$

 \blacksquare If $a/b \notin \mathbb{Q}$ then the only embedded Reeb orbits are

$$\gamma_1 = (z_2 = 0)$$
 and $\gamma_2 = (z_1 = 0)$

■ We consider an infinite-dimensional graded Z/2-vector space ECH_{*}(∂*E*(*a*,*b*)) associated to ∂*E*(*a*,*b*):

$$\mathbb{Z}/2 \underbrace{0}_{\mathbb{Z}/2} \underbrace{0}_{\mathbb{Z}/2} \underbrace{0}_{\mathbb{Z}/2} \underbrace{0}_{\mathbb{Z}/2} \underbrace{\mathbb{Z}/2}_{\mathbb{Z}/2} \cdots$$

- ...with a (surjective) degree $-2 \mod U$ defined via curve counting
- ...and with a filtration $ECH_*(\partial E(a, b))^{\leq L}$ from the 'action'

$$\mathcal{A}(\gamma) = \int_{\gamma} \lambda$$

Ben Wormleighton

■ ECH_{*}($\partial E(a, b)$) has a generator Γ_k in each even degree 2k represented by

 $\{(\gamma_1, m_1), (\gamma_2, m_2)\}$

for a pair of nonnegative integers (m_1, m_2) .

• The action is $\mathcal{A}\{(\gamma_1, m_1), (\gamma_2, m_2)\} = m_1 a + m_2 b.$

Since the action increases with degree, we have

 $\mathcal{A}(\Gamma_k) = N_k(a, b)$

:= kth smallest number of the form $m_1a + m_2b$

where $\Gamma_k = \{(\gamma_1, m_1), (\gamma_2, m_2)\}$ is the generator of degree 2k.

Symplectic embeddings	Symplectic capacities	Toric manifolds

 For each contact 3-manifold (Z, λ) there is a graded vector space ECH_{*}(Z, λ) with the structure above called the *Embedded Contact Homology* of of (Z, λ).

Define

 $c_k^{\mathsf{ech}}(Z,\lambda) := \inf\{L > 0: \exists \Gamma \in \mathsf{ECH}_*(Z,\lambda)^{\leq L} \text{ with } U^k \Gamma = [\emptyset]\}$

Thus

 $c_k^{\mathsf{ech}}(\partial E(a,b)) = N_k(a,b)$

Ben Wormleighton

• For a symplectic manifold (X, ω) define

$$c^{\mathsf{ech}}_k(X,\omega):=c^{\mathsf{ech}}_k(\partial X,\lambda)$$

where
$$d\lambda = \omega|_{\partial X}$$
.
Thus

$$c_k^{\mathsf{ech}}(E(a,b)) = N_k(a,b)$$

Ben Wormleighton

Two big results

- $E(a,b) \xrightarrow{s} E(c,d)$ iff $c_k^{\mathsf{ech}}(E(a,b)) \leq c_k^{\mathsf{ech}}(E(c,d))$ for all k. (Hofer conjecture / McDuff's theorem 2010)
- ECH capacities asymptotically return the volume constraint:

$$\lim_{k \to \infty} \frac{c_k^{\mathsf{ech}}(X, \omega)^2}{k} = 4 \operatorname{vol}(X, \omega)$$

(Cristofaro-Gardiner-Hutchings-Ramos 2015)

Ben Wormleighton

Example

- Let $\Delta_{a,b}$ be the triangle with vertices $(0,0), (\frac{1}{a},0), (0,\frac{1}{b}).$
- Observe that lattice points in $r\Delta_{a,b}$ are pairs of integers (m_1,m_2) such that

$$am_1 + bm_2 \le r$$

This is exactly

 $\operatorname{rk}\operatorname{ECH}_{*}(\partial E(a,b),\lambda)^{\leq r}$

• When $a, b \in \mathbb{Q}$ this is given by a quasi-polynomial for $r \in \mathbb{Z}_{\geq 0}$ by Ehrhart's theorem.

