
LECTURE 2: PRACTICE EXERCISES

MAT-67 SPRING 2024

Abstract. These practice problems correspond to the 2nd lecture of MAT-67 Spring
2024, delivered on April 3rd 2024. Solutions were typed by TA Scroggin, please con-
tact tmscroggin – at – ucdavis.edu for any comments.

Recall that a map f : Rn −→ Rm is said to be linear if it satisfies the following 2
conditions:

(i) f(x+ y) = f(x) + f(y), for all x, y ∈ Rn,
(ii) f(c · x) = c · f(x), for all c ∈ R and x ∈ Rn.

See lecture notes from Lectures 1 & 2, and also Section 1.3 in book, for more details.

Problem 1. For each of the following maps, prove whether it is linear or non-linear.

(1) f : R −→ R, f(x) = 5x,
(2) f : R −→ R, f(x) = 5x+ 1,
(3) f : R −→ R, f(x) = cos(x),
(4) f : R −→ R, f(x) = x3 − x,
(5) f : R −→ R, f(x) = ln(1 + x2),
(6) f : R2 −→ R, f(x1, x2) = x1 + 4x2,
(7) f : R2 −→ R, f(x1, x2) = 3x1 − x2 + 7,
(8) f : R2 −→ R2, f(x1, x2) = (3x1 − x2, x2),
(9) f : R3 −→ R3, f(x1, x2, x3) = (3x1 − x2 + x3, x1 − x2 + 4x3, 4x1 + x3),
(10) f : R3 −→ R3, f(x1, x2, x3) = (3x1 − x2 + x3, x1 − x2 + 4x3, 1)
(11) f : R3 −→ R4, f(x1, x2, x3) = (3x1 − x2 + x3, x1 − x2 + 4x3, x1x3, x1 − x2)
(12) f : R3 −→ R4, f(x1, x2, x3) = (ex3+x1 , 3x1 − x2 + x3, x1 − x2 + 4x3, 0)

Solution. Please note that I shall use the distributive law below without explicitly
mentioning this fact, due to the number of exercises. However, in your proof you
should state when this rule is applied.

(1) Claim: The function is linear.
proof : We verify that f satisfies conditions (i) and (ii):
(i) By the distributive law, f(x+ y) = 5(x+ y) = 5x+ 5y = f(x) + f(y),
(ii) f(cx) = 5(cx) = 5cx = c(5x) = cf(x).

(2) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii):
(i) Given that

f(x+ y) = 5(x+ y) + 1 = 5x+ 5y + 1,

f(x) + f(y) = (5x+ 1) + (5y + 1) = 5x+ 5y + 2

then f(x+ y) ̸= f(x) + f(y).
(ii) f(cx) = 5(cx) + 1 = c(5x) + 1 ̸= c(5x) + c = c(5x+ 1) = cf(x).
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(3) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii):
(i) f(x+ y) = cos(x+ y) ̸= cos(x) + cos(y) = f(x) + f(y),
(ii) f(c · x) = cos(cx) ̸= c · cos(x) = c · f(x).

(4) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii):
(i) f(x+y) = (x+y)3+(x+y) = x3+3x2y+3xy+y3+x+y ̸= x3+y3+x+y =
f(x) + f(y),
(ii) f(c · x) = (cx)3 + cx = c3x3 + cx = c(c2x3 + x) ̸= c(x3 + x) = c · f(x).

(5) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii).
(i) f(x+y) = ln(1+(x+y)2) = ln(1+x2+2xy+y2) ̸= ln(1+x2)+ln(1+y2) =
f(x) + f(y),
(ii) f(c ·x) = ln(1+(cx)2) = ln(1+ c2x2) ̸= ln(1+x2)c = c ln(1+x2) = c · f(x).

(6) Claim: The function is linear.
proof : We verify that f satisfies conditions (i) and (ii):
(i)

f((x1, x2) + (y1, y2)) = f(x1 + y1, x2 + y2) = (x1 + y1) + 4(x2 + y2)

= x1 + y1 + 4x2 + 4y2 = (x1 + 4x2) + (y1 + 4y2)

= f(x1, x2) + f(y1, y2),

(ii) f(c · (x1, x2)) = f(cx1, cx2) = (cx1) + 4(cx2) = c(x1 + 4x2) = c · f(x1, x2).

