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Symplectic embeddings

A central question in symplectic geometry is, given two
symplectic manifolds (X,ω) and (X ′, ω′) of the same
dimension 2n, when does there exist a symplectic embedding
between them?

Namely, when does there exist a smooth embedding
ι : X → X ′ such that

ι∗ω′ = ω

We write (X,ω)
s
↪→ (X ′, ω′) when such an embedding exists.
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The first constraint we can find is volume:

(X,ω)
s
↪→ (X ′, ω′) =⇒ vol(X,ω) ≤ vol(X ′, ω′)

where vol(X,ω) :=
∫
X ω

n.
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However the volume constraint is not very close to being
sharp in general.

Theorem (Gromov nonsqueezing)

Let B2n(r) be a 2n-dimensional ball of radius r and let Z2n(R) be
a 2n-dimensional cylinder of cross-sectional radius R. Then

B2n(r)
s
↪→ Z2n(R) if and only if r ≤ R
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As a result, to study symplectic embeddings more closely we
will require more nuanced obstructions than the volume.

Example

Define the Gromov width

cG(X,ω) := sup{r > 0 : B2n(r)
s
↪→ (X,ω)}
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To give a sense of how symplectic embedding problems meet
algebraic geometry, we consider the following construction of
McDuff–Polterovich:

Suppose qNi=1B
4(ri)

s
↪→ P2. Excise the interiors of these balls

and collapse their boundaries via the Hopf map to get N
copies of P1. This is just an N point blowup.

The existence of such an embedding is equivalent to the
divisor H −

∑
riEi on the N point blowup of P2 being

representable by a symplectic form (e.g. ample).
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There are many other connections between symplectic
embeddings and algebraic geometry, for instance:

Various authors relate the Gromov width of polarised varieties
to Seshadri constants
Brendel–Mikhalkin–Schlenk construct ‘exotic’ embeddings of
cubes via toric degenerations of del Pezzo surfaces
...
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Outline

For the remainder of this talk we will:

discuss more general obstructions to symplectic embeddings
(‘symplectic capacities’)

discuss analogs in algebraic geometry (‘algebraic capacities’)

use this algebraic perspective to solve problems.
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Symplectic capacities

Let S be some class of symplectic spaces of dimension 2n including
the ball B2n(r). We say that a function c : S → R is a capacity if:

(X,ω)
s
↪→ (X ′, ω′) =⇒ c(X,ω) ≤ c(X ′, ω′)

c(X,αω) = α · c(X,ω)

c(B2n(1)) > 0.
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Some contact geometry

Consider a (2n− 1)-manifold Z.

A contact form on Z is a 1-form λ with λ ∧ (dλ)n−1 > 0

The Reeb vector field is determined by

{
dλ(R,−) = 0

λ(R) = 1

A Reeb orbit is a closed orbit of R; that is, a map
γ : R/TZ→ Z with γ′(t) = R(γ(t))
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Example

Define the ellipsoid with symplectic radii a, b to be

E(a, b) := {(z1, z2) ∈ C2 :
π|z1|2

a
+
π|z2|2

b
≤ 1}

We often write zj = xj + iyj .
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Example

Let Z = ∂E(a, b).

A contact form on Y is the restriction of the Liouville form

λ =
1

2

2∑
j=1

(xjdyj − yjdxj)

The corresponding Reeb vector field is

R =
2π

a

∂

∂θ1
+

2π

b

∂

∂θ2

If a/b /∈ Q then the only embedded Reeb orbits are

γ1 = (z2 = 0) and γ2 = (z1 = 0)
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We consider an infinite-dimensional graded Z/2-vector space
ECH∗(∂E(a, b)) associated to ∂E(a, b):

Z/2 0 Z/2 0 Z/2 0 Z/2 . . .

...with a (surjective) degree −2 map U defined via curve
counting

...and with a filtration ECH∗(∂E(a, b))≤L from the ‘action’

A(γ) =

∫
γ
λ
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ECH∗(∂E(a, b)) has a generator Γk in each even degree 2k
represented by

{(γ1,m1), (γ2,m2)}

for a pair of nonnegative integers (m1,m2).

The action is A{(γ1,m1), (γ2,m2)} = m1a+m2b.

Since the action increases with degree, we have

A(Γk) = Nk(a, b)

:= kth smallest number of the form m1a+m2b

where Γk = {(γ1,m1), (γ2,m2)} is the generator of degree 2k.
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For each contact 3-manifold (Z, λ) there is a graded vector
space ECH∗(Z, λ) with the structure above called the
Embedded Contact Homology of of (Z, λ).