Example

- Let $Y = \mathbb{P}(1, a, b)$ be a weighted projective space.
- Observe that sections of $\mathcal{O}_Y(r)$ correspond to pairs of integers (m_1, m_2) such that

$$am_1 + bm_2 \le r$$

This is exactly

 $\operatorname{rk}\operatorname{ECH}_{*}(\partial E(a,b),\lambda)^{\leq r}$

• When $a, b \in \mathbb{Q}$ this is given by a quasi-polynomial for $r \in \mathbb{Z}_{\geq 0}$ by orbifold Riemann–Roch.

• Moreover, the complement of $\mathcal{O}_Y(1)$ in $\mathbb{P}(1, a, b)$ is symplectomorphic to $E(a, b)^{\circ}$.

...

Algebraic capacities

- Consider a symplectic 4-manifold (X, ω) such that its interior X° has a compactification to a projective surface Y with boundary divisor A.
- We introduce algebraic invariants on (Y, A) to recover the embedding obstructions from ECH for (X, ω).

Definition

For a pair (Y, A) consisting of a normal projective surface Y and a \mathbb{Q} -Cartier big \mathbb{R} -divisor A define the kth algebraic capacity

$$c_k^{\mathsf{alg}}(Y, A) := \inf_{D \in \operatorname{Nef}(Y)} \{ D \cdot A : \chi(D) \ge k + \chi(\mathcal{O}_Y) \}$$

In a situation where Noether's formula holds we have

$$c_k^{\mathsf{alg}}(Y, A) = \inf_{D \in \operatorname{Nef}(Y)} \{ D \cdot A : D \cdot (D - K_Y) \ge 2k \}$$

Ben Wormleighton

For
$$Y = \mathbb{P}^2$$
, $A = \mathcal{O}(a)$,

$$c_k^{\mathsf{alg}}(Y, A) = \inf_{d \ge 0} \{ad : d(d+3) \ge 2k\}$$

$$= 0, a, a, 2a, 2a, 2a, \dots$$

• This equals $c_k^{\text{ech}}(B(a)) = N_k(a, a)$ where B(a) = E(a, a)

• For
$$Y = \mathbb{P}^2$$
, $A = \mathcal{O}(a)$,
 $c_k^{alg}(Y, A) = \inf_{d \ge 0} \{ad : d(d+3) \ge 2k\}$
 $= 0, a, a, 2a, 2a, 2a, \dots$

• This equals $c_k^{\text{ech}}(B(a)) = N_k(a, a)$ where B(a) = E(a, a) with $B(a, a)^{\circ} \simeq \nu_a(\mathbb{P}^2) \setminus H$.

Ben Wormleighton

WUSTL

Theorem (Chaidez–W. '20)

Let (Y, A) be a polarised rational surface that is either smooth or toric. Suppose (X, ω) is a star-shaped domain in \mathbb{R}^4 . If $(X, \omega) \stackrel{s}{\hookrightarrow} Y$ then

$$c_k^{\mathsf{ech}}(X,\omega) \leq c_k^{\mathsf{alg}}(Y,A) \text{ for all } k.$$

In particular, for many divisor complements $Y \setminus A$ we obtain $c_k^{\mathsf{ech}}(Y \setminus A) \leq c_k^{\mathsf{alg}}(Y, A).$

Idea of the proof

There are two key ideas in the proof:

- Neck stretching to produce Reeb orbits from divisors
- Relating Seiberg–Witten invariants to nefness

Idea of the proof

There are two key ideas in the proof:

- Neck stretching to produce Reeb orbits from divisors
- Relating Seiberg–Witten invariants to nefness

Write

$$Y = X \cup_Z N$$

where Z is the image of ∂X .