(7) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii).
(i) Given that

f(x1 + y1, x2 + y2) = 3(x1 + y1)− (x2 + y2) + 7

= 3x1 + x2 + 3y1 + y2 + 7

f(x1, x2) + f(y1, y2) = (3x1 + x2 + 7) + (3y1 + y2 + 7)

= 3x1 + x2 + 3y1 + y2 + 14,

then f((x1, x2) + (y1, y2)) ̸= f(x1, x2) + f(y1, y2).
(ii)

f((x1, x2)) = f(cx1, cx2) = 3(cx1)− (cx2) + 7

= 3cx1 + cx2 + 7

c · f(x1, x2) = c(3x1 − x2 + 7) = 3cx1 + cx2 + 7c.

Here, c · f(x1, x2) ̸= f(c · (x1, x2)).

(8) Claim: The function is linear.
proof : We verify that f satisfies conditions (i) and (ii):
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(i)

f((x1, x2) + (y1, y2)) = f(x1 + y1, x2 + y2)

= (3(x1 + y1)− (x2 + y2), (x2 + y2))

= (3x1 + 3y1 − x2 − y2, x2 + y2)

= (3x1 − x2, x2) + (3y1 − y2, y2)

= f(x1, x2) + f(y1, y2),

(ii) f(c(̇x1, x2) = f(cx1, cx2) = (3(cx1) − (cx2), cx2) = (c(3x1 − x2), cx2) =
c · (3x1 − x2, x2) = c · f(x1, x2).

(9) Claim: The function is linear.
proof : We verify that f satisfies conditions (i) and (ii): (i)

f(x1, x2, x3) + f(y1, y2, y3) = f(x1 + y1, x2 + y2, x3 + y3)

= (3(x1 + y1)− (x2 + y2) + (x3 + y3), (x1 + y1)

− (x2 + y2) + 4(x3 + y3), 4(x1 + y1) + (x3 + y3))

= (3x1 + 3y1 − x2 − y2 + x3 + y3, x1 + y1 − x2 − y2

= +4x3 + 4y3, 4x1 + 4y2 + x3 + y3)

= (3x1 − x2 + x3, x1 − x2 + 4x3, 4x1 + x3)

+ (3y1 − y2 + y3, y1 − y2 + 4y3, 4y1 + y3)

= f(x1, x2, x3) + f(y1, y2, y3),

(ii)

f(c · x1, x2, x3) = f(cx1, cx2, cx3)

= (3cx1 − cx2 + cx3, cx1 − cx2 + 4cx3, 4cx1 + cx3)

= (c(3x1 − x2 + x3), c(x1 − x2 + 4x3), c(4x1 + x3))

= c · (3x1 − x2 + x3, x1 − x2 + 4x3, 4x1 + x3)

= c · f(x1, x2, x3).

f : R3 −→ R3, f(x1, x2, x3) = (3x1 − x2 + x3, x1 − x2 + 4x3, 4x1 + x3),

(10) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii).
(i)

f(x1 + y1, x2 + y2, x3 + y3) = (3(x1 + y1)− (x2 + y2) + (x3 + y3),

(x1 + y1)− (x2 + y2) + 4(x3 + y3), 1)

= (3x1 + 3y1 − x2 − y2 + x3 + y3, x1 + y1

− x2 − y2 + 4x3 + 4y3, 1)

f(x1, x2, x3) + f(y1, y2, y3) = (3x1 − x2 + x3, x1 − x2 + 4x3, 1)

+ (3x1 − x2 + x3, x1 − x2 + 4x3, 1)

= (3x1 + 3y1 − x2 − y2 + x3 + y3, x1 + y1

− x2 − y2 + 4x3 + 4y3, 2).

Here, f(x1 + y1, x2 + y2, x3 + y3) ̸= f(x1, x2, x3) + f(y1, y2, y3) because in the
third coordinate we have 1 ̸= 2.
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(i)

f(c(̇x1, x2, x3)) = f(cx1, cx2, cx3)

= (3cx1 − cx2 + cx3, cx1 − cx2 + 4cx3, 1)

c · f(x1, x2, x3) = c · (3x1 − x2 + x3, x1 − x2 + 4x3, 1)

= (3cx1 − cx2 + cx3, cx1 − cx2 + 4cx3, c)

We have that f(c · (x1, x2, x3) ̸= c · f(x1, x2, x3) because in the third coordinate
1 ̸= c, unless c = 1.