Define

cechk (Z, λ) := inf{L > 0 : ∃Γ ∈ ECH∗(Z, λ)≤L with UkΓ = [∅]}

Thus
cechk (∂E(a, b)) = Nk(a, b)
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For a symplectic manifold (X,ω) define

cechk (X,ω) := cechk (∂X, λ)

where dλ = ω|∂X .

Thus
cechk (E(a, b)) = Nk(a, b)
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Two big results

E(a, b)
s
↪→ E(c, d) iff cechk (E(a, b)) ≤ cechk (E(c, d)) for all k.

(Hofer conjecture / McDuff’s theorem 2010)

ECH capacities asymptotically return the volume constraint:

lim
k→∞

cechk (X,ω)2

k
= 4 vol(X,ω)

(Cristofaro-Gardiner–Hutchings–Ramos 2015)
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Example

Let ∆a,b be the triangle with vertices (0, 0), ( 1
a , 0), (0, 1

b ).

Observe that lattice points in r∆a,b are pairs of integers
(m1,m2) such that

am1 + bm2 ≤ r

This is exactly
rk ECH∗(∂E(a, b), λ)≤r

When a, b ∈ Q this is given by a quasi-polynomial for r ∈ Z≥0

by Ehrhart’s theorem.
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Example

Let Y = P(1, a, b) be a weighted projective space.

Observe that sections of OY (r) correspond to pairs of integers
(m1,m2) such that

am1 + bm2 ≤ r

This is exactly
rk ECH∗(∂E(a, b), λ)≤r

When a, b ∈ Q this is given by a quasi-polynomial for r ∈ Z≥0

by orbifold Riemann–Roch.
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Moreover, the complement of OY (1) in P(1, a, b) is
symplectomorphic to E(a, b)◦.

...
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Algebraic capacities

Consider a symplectic 4-manifold (X,ω) such that its interior
X◦ has a compactification to a projective surface Y with
boundary divisor A.

We introduce algebraic invariants on (Y,A) to recover the
embedding obstructions from ECH for (X,ω).
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Definition
For a pair (Y,A) consisting of a normal projective surface Y and a
Q-Cartier big R-divisor A define the kth algebraic capacity

calgk (Y,A) := inf
D∈Nef(Y )

{D ·A : χ(D) ≥ k + χ(OY )}

In a situation where Noether’s formula holds we have

calgk (Y,A) = inf
D∈Nef(Y )

{D ·A : D · (D −KY ) ≥ 2k}
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For Y = P2, A = O(a),

calgk (Y,A) = inf
d≥0
{ad : d(d+ 3) ≥ 2k}

= 0, a, a, 2a, 2a, 2a, . . .

This equals cechk (B(a)) = Nk(a, a) where B(a) = E(a, a)

with B(a, a)◦ ' νa(P2) \H.
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For Y = P2, A = O(a),

calgk (Y,A) = inf
d≥0
{ad : d(d+ 3) ≥ 2k}

= 0, a, a, 2a, 2a, 2a, . . .

This equals cechk (B(a)) = Nk(a, a) where B(a) = E(a, a)
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Theorem (Chaidez–W. ’20)

Let (Y,A) be a polarised rational surface that is either smooth or
toric. Suppose (X,ω) is a star-shaped domain in R4. If

(X,ω)
s
↪→ Y then

cechk (X,ω) ≤ calgk (Y,A) for all k.

In particular, for many divisor complements Y \A we obtain

cechk (Y \A) ≤ calgk (Y,A).
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Idea of the proof

There are two key ideas in the proof:

Neck stretching to produce Reeb orbits from divisors

Relating Seiberg–Witten invariants to nefness

Write
Y = X ∪Z N

where Z is the image of ∂X.
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I need to say a little more about the U map on ECH∗(Z, λ).

Let degα = k and let deg(β) = k − 2. The coefficient of β in
U(α) is the number of holomorphic curves ‘of index 2’ in
Ẑ = Z × R that are positively asymptotic to α and negatively
asymptotic to β, and satisfy a general point constraint:

β

α

•p

Ben Wormleighton WUSTL

Symplectic embeddings via algebraic capacities



Symplectic embeddings Symplectic capacities Algebraic capacities Toric manifolds

Thus cech1 (X) is computed as the minimum area of such

holomorphic curves u = ∪iCi in Ẑ passing through a general
point p.

Equivalently, these objects are just formal Z≥0-linear
combinations of holomorphic curves with a global incidence
constraint.

cechk (X) is given by sequences (u1, . . . , uk) of k such objects
with matching ends; note that here there are k general point
constraints.
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Suppose D =
∑
aiDi is an effective divisor in Y .

One can produce a sequence (u1, . . . , uk) by neck stretching
Y along Z so long as D passes through k general points.

