Polytopes, wall crossings, and cluster varieties

Man Wai, Mandy, Cheung
October 7, 2020

Harvard University

Articles

- Compactifications of cluster varieties and convexity (joint with Magee, Nájera Chávez) arXiv: 1912.13052
- On cluster duality, mirror symmetry and toric degenerations of Grassmannians (joint with Bossinger, Magee and Nájera Chávez), soon!
- Towards Batyrev duality for finite-type cluster varieties (joint with Magee), in preparation
- Algebraic and symplectic viewpoint on compactifications of two-dimensional cluster varieties of finite type (joint with Vianna) arXiv:2008.03265
- Some examples of Family Floer mirror (joint with Lin) soon!

Toric geometry

Fix a lattice $N \cong \mathbb{Z}^{n}, M=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$.
$N_{\mathbb{R}}=N \otimes \mathbb{R}, M_{\mathbb{R}}=M \otimes \mathbb{R}$.

Polytope construction:

Consider a convex lattice polytope Δ in $M_{\mathbb{R}}$.
\rightsquigarrow define a graded ring (graded by t_{0})

$$
S_{\Delta}=\left\langle t_{0}^{k} z^{m}\right\rangle_{m \in k \Delta} .
$$

Grading: $t_{0}^{k} z^{m} \cdot t_{0}^{l} z^{m^{\prime}}=t_{0}^{k+l} z^{m+m^{\prime}} \Rightarrow m+m^{\prime} \in(k+l) \Delta$.
\rightsquigarrow projective toric geometry $\mathbb{P}_{\Delta}=\operatorname{Proj}\left(S_{\Delta}\right)$.

Cluster varieties

N° is scaling of the lattice N.

where $\mu_{\mathcal{A}}$ and $\mu_{\mathcal{X}}$ are birational maps between the torus, e.g. $1+x$. $1+x^{-1}$.
want: 'Fan'.

Scattering diagrams

Scattering diagram $\mathfrak{D}=$ collection of walls with finiteness condition wall : $\left(\mathfrak{d}, f_{\mathfrak{o}}\right)$
$\cdot \mathfrak{d} \subseteq M_{\mathbb{R}}$ support of walls - convex rational polyhedral cone of codim 1 , contained in $n^{\perp} \in N$.

- $f_{d}=1+\sum c_{k} z^{k p^{*}(n)}$.

Example: A_{2}

Scattering diagram as fan

$f_{0} \rightsquigarrow$ wall crossing \rightsquigarrow gluing the \mathbb{G}_{m}^{2} 's.
$\rightsquigarrow \mathcal{A}$-cluster variety of type A_{2}
Similar construction hold for general setting

Theta functions

To each point $m \in M^{\circ} \backslash\{0\}$, associate a theta function ϑ_{m} defined by broken lines:

Example: initial slope $(-1,0)$:

Theta functions

To each point $m \in M^{\circ} \backslash\{0\}$, associate a theta function ϑ_{m} defined by broken lines:

Example: initial slope ($-1,0$):

$$
\vartheta_{Q,(-1,0)}=z^{(-1,0)}+z^{(-1,1)} .
$$

Algebra structure

[Gross-Hacking-Keel-Konsevich] structure constant:

$$
\vartheta_{p} \cdot \vartheta_{q}=\sum_{r \in L} \alpha_{p q}^{r} \vartheta_{r},
$$

where $L=M^{\circ}$ or N and
$\alpha_{p q}^{r}$ are expressed in terms of broken lines:

$$
\alpha_{p q}^{r}:=\sum_{\begin{array}{c}
\left(\gamma^{(1)}, \gamma^{(2)}\right) \\
1\left(\gamma^{(1)}\right)=p, 1\left(\left(^{(2)}\right)=q\right. \\
\gamma^{(1)}(0)=\gamma^{(2)}(0)=r \\
F\left(\gamma^{(1)}\right)+F\left(\gamma^{(2)}\right)=r
\end{array}} c\left(\gamma^{(1)}\right) c\left(\gamma^{(2)}\right),
$$

Example:

$$
\vartheta_{(-1,0)} \cdot \vartheta_{(2,1)}=\vartheta_{(1,1)}+\vartheta_{(1,2)} .
$$

© The structure constants endow the vector space generated by theta functions with an algebra structure!