(11) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii).
(i)

f(x1 + y1, x2 + y2, x3 + y3) = (3(x1 + y1)− (x2 + y2) + (x3 + y3),

(x1 + y1)− (x2 + y2) + 4(x3 + y3),

(x1 + y1)(x3 + y3),

(x1 + y1)− (x2 + y2))

= (3x1 + 3y1 − x2 − y2 + x3 + y3,

x1 + y1 − x2 + y2 + 4x3 + 4y3,

x1x3 + x1y3 + y1x3 + y1y3,

x1 + y1 − x2 − y2)

f(x1, x2, x3) + f(y1, y2, y3) = (3x1 − x2 + x3, x1 − x2 + 4x3, x1x3, x1 − x2)

+ (3y1 − y2 + y3, y1 − y2 + 4y3, y1y3, y1 − y2)

= (3x1 + 3y1 − x2 − y2 + x3 + y3,

x1 + y1 − x2 + y2 + 4x3 + 4y3,

x1x3 + y1y3, x1 + y1 − x2 − y2)

Therefore, f(x1 + y1, x2 + y2, x3 + y3) ̸= f(x1, x2, x3) + f(y1, y2, y3) due to the
difference of the additional term of x1y3 + x3y1 in the third coordinate for
f(x1 + y1, x2 + y2, x3 + y3).
(ii)

f(c · (x1, x2, x3)) = f(cx1, cx2, c3)

= (3cx1 − cx2 + cx3, cx1 − cx2 + 4cx3, c
2x1x3, cx1 − cx2)

= (c(3x1 − x2 + x3), c(x1 − x2 + 4x3), c(cx1x3), c(x1 − x2))

c · f(x1, x2, x3) = c · (3x1 − x2 + x3, x1 − x2 + 4x3, x1x3, x1 − x2)

= (c(3x1 − x2 + x3), c(x1 − x2 + 4x3), c(x1x3), c(x1 − x2))

Here, we see that f(c · (x1, x2, x3) ̸= c · f(x1, x2, x3) by the discrepancy in the
third coordinate of c2 ̸= c unless c = ±1.

(12) Claim: The function is non-linear.
proof : This function fails both conditions (i) and (ii).
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(i)

f(x1 + y1, x2 + y2, x3 + y3) = (e(x3+y3)+(x1+y1), 3(x1 + y1)− (x2 + y2) + (x3 + y3),

(x1 + y1)− (x2 + y2) + 4(x3 + y + 3), 0)

= (ex3+x1ey3+y1 , 3x1 − x2 + x3 + 3y1 − y2 + y3,

x1 − x2 + 4x3 + y1 − y2 + 4y3, 0)

f(x1, x2, x3) + f(y1, y2, y3) = (ex3+x1 , 3x1 − x2 + x3, x1 − x2 + 4x3, 0)

+ (ey3+y1 , 3y1 − y2 + y3, y1 − y2 + 4y3, 0)

= (ex3+x1 + ey3+y1 , 3x1 − x2 + x3 + 3y1 − y2 + y3,

x1 − x2 + 4x3 + y1 − y2 + 4y3, 0)

f : R3 −→ R4, f(x1, x2, x3) = (ex3+x1 , 3x1 − x2 + x3, x1 − x2 + 4x3, 0)

Hence, f(x1 + y1, x2 + y2, x3 + y3) ̸= f(x1, x2, x3) + f(y1, y2, y3) for the discrepancy in
the first coordinate.
(ii)

f(cx1, cx2, cx3) = (ecx3+cx1 , 3cx1 − cx2 + cx3, cx1 − cx2 + 4cx3, 0)

c · f(x1, x2, x3) = (cex3+x1 , c(3x1 − x2 + x3)c, c(x1 − x2 + 4x3), 0)

Since ec(x3+x1) ̸= cex3+x1 unless c = 1, then f(c · (x1, x2, x3) ̸= c · f(x1, x2, x3). □
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Problem 2. For each of the following pairs of maps f : Rn −→ Rm and g : Rm −→ Rk,
write their composition g ◦ f : Rn −→ Rk, defined by

(g ◦ f)(x1, . . . , xn) = g(f((x1, . . . , xn))).

(1) f : R −→ R, f(x) = 3x and g : R −→ R, g(s) = 4s+ 1.

