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Symplectic embeddings

Symplectic embeddings

m A central question in symplectic geometry is, given two
symplectic manifolds (X,w) and (X’,w’) of the same
dimension 2n, when does there exist a symplectic embedding
between them?

m Namely, when does there exist a smooth embedding
t: X — X’ such that

o'l =w

= We write (X,w) <5 (X’,w’) when such an embedding exists.
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Symplectic embeddings

m The first constraint we can find is volume:
(X, w) < (X', ') = vol(X,w) < vol(X', ')

where vol(X,w) := [ w"
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Symplectic embeddings

m However the volume constraint is not very close to being
sharp in general.

Theorem (Gromov nonsqueezing)

Let B?"(r) be a 2n-dimensional ball of radius v and let Z*"(R) be
a 2n-dimensional cylinder of cross-sectional radius R. Then

B*(r) < Z*™(R) if and only ifr < R
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Symplectic embeddings

m As a result, to study symplectic embeddings more closely we
will require more nuanced obstructions than the volume.

Example
Define the Gromov width

ca(X,w) :==sup{r > 0: B¥(r) < (X,w)}
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Symplectic embeddings

m To give a sense of how symplectic embedding problems meet
algebraic geometry, we consider the following construction of
McDuff-Polterovich:

m Suppose 1Y B4(r;) < P2, Excise the interiors of these balls
and collapse their boundaries via the Hopf map to get IV
copies of PL. This is just an N point blowup.

m The existence of such an embedding is equivalent to the
divisor H — 3" r;E; on the N point blowup of P? being
representable by a symplectic form (e.g. ample).
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Symplectic embeddings

m There are many other connections between symplectic
embeddings and algebraic geometry, for instance:
m Various authors relate the Gromov width of polarised varieties
to Seshadri constants
m Brendel-Mikhalkin—Schlenk construct ‘exotic’ embeddings of
cubes via toric degenerations of del Pezzo surfaces
n ...
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Outline

For the remainder of this talk we will:
m discuss more general obstructions to symplectic embeddings
(‘symplectic capacities’)
m discuss analogs in algebraic geometry (‘algebraic capacities’)

m use this algebraic perspective to solve problems.
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Symplectic capacities

Let S be some class of symplectic spaces of dimension 2n including
the ball B2"(r). We say that a function c: S — R is a capacity if:

B (X,w) S (X, W) = o(X,w) < (X))
B (X, aw) = a- (X, w)
m ¢(B*(1)) > 0.
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Symplectic capacities

Some contact geometry

Consider a (2n — 1)-manifold Z.

m A contact form on Z is a 1-form A with A A (dA\)"~! >0
AR, =) = 0
AR) =1

m A Reeb orbit is a closed orbit of R; that is, a map
v:R/TZ — Z with +/(t) = R(v(t))

m The Reeb vector field is determined by {
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Example
Define the ellipsoid with symplectic radii a,b to be

2 2
E(a,b) :={(z1,2) € C*: 7T|Zal| + 7T|zb2| <1}

We often write z; = x; + iy;.
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Example
Let Z = 0E(a,b).
m A contact form on Y is the restriction of the Liouville form

N =
Ingh

A=5 ) (wjdy; —yjdz)

7j=1
m The corresponding Reeb vector field is

R0 20
_a601 5692

m If a/b ¢ Q then the only embedded Reeb orbits are

71 = (22 =0) and 72 = (21 = 0)
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m We consider an infinite-dimensional graded Z/2-vector space
ECH.(0E(a,b)) associated to dE(a,b):

/_\ /_\
z/2 0z o 72 0 /2/2\
~_ ~_ ~_

m ...with a (surjective) degree —2 map U defined via curve
counting

m ...and with a filtration ECH,(0FE(a,b))<" from the ‘action’
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Symplectic capacities

m ECH.(0E(a,b)) has a generator I in each even degree 2k
represented by
{(y1,m1), (v2,m2)}

for a pair of nonnegative integers (m,ms).
m The action is A{(y1,m1), (72, m2)} = mia + mab.

m Since the action increases with degree, we have

A(Tx) = Ni(a,b)
:= kth smallest number of the form mya + msb

where T'y, = {(~1,m1), (72, m2)} is the generator of degree 2k.
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Symplectic capacities

m For each contact 3-manifold (Z, \) there is a graded vector
space ECH,(Z, \) with the structure above called the
Embedded Contact Homology of of (Z,)\).