Ben Wormleighton

Symplectic embeddings	Symplectic capacities	Algebraic capacities	Toric manifolds
	P 1		
I need to say	a little more about	the U map on ECH	$_{*}(Z,\lambda).$
• Let $\deg \alpha =$	k and let $\deg(\beta) =$	k-2. The coefficient	nt of eta in
$U(\alpha)$ is the	number of holomorp	hic curves 'of index !	2' in
$\widehat{Z} = Z \times \mathbb{R}$	that are positively a	symptotic to $lpha$ and r	negatively

asymptotic to $\beta,$ and satisfy a general point constraint:

- Thus c₁^{ech}(X) is computed as the minimum area of such holomorphic curves u = ∪_iC_i in Î passing through a general point p.
- \blacksquare Equivalently, these objects are just formal $\mathbb{Z}_{\geq 0}\text{-linear}$ combinations of holomorphic curves with a global incidence constraint.
- $c_k^{\text{ech}}(X)$ is given by sequences (u_1, \ldots, u_k) of k such objects with matching ends; note that here there are k general point constraints.

- Suppose $D = \sum a_i D_i$ is an effective divisor in Y.
- One can produce a sequence (u₁,..., u_k) by neck stretching
 Y along Z so long as D passes through k general points.
- In other words, we expect $\chi(D) \ge k+1$. The area of (u_1, \ldots, u_k) is $D \cdot A$.

Ben Wormleighton

Symplectic embeddings	Symplectic capacities	Algebraic capacities	Toric manifolds

- However, not all effective divisors contribute to the infimum defining c_k^{ech}(X). The divisors that do contribute have nonzero Seiberg-Witten invariant.
- We show that

$$\inf_{\mathrm{SW}(D)\neq 0} \{D \cdot A: \chi(D) \geq k+1\} = \inf_{D \in \mathrm{Nef}(Y)} \{D \cdot A: \chi(D) \geq k+1\}$$

using the recursive (field theory) structure of Seiberg–Witten invariants and a clever transform on Pic(Y).

Advantages of algebraic capacities

Algebraic capacities have several advantages

- They are often much more computable than ECH when the nef cone is reasonable
- In cases where the nef cone is poorly understood we still obtain many ('smart') obstructions of the form $c_k^{\text{ech}}(X,\omega) \leq D \cdot A$
- They are suited to study 'non-generic' symplectic manifolds where symplectic techniques often break down.

Toric manifolds

- We specialise to toric manifolds for some applications.
- Let $\mu \colon \mathbb{C}^2 \to \mathbb{R}^2$ be the moment map for $(S^1)^2 \curvearrowright \mathbb{C}^2$.
- For a connected region $\Omega \subseteq \mathbb{R}^2$ define

$$X_{\Omega} := \mu^{-1}(\Omega)$$

Ben Wormleighton

Example If Ω is

then

 $X_{\Omega} = E(a, b)$

Ben Wormleighton

- If $\Omega \subseteq \mathbb{R}^2_{\geq 0}$ has adjacent edges on the coordinate axes and is convex we say that X_{Ω} is a *convex toric domain*.
- If Ω is a lattice / rational / rational-sloped polytope we say that X_{Ω} is a *lattice* / *rational* / *rational-sloped convex toric domain*.

Theorem (W. '19)

Suppose X_{Ω} is a rational-sloped convex toric domain. Let (Y_{Ω}, A_{Ω}) be the polarised toric surface corresponding to Ω . We have

$$c_k^{\mathsf{ech}}(X_{\Omega}) = c_k^{\mathsf{alg}}(Y_{\Omega}, A_{\Omega})$$
$$= \inf_{D \in \operatorname{Nef}(Y_{\Omega})} \{ D \cdot A_{\Omega} : h^0(D) \ge k+1 \}$$

Hence for $x \in \mathbb{Z}_{\geq 0}$,

 $\#\{k: c_k^{\mathsf{ech}}(X_\Omega) \le x\} = \sup_{D \in \operatorname{Nef}(Y_\Omega)} \{h^0(D): D \cdot A_\Omega \le x\}$

Ben Wormleighton

Applications

- If $\Delta \subseteq \mathbb{R}^2$ has two edges on the coordinate axes and is 'concave' we say that X_Δ is a concave toric domain.
- E.g. balls, ellipsoids, Lagrangian bidisk,...