(2) f : R −→ R2, f(x) = (2x, 7x) and g : R2 −→ R, g(s, t) = s+ 6t.

(3) f : R2 −→ R2, f(x, y) = (2x+ 3y, 7x− y) and g : R2 −→ R, g(s, t) = 3s− t.

(4) f : R2 −→ R3, f(x, y) = (x− 2y, 4x+ 7y, x), and the map
g : R3 −→ R2, g(s, t, u) = (s+ 3t− u, s+ u).

Solution.

(1) g ◦ f : R −→ R, where
(g ◦ f)(x) = g(f(x)) = g(3x) = 4(3x) + 1 = 12x+ 1.

(2) g ◦ f : R −→ R, where
(g ◦ f)(x) = g(f(x)) = g((2x, 7x)) = 2x+ 6(7x) = 2x+ 42x = 44x.

(3) g ◦ f : R2 −→ R, where
(g ◦ f)(x, y) = g(f((x, y))) = g((2x+ 3y, 7x− y)) = 3(2x+ 3y)− (7x− y)

= 6x+ 9y − 7x+ y = 13x+ 10y.

(4) g ◦ f : R2 −→ R2, where
(g ◦ f)(x, y) = g(f((x, y))) = g((x− 2y, 4x+ 7y, x))

= ((x− 2y) + 3(4x+ 7y)− x, (x− 2y) + x)

= (x− 2y + 12x+ 21y − x, 2x− 2y) = (12x+ 19y, 2x− 2y).

□
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Problem 3. Prove, with an argument, or disprove, with a counter-example, each of
the statements sentences below.

(1) Suppose that f : Rn −→ Rm and g : Rm −→ Rk are two maps. If f and g are
linear, then the composition g ◦ f is linear.

(2) Suppose that f : Rn −→ Rm and g : Rm −→ Rk are two maps. If f is linear,
then the composition g ◦ f is linear.

(3) Suppose that f : Rn −→ Rm and g : Rm −→ Rk are two maps. If f is not
linear, then the composition g ◦ f is never linear.

(4) For any map f : Rn −→ Rm there exists a linear map g : Rm −→ Rk such that
the composition g ◦ f is linear.

(5) For any non-linear map f : Rn −→ Rm there exists a linear map g : Rm −→ Rk

such that the composition g ◦ f is not linear.

Solution.

(1) This statement is true.

Proof. Suppose that the maps f, g are linear. First, we want to show that
composition of linear maps preserves vector addition, i.e., (g ◦ f)(x + y) =
(g ◦ f)(x) + (g ◦ f)(y).
(g ◦ f)(x+ y) = g(f(x+ y))

= g(f(x) + f(y)) (by linearity of f)

= g(f(x)) + g(f(y)) (by linearity of g)

= (g ◦ f)(x) + (g ◦ f)(y).
Now, we want to show that the composition of linear maps preserves scalar
multiplication, i.e., (g ◦ f)(c · x) = c · (g ◦ f)(x).

(g ◦ f)(c · x) = g(f(c · x))
= g(c · f(x)) (by linearity of f)

= c · g(f(x)) (by linearity of g)

= c · (g ◦ f)(x).
Therefore, since (g ◦ f)(x) satisfies the conditions of scalar multiplication and
vector addition then the map is linear. □

(2) This statement is false.
Counterexample: Let f : R2 −→ R where f(x1, x2) = x1 + x2 and g : R −→ R
where g(x) = ex. Then the composition map g ◦ f : R2 −→ R is defined
(g ◦ f)(x1, x2) = ex1+x2 violates both scalar multiplication and vector addition
since

(g ◦ f)(x1 + y1, x2 + y2) = ex1+x2+y1+y2 ̸= ex1+x2 + ey1+y2 = (g ◦ f)(x) + (g ◦ f)(y),
(g ◦ f)(c · x) = ec(x1+x2) ̸= cex1+x2 = c · (g ◦ f)(x).
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(3) This statement is false.
Counterexample: Let f : R −→ R where f(x) = ex and g : R −→ R where
g(x) = ln x. Then the composition map g◦f : R −→ R is defined as (g◦f)(x) =
x, which is clearly linear. To check this

(g ◦ f)(x+ y) = x+ y = (g ◦ f)(x) + (g ◦ f)(y),
(g ◦ f)(cx) = cx = c · (g ◦ f)(x).