m Define
&N (Z,\) = inf{L > 0 : 3T € ECH,(Z, \)=L with UT = [0]}

m Thus
CECh (8E(a7 b)) = Nk’(av b)
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Symplectic capacities

m For a symplectic manifold (X, w) define
ENX,w) = EN(OX,\)

where d\ = w|gx.

m Thus
" (E(a,b)) = Ni(a,b)
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Two big results

m F(a,b) S E(c,d) iff €M (E(a, b)) < &N (E(c,d)) for all k.
(Hofer conjecture / McDuff's theorem 2010)

m ECH capacities asymptotically return the volume constraint:

"X, w)?

lim
k—o0

= 4vol(X,w)

(Cristofaro-Gardiner—Hutchings—Ramos 2015)
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Symplectic capacities

Example

m Let A, be the triangle with vertices (0, 0), (%, 0), (0, %)

m Observe that lattice points in 7A, ; are pairs of integers
(mq, mg) such that

ami +bmo <r

m This is exactly
rk ECH,(0E(a,b), \)="

m When a,b € Q this is given by a quasi-polynomial for r € Z>q
by Ehrhart's theorem.
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Symplectic capacities

Example

m Let Y =P(1,a,b) be a weighted projective space.

m Observe that sections of Oy (r) correspond to pairs of integers
(mq, mg) such that

ami +bmo <r

m This is exactly
rk ECH,(0E(a,b), \)="

m When a,b € Q this is given by a quasi-polynomial for r € Z>q
by orbifold Riemann—Roch.
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Symplectic capacities

m Moreover, the complement of Oy (1) in P(1,a,b) is
symplectomorphic to E(a,b)°.
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Algebraic capacities

m Consider a symplectic 4-manifold (X, w) such that its interior
X° has a compactification to a projective surface Y with
boundary divisor A.

m We introduce algebraic invariants on (Y, A) to recover the
embedding obstructions from ECH for (X, w).
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Definition
For a pair (Y, A) consisting of a normal projective surface Y and a
Q-Cartier big R-divisor A define the kth algebraic capacity

ARy, A inf {D-A:y(D)>k 0]
(Y, A) := DelNréfm{ X(D) >k +x(Oy)}

In a situation where Noether's formula holds we have

AB(Y,A) = inf {D A:D-(D - Ky) > 2k}
DeNef(Y
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m For Y =P%2 A= 0(a),
AB(Y, A) = inf {ad : d(d + 3) > 2k}
=0,a,a,2a,2a,2a,...

m This equals €"(B(a)) = N (a, a) where B(a) = E(a,a)
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Algebraic capacities

m For Y =P%2 A= 0(a),
AB(Y, A) = inf {ad : d(d + 3) > 2k}
=0,a,a,2a,2a,2a,...

m This equals €"(B(a)) = N (a, a) where B(a) = E(a,a)
with B(a,a)® ~ v,(P?) \ H.
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Algebraic capacities

Theorem (Chaidez-W. '20)

Let (Y, A) be a polarised rational surface that is either smooth or
toric. Suppose (X,w) is a star-shaped domain in R*. If
(X,w) 3 Y then

EN(X,w) < 8(Y, A) for all k.

m In particular, for many divisor complements Y \ A we obtain
Eh Y\ A) < E8(Y, A).

Ben Wormleighton

Symplectic embeddings via algebraic capacities



Algebraic capacities

|dea of the proof

There are two key ideas in the proof:
m Neck stretching to produce Reeb orbits from divisors

m Relating Seiberg—Witten invariants to nefness
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Algebraic capacities

|dea of the proof

There are two key ideas in the proof:
m Neck stretching to produce Reeb orbits from divisors

m Relating Seiberg—Witten invariants to nefness

Write
Y=XUzN

where Z is the image of 0X.
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Algebraic capacities

m | need to say a little more about the U map on ECH,(Z, \).

m Let dega = k and let deg(f) = k — 2. The coefficient of S in
U(«) is the number of holomorphic curves ‘of index 2" in
Z = 7 x R that are positively asymptotic to « and negatively
asymptotic to 3, and satisfy a general point constraint:

> D 5 a
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m Thus ¢§"(X) is computed as the minimum area of such
holomorphic curves u = U;C; in Z passing through a general
point p.

m Equivalently, these objects are just formal Zx>¢-linear
combinations of holomorphic curves with a global incidence
constraint.

m $N(X) is given by sequences (u1,...,uy) of k such objects
with matching ends; note that here there are k general point
constraints.
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m Suppose D =) a;D; is an effective divisor in Y.

m One can produce a sequence (uy,...,ux) by neck stretching
Y along Z so long as D passes through k general points.