In other words, we expect χ(D) ≥ k + 1. The area of
(u1, . . . , uk) is D ·A.
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However, not all effective divisors contribute to the infimum
defining cechk (X). The divisors that do contribute have
nonzero Seiberg–Witten invariant.

We show that

inf
SW(D)6=0

{D·A : χ(D) ≥ k+1} = inf
D∈Nef(Y )

{D·A : χ(D) ≥ k+1}

using the recursive (field theory) structure of Seiberg–Witten
invariants and a clever transform on Pic(Y ).
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Advantages of algebraic capacities

Algebraic capacities have several advantages

They are often much more computable than ECH when the
nef cone is reasonable

In cases where the nef cone is poorly understood we still
obtain many (‘smart’) obstructions of the form
cechk (X,ω) ≤ D ·A
They are suited to study ‘non-generic’ symplectic manifolds
where symplectic techniques often break down.
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Toric manifolds

We specialise to toric manifolds for some applications.

Let µ : C2 → R2 be the moment map for (S1)2 y C2.

For a connected region Ω ⊆ R2 define

XΩ := µ−1(Ω)
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Example

If Ω is

a

b

then
XΩ = E(a, b)
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If Ω ⊆ R2
≥0 has adjacent edges on the coordinate axes and is

convex we say that XΩ is a convex toric domain.

If Ω is a lattice / rational / rational-sloped polytope we say
that XΩ is a lattice / rational / rational-sloped convex toric
domain.
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Theorem (W. ’19)

Suppose XΩ is a rational-sloped convex toric domain. Let (YΩ, AΩ)
be the polarised toric surface corresponding to Ω. We have

cechk (XΩ) = calgk (YΩ, AΩ)

= inf
D∈Nef(YΩ)

{D ·AΩ : h0(D) ≥ k + 1}

Hence for x ∈ Z≥0,

#{k : cechk (XΩ) ≤ x} = sup
D∈Nef(YΩ)

{h0(D) : D ·AΩ ≤ x}
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Applications

If ∆ ⊆ R2 has two edges on the coordinate axes and is
‘concave’ we say that X∆ is a concave toric domain.

E.g. balls, ellipsoids, Lagrangian bidisk,...

Theorem (Chaidez–W. ’20)

Suppose (Y,A) is a (possibly singular) polarised toric surface and
that X∆ is a concave toric domain. Then

X◦∆
s
↪→ Y ⇐⇒ cechk (X∆) ≤ calgk (Y,A)
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The Gromov width of a symplectic manifold (X,ω) is

cG(X,ω) := sup{r > 0 : B(r)
s
↪→ (X,ω)}

Theorem (Chaidez–W. ’20)

Suppose Ω1,Ω2 are two rational-sloped polygons. If Ω1 ⊆ Ω2 then

cG(YΩ1) ≤ cG(YΩ2)
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Sketch of proof

Note that calgk (YΩ, AΩ) is invariant under Z-affine maps
applied to Ω; hence we can assume that Ω1 and Ω2 do not
meet the coordinate axes.

Thus X◦Ω1
⊆ X◦Ω2

and so

calgk (YΩ1 , AΩ1) = cechk (XΩ1) ≤ cechk (XΩ2) = calgk (YΩ2 , AΩ2)

The result follows since calgk sharply obstruct embeddings of
balls.
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This resolves a conjecture of Averkov–Hofscheier–Nill.

Define the lattice width of a polygon Ω ⊆ R2 by

lw(Ω) = inf
`∈Zn
{ sup
p,q∈Ω

〈`, p− q〉}

Corollary (Chaidez–W. ’20)

Suppose Ω is a rational-sloped polygon. Then

cG(YΩ) ≤ lw(Ω)
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One could also repeat this analysis with a different concave
toric domain XΞ in place of a ball. Define the Ξ-width

cΞ(X,ω) := sup{r > 0 : XrΞ
s
↪→ (X,ω)}

Corollary (Chaidez–W. ’20)

Suppose Ω1,Ω2 are two rational-sloped polygons. If Ω1 ⊆ Ω2 then

cΞ(YΩ1) ≤ cΞ(YΩ2)
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To conclude, here are some emerging connections between
algebraic capacities and other quantities of algebraic positivity:

for the Seshadri constant ε(A) of big and nef A we have

ε(A) ≤ cG(Y ) ≤ calg1 (Y,A)

I predict connections between calgk (Y,A) and the combinatorics
of Newton–Okounkov bodies associated to (Y,A)

I am using various toric ind-schemes to treat ‘irrational’
convex toric domains as appropriate limits of rational-sloped
convex toric domains.
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Thank you!
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