(4) This statement is true.

Proof. Let g : Rm −→ Rk be the zero map. Then the composition map (g ◦
f)(x) = 0 ∈ Rk. We have that the zero map is trivially linear because

(g ◦ f)(x+ y) = g(f(x+ y)) = 0 = 0 + 0 = (g ◦ f)(x) + (g ◦ f)(y)
(g ◦ f)(c · x) = 0 = c · 0 = c · (g ◦ f)(x)

□

Note that if the problem statement had asked for a nontrivial map g, then
this statement would be false. In this case, the function f could be some
combination of the linear and non-linear terms, making it impossible for the
function g to resolve the non-linear terms without creating new non-linear terms
out of the linear terms from f .

(5) The statement is true.

Proof. If we suppose k = m, then let g be the identity map. Therefore, g◦f = f
which is non-linear by definition.

Otherwise, let f(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))
and let yi = fi(x1, x2, . . . , xn) for 1 ≤ i ≤ m be the function which is non-linear.
There may be more than one non-linear function, here we choose one.

Now, suppose k ̸= m, i.e. k < m or k > m, then let g(y1, . . . , ym) =
(yi, 0, . . . , 0), in other words, let g be the identity map on the coordinate asso-
ciated to the non-linear equation and 0 for the remaining |k −m| coordinates,
we call this function the projection map. Here, the map g is linear since it
satisfies vector addition and scalar multiplication:

g(x1 + x′
1, . . . , xm + x′

m) = (xi + x′
i, 0 . . . , 0)

= (xi, 0, . . . , 0) + (x′
i, 0, . . . , 0)

= g(x1, . . . , xm) + g(x′
1, . . . , x

′
m)

g(c · (x1, . . . , xm)) = g(cx1, cx2, . . . , cxn)

= (cxi, 0, . . . , 0))

= c((xi, 0, . . . , 0)

= c · g(x1, x2, . . . , xn).zse3

However, the composition map which is defined

(g ◦ f)(x1, . . . , xn) = (fi(x1, . . . , xn), 0, . . . , 0)

is non-linear. □

□
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Problem 4. Suppose that a map f : R −→ R satisfies f(x+ y) = f(x) + f(y).

(1) Show that f(n · x) = n · f(x) for all natural numbers n ∈ N.
(2) Show that f(q · x) = q · f(x) for all rational numbers q ∈ Q.

In particular, a continuous function satisfying condition (i) of linearity also satisfies
condition (ii).

Solution.

(1) We show that f(n · x) = n · f(x) for all natural numbers n using a recursive
argument.
First, we see that f(1 ·x) = f(x) = 1 ·f(x) and for n = 2, f(2 ·x) = f(x+x) =
f(x)+f(x) = 2f(x). Similarly for n = 3, f(3 ·x) = f(2x+x) = f(2x)+f(x) =
2f(x) + f(x) = 3f(x).
Since the natural numbers are defined recursively, i.e., if n ∈ N then n+1 ∈ N,

let’s now suppose that the statement holds for some arbitrary n, i.e., f(n ·x) =
n · f(x), and we’ll show that f((n+ 1) · x) = (n+ 1) · f(x).

f((n+ 1) · x) = f(n · x+ x) = n · f(x) + f(x) = (n+ 1) · f(x).
Now, we have shown that for any natural number n ∈ N that f(n ·x) = n ·f(x).

This type of argument is called an inductive proof which works for showing
that a statement holds for a natural number and can be generalized to the
integers. The general procedure to show an inductive proof is you show that
the statement holds for a ”base case” typically 1 but can be for any integer k.
Then you perform the ”inductive hypothesis” step which is when you assume
that the statement holds for some particular natural number n and then you
show that the statement holds for n+ 1.

(2) Let q = p
r
∈ Q where p ∈ Z and r ∈ N. First we want to show that f(1

r
· x) =

1
r
f(x), using the results from part (1) we see that

f(x) = f(r · 1
r
x) = r · f(1

r
x)

Therefore, f(x) = r · f(1
r
x) and since r ̸= 0, then we may divide by r to obtain

1
r
f(x) = f(1

r
x).

Now, to show the desired statement, we initially use the results from part
(1) then the result from above,

f(q · x) = f(
p

r
· x) = f(p

1

r
x) = pf(

1

r
x) = p

1

r
f(x) = qf(x).

□
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