Applications

- If $\Delta \subseteq \mathbb{R}^2$ has two edges on the coordinate axes and is 'concave' we say that X_Δ is a concave toric domain.
- E.g. balls, ellipsoids, Lagrangian bidisk,...

Theorem (Chaidez-W. '20)

Suppose (Y, A) is a (possibly singular) polarised toric surface and that X_{Δ} is a concave toric domain. Then

$$X^\circ_\Delta \stackrel{\rm s}{\hookrightarrow} Y \Longleftrightarrow c^{\rm ech}_k(X_\Delta) \leq c^{\rm alg}_k(Y,A)$$

Ben Wormleighton

• The Gromov width of a symplectic manifold (X, ω) is

$$c_G(X,\omega) := \sup\{r > 0 : B(r) \stackrel{\mathsf{s}}{\hookrightarrow} (X,\omega)\}$$

Theorem (Chaidez–W. '20)

Suppose Ω_1, Ω_2 are two rational-sloped polygons. If $\Omega_1 \subseteq \Omega_2$ then

 $c_G(Y_{\Omega_1}) \le c_G(Y_{\Omega_2})$

Sketch of proof

Note that c^{alg}_k(Y_Ω, A_Ω) is invariant under Z-affine maps applied to Ω; hence we can assume that Ω₁ and Ω₂ do not meet the coordinate axes.

• Thus
$$X_{\Omega_1}^\circ \subseteq X_{\Omega_2}^\circ$$
 and so

$$c_k^{\mathsf{alg}}(Y_{\Omega_1},A_{\Omega_1})=c_k^{\mathsf{ech}}(X_{\Omega_1})\leq c_k^{\mathsf{ech}}(X_{\Omega_2})=c_k^{\mathsf{alg}}(Y_{\Omega_2},A_{\Omega_2})$$

The result follows since c_k^{alg} sharply obstruct embeddings of balls.

- This resolves a conjecture of Averkov–Hofscheier–Nill.
- ${\hfill \ }$ Define the $lattice \ width$ of a polygon $\Omega\subseteq \mathbb{R}^2$ by

$$\mathrm{lw}(\Omega) = \inf_{\ell \in \mathbb{Z}^n} \{ \sup_{p,q \in \Omega} \langle \ell, p - q \rangle \}$$

Corollary (Chaidez-W. '20)

Suppose Ω is a rational-sloped polygon. Then

 $c_G(Y_\Omega) \le \mathrm{lw}(\Omega)$

Ben Wormleighton

 One could also repeat this analysis with a different concave toric domain X_Ξ in place of a ball. Define the Ξ-width

$$c_{\Xi}(X,\omega) := \sup\{r > 0 : X_{r\Xi} \stackrel{\mathsf{s}}{\hookrightarrow} (X,\omega)\}$$

Corollary (Chaidez-W. '20)

Suppose Ω_1, Ω_2 are two rational-sloped polygons. If $\Omega_1 \subseteq \Omega_2$ then

 $c_{\Xi}(Y_{\Omega_1}) \le c_{\Xi}(Y_{\Omega_2})$

Ben Wormleighton

To conclude, here are some emerging connections between algebraic capacities and other quantities of algebraic positivity:

 \blacksquare for the Seshadri constant $\varepsilon(A)$ of big and nef A we have

$$\varepsilon(A) \le c_G(Y) \le c_1^{\mathsf{alg}}(Y, A)$$

- I predict connections between c_k^{alg}(Y, A) and the combinatorics of Newton–Okounkov bodies associated to (Y, A)
- I am using various toric ind-schemes to treat 'irrational' convex toric domains as appropriate limits of rational-sloped convex toric domains.

Thank you!

Ben Wormleighton Symplectic embeddings via algebraic capacities