Toric v.s. Cluster

Analogy

Toric	Cluster
fan	scattering diagram
toric monomials	theta functions
convex polytope	positive polytope

Positive polytope

Definition

A closed subset $S \subseteq L_{\mathbb{R}}$ is positive if
for every $a, b \in \mathbb{Z}_{\geq 0}, p \in a S(\mathbb{Z}), q \in b S(\mathbb{Z})$, and $r \in L$ with $\alpha_{p q}^{r} \neq 0$,
$\Rightarrow r \in(a+b) S$.
Notation: $L=M^{\circ}$ or $N, d S(\mathbb{Z})$ is the cone of S at the 'd'th-level.

Toric	Cluster
fan	scattering diagram
toric monomials	theta functions
convex polytope	positive polytope
line	broken line
convex	broken line convex

Broken line convex

Definition (C-Magee-Nájera Chávez)
A closed subset S is called broken line convex if for any $x, y \in S(\mathbb{Q})$, every broken line segment connecting x and y is entirely contained in S.

Theorem (C-Magee-Nájera Chávez)
S is positive \Leftrightarrow S is broken line convex.
Idea: The structure constant $\alpha_{p q}^{r}$ in GHKK were expressed as two broken lines with initial slope p and q.

* [C-Magee-Nájera Chávez] construct the correspondence of those two broken lines with broken line segments with (scaling of) the endpoints p and q.

Compactification

Result:

\rightsquigarrow get graded ring R
\rightsquigarrow get compactification ProjR
Example:
Type A_{2} :

[Gross-Hacking-Keel-Kontsevich]del Pezzo surface of degree 5

Compactification

Type B_{2} :

> [C-Magee] del Pezzo surface of degree 6

Type G_{2}

non-integral point coming from bending of broken line!

Any evidence?
Why we care?

Grassmannian

[Rietsch-Williams] for Grassmannian $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$

$$
\begin{aligned}
\begin{aligned}
\text { Newton Okounkov body } \\
\text { to } \mathcal{X}
\end{aligned} & =\begin{array}{r}
\text { Tropicalize the superpotential } \\
\text { of } \mathcal{A}
\end{array} \\
& =\text { positive polytope }
\end{aligned}
$$

Non-integral example from NO body calculation: $\mathrm{Gr}_{3}\left(\mathbb{C}^{6}\right)$.

$\operatorname{Gr}_{3}\left(\mathbb{C}^{6}\right)$

[Bossinger-C-Magee-Nájera Chávez]

Figure 1: Part of the scattering diagram of $\operatorname{Gr}_{3}\left(\mathbb{C}^{6}\right)$.

$$
\frac{\nu(f)}{2}=\left(\frac{1}{2}, 1, \frac{3}{2}, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right)
$$

Get the non-integral point from broken line convexity!

Newton Okounkov bodies

[..., Rietsch-Williams]
$\mathbb{X}=\operatorname{Gr}_{n-k}\left(\mathbb{C}^{n}\right)$, with anticanonical divisor $D_{\mathrm{ac}}=D_{1}+\cdots+D_{n}$.
$\mathbb{X}^{\circ}=\mathbb{X} \backslash D_{\mathrm{ac}}$.
Consider ample divisor $D=r_{1} D_{1}+\ldots r_{n} D_{n}$, and the valuation val : $\mathbb{C}(\mathbb{X}) \backslash\{0\} \rightarrow \mathbb{Z}^{K}$.
Then the NO body for the divisor D and val is

$$
\Delta(D)=\overline{\text { ConvexHull }\left(\bigcup_{r} \frac{1}{r} \operatorname{val}\left(H^{0}(\mathbb{X}, \mathcal{O}(r D))\right)\right)}
$$

NO bodies for cluster varieties

Valuation $\nu_{\theta}: \quad \nu_{\theta}\left(\vartheta_{p}\right)=p$, where $p \in L$ (set of tropical points)
Intrinsic Newton-Okounkov body

$$
\Delta_{\vartheta}^{\mathrm{BL}}(D)=\text { ConvexHull }^{\mathrm{BL}}\left(\bigcup_{r} \frac{1}{r} \nu_{\vartheta}\left(H^{0}(\mathbb{X}, \mathcal{O}(r D))\right)\right)
$$

Grassmannian: For certain choice of plabic graph (i.e. val, i.e. torus chart),

$$
\Delta_{\mathrm{val}}(D)=\text { ConvexHull }\left(\operatorname{val}\left(p_{\jmath}\right)\right)
$$

[Bossinger-C-Magee-Nájera Chávez] We identify val with ν_{θ}

$$
\Delta_{\text {val }}^{\mathrm{BL}}(D)=\text { ConvexHull }^{\mathrm{BL}}\left(\operatorname{val}\left(p_{\jmath}\right)\right),
$$

independent of the choice of torus chart.