m In other words, we expect x(D) > k + 1. The area of
(u1,...,u)is D - A.
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SFT neck stretching
—
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m However, not all effective divisors contribute to the infimum
defining c£<"(X). The divisors that do contribute have
nonzero Seiberg-Witten invariant.

m We show that

inf {D-A:x(D)>k+1} = inf {D-A:x(D)>k+1
wl(%#o{ x(D) > k+1} Dell\Inef(Y){ X(D) > k+1}

using the recursive (field theory) structure of Seiberg—Witten
invariants and a clever transform on Pic(Y).
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Advantages of algebraic capacities

Algebraic capacities have several advantages

m They are often much more computable than ECH when the
nef cone is reasonable

m In cases where the nef cone is poorly understood we still
obtain many (‘smart’) obstructions of the form
SN X,w)<D-A

m They are suited to study ‘non-generic’ symplectic manifolds
where symplectic techniques often break down.
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Toric manifolds

m We specialise to toric manifolds for some applications.
m Let 4: C? — R? be the moment map for (S1)? ~ C2.

m For a connected region 2 C R? define

X = M_l(Q)
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Example
If Qis

then
Xq = E(a,b)
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Toric manifolds

miIfQC ]R2>0 has adjacent edges on the coordinate axes and is
convex we say that Xq is a convex toric domain.

m If Q is a lattice / rational / rational-sloped polytope we say
that Xq is a lattice / rational / rational-sloped convex toric
domain.
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Theorem (W. '19)

Suppose Xq is a rational-sloped convex toric domain. Let (Yo, Aq)
be the polarised toric surface corresponding to 2. We have

&N (Xq) = EB(Yo, Ag)

= inf {D-Aq:h(D)>k+1}
DeNef(Yq)

Hence for x € Z>,

#{k: SN Xq)<z}= sup {h°(D):D-Aq <z}
DeNef(Ya)
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Toric manifolds

Applications

m If A C R? has two edges on the coordinate axes and is
‘concave’ we say that X is a concave toric domain.

m E.g. balls, ellipsoids, Lagrangian bidisk,...
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Toric manifolds

Applications

m If A C R? has two edges on the coordinate axes and is
‘concave’ we say that X is a concave toric domain.

m E.g. balls, ellipsoids, Lagrangian bidisk,...

Theorem (Chaidez-W. '20)

Suppose (Y, A) is a (possibly singular) polarised toric surface and
that XA is a concave toric domain. Then

X2 S Y = §N(Xa) < EE(Y, A)
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Toric manifolds

m The Gromov width of a symplectic manifold (X,w) is

ca(X,w) :=sup{r > 0: B(r) 3 (X,w)}

Theorem (Chaidez-W. '20)
Suppose 11,829 are two rational-sloped polygons. If Q21 C Qo then

ca(Ya,) < ca(Ya,)
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Sketch of proof

m Note that czlg(Yg, Agq) is invariant under Z-affine maps
applied to 2; hence we can assume that €2; and 25 do not
meet the coordinate axes.

m Thus Xs%l C X§2 and so
A8 (Ya,, Ag,) = M (Xa,) < M(Xa,) = 18(Yo,, Ag,)

m The result follows since czlg sharply obstruct embeddings of
balls.
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Toric manifolds

m This resolves a conjecture of Averkov—Hofscheier—Nill.
m Define the /attice width of a polygon Q C R? by

lw(Q) = inf { sup (¢,p —q)}
S/ NSy

Corollary (Chaidez-W. '20)
Suppose €) is a rational-sloped polygon. Then

CG(YQ) < IW(Q)
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m One could also repeat this analysis with a different concave
toric domain X= in place of a ball. Define the Z-width

c=(X,w) == sup{r > 0: X,z < (X,w)}

Corollary (Chaidez-W. '20)
Suppose 1,829 are two rational-sloped polygons. If Q1 C Qo then

C= (YQI ) < CE(Yﬂz)
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To conclude, here are some emerging connections between
algebraic capacities and other quantities of algebraic positivity:

m for the Seshadri constant (A) of big and nef A we have
e(A) < ca(Y) < (Y, A)

m | predict connections between czlg(Y, A) and the combinatorics
of Newton—Okounkov bodies associated to (Y, A)

m | am using various toric ind-schemes to treat ‘irrational’
convex toric domains as appropriate limits of rational-sloped
convex toric domains.

Ben Wormleighton

Symplectic embeddings via algebraic capacities



Toric manifolds

Thank you!
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