Batyrev mirror

Batyrev construction: want the polytope Δ to be reflexive (reflexive means polar dual of Δ is still a lattice polytope)

Take the points of the primitive generators of the rays of the
scattering diagrams
$P=$ convex hull of these vertices
[C-Magee] P is reflexive for type A and B_{2}

Landau Ginzburg mirror

[C-Magee]

Toric	Cluster
$X \supset T$ toric Fano, $D=\sum_{i} D_{n_{i}}$ toric anticanonical divisor	(X, D) Fano minimal model of cluster variety $U, D=\sum_{i} D_{V_{i}}$
$D_{n_{i}} \rightsquigarrow z^{n_{i}}$ Laudau Ginzburg mirror $W=\sum_{i} z^{n_{i}}: T^{\vee} \rightarrow \mathbb{C}$	$D_{v_{i}} \rightsquigarrow \vartheta_{v_{i}}$ Laudau Ginzburg mirror $W=\sum_{i} \vartheta_{v_{i}}: U^{\vee} \rightarrow \mathbb{C}$
Generic sections of $\mathcal{O}_{X}(D)$ mildly singular CY hypersurfaces	Generic sections of $\mathcal{O}_{X}(D)$ mildly singular CY hypersurfaces
level sets of W	level sets of W
want W as sections of some $\mathcal{O}_{Y}\left(D^{\prime}\right), M \subset T^{\vee}$	want W as sections of some $\mathcal{O}_{Y}\left(D^{\prime}\right), M \subset U^{V}$
$Y:=\operatorname{TV}(\operatorname{Newt}(W))$	$\mathrm{Newt}_{\vartheta}(\mathrm{W}):=\operatorname{conv}\left(\mathrm{V}_{i}\right)$
Sections of $\mathcal{O}_{X}(D)$ and $\mathcal{O}_{Y}\left(D^{\prime}\right)$ are mirror	$?$

Mirror symmetry

Algebraic geometry \Longleftrightarrow Symplectic geometry

- (C-Vianna) Mutation of polytopes
- (C-Lin) family Floer mirror

Mutation of polytopes

Cluster mutation of $(\mathcal{X}$-)scattering diagram / polytope

'boring' as the underlying scheme is not changing

Another mutation

Scattering diagram with monodrony

Another mutation

Mutation of polytope

Mutation cycle

[C-Vianna] same as symplectic mutation compactification: singular Lagrangian fibration (almost toric fibration)

Family Floer mirror

Developed by Fakaya, Abouzaid, Tu
Our idea: reinterpret Gross-Hacking-Keel mirror construction in terms of family Floer mirror

Start with (Y, D), where Y is a smooth rational projective surface, and D is an anti-canonical cycle of projective lines.
$\rightsquigarrow(B, \Sigma), B$ affine manifold, Σ cone decomposition of B.
\rightsquigarrow scattering diagram \mathfrak{D} (coming from curve counting)
\rightsquigarrow Theta functions with algebra structure
\rightsquigarrow Take Spec
\rightsquigarrow mirror

SG v.s. AG

family Floer SYZ	Gross-Hacking-Keel-Siebert mirror
large complex structure limit	toric degeneration
base of SYZ fibration with complex affine structure	dual intersection complex of the toric degeneration
loci of SYZ fibres bounding holomorphic discs	rays in scattering diagram
homology of boundary of a holomorphic disc	direction of the ray
exp of generating function of open Gromov-Witten invariants of Maslov index zero	slab functions attached to the ray
coefficients of superpotential $=$ open Gromov-Witten of Maslov index 2 discs	coefficient of theta functions $=$ counting of broken lines
isomorphisms of Maurer-Cartan spaces	
induced by pseudo isotopies	

Construction

family Floer mirror	GHKS mirror
	$\mathbb{C}[L]$
	\mathbb{G}_{m}^{n}
	gluing (wall crossing)

Construction

family Floer mirror	GHKS mirror
Tate algebra	$\mathbb{C}[L]$
rational domain	\mathbb{G}_{m}^{n}
analytic torus $\mathbb{G}_{\mathrm{an}}^{n}$	gluing (wall crossing)
gluing (Wall crossing and GAGA)	

[C-Lin] The family Floer mirror of the hyperKahler rotation of complement of a I^{*} and $I I^{*}$ fibres in a rational elliptic surfaces have the compactifications which are the analytification of dP5 and dP6 respectively.

Thank you!

