LECTURE 7: PRACTICE EXERCISES

MAT-67 SPRING 2024

Abstract

These practice problems correspond to the 7 th lecture of MAT-67 Spring 2024, delivered on April 15th 2024.

The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Recall: Let V be an \mathbb{R}-vector space. Given a vector $w \in V$ and a set of vectors $\left\{v_{1}, \ldots, v_{k}\right\} \in V$, we say that w is a linear combination of $\left\{v_{1}, \ldots, v_{k}\right\}$ if there exists real constants $a_{1}, \ldots, a_{k} \in \mathbb{R}$ such that

$$
w=a_{1} v_{1}+\ldots+a_{k} v_{k}
$$

Also, independently, recall that the space of $\left\{v_{1}, \ldots, v_{k}\right\}$ is the subspace $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right) \subseteq$ V that contains all linear combinations of $\left\{v_{1}, \ldots, v_{k}\right\}$. We proved in lecture that this is the smallest subspaces containing each $v_{i}, 1 \leq i \leq k$.

Problem 1. For each of the following vectors $w \in V$ and as set of vectors $\left\{v_{1}, \ldots, v_{k}\right\} \in$ V, decide whether w is a linear combination of $\left\{v_{1}, \ldots, v_{k}\right\}$.
(1) Let $V=\mathbb{R}^{2}, w=(1,2)$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,0),(1,1)\} .
$$

(2) Let $V=\mathbb{R}^{2}, w=(1,2)$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(-2,-4),(1,1)\} .
$$

(3) Let $V=\mathbb{R}^{2}, w=(1,2)$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(3,-5),(12,-20)\} .
$$

(4) Let $V=\mathbb{R}^{3}, w=(-3,1,4)$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,0,3),(1,1,4)\}
$$

(5) Let $V=\mathbb{R}^{3}, w=(-3,2,4)$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(-3,0,-2),(0,1,3)\} .
$$

(6) Let $V=\mathbb{R}^{3}, w=(-3,2,4)$ and

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\{(-1,0,-1),(0,1,2),(0,0,1)\} .
$$

(7) Let $V=\mathbb{R}[x], w=3-x$ and

$$
\left\{v_{1}, v_{2}\right\}=\left\{1,2-x^{2}\right\} .
$$

(8) Let $V=\mathbb{R}[x], w=3-x+7 x^{3}-x^{6}$ and

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{1,2-x, x^{3}, x^{5}-x^{3}-8\right\} .
$$

(9) Let $V=\mathbb{R}[x], w=3-x+7 x^{3}-x^{6}$ and

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{1,2-x, x_{1}^{3}, x^{5}-x^{3}-8, x^{6}+4 x\right\} .
$$

Problem 2. Given a subset $\left\{v_{1}, \ldots, v_{k}\right\}, v_{i} \in V$ for $1 \leq i \leq k$, and a vector subspace $U \subseteq V$, prove or disprove whether $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=U$.
(1) $V=\mathbb{R}^{2}$ and

$$
\left\{v_{1}\right\}=\{(1,-3)\}
$$

and the vector subspace

$$
U=\left\{3 x_{1}-x_{2}=0\right\} .
$$

(2) $V=\mathbb{R}^{2}$ and

$$
\left\{v_{1}\right\}=\{(1,-3)\}
$$

and the vector subspace

$$
U=\left\{3 x_{1}+x_{2}=0\right\} .
$$

(3) $V=\mathbb{R}^{3}$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,-3,2),(4,5,0)\}
$$

and the vector subspace

$$
U=\left\{5 x_{1}+x_{2}-x_{3}=0\right\} .
$$

(4) $V=\mathbb{R}^{3}$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,-3,2),(0,1,1)\}
$$

and the vector subspace

$$
U=\left\{5 x_{1}+x_{2}-x_{3}=0\right\} .
$$

(5) $V=\mathbb{R}^{4}$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,-3,2,0),(2,0,1,1)\}
$$

and the vector subspace

$$
U=\left\{8 x_{1}+5 x_{2}-x_{3}+17 x_{4}=0\right\}
$$

(6) $V=\mathbb{R}^{4}$ and

$$
\left\{v_{1}, v_{2}\right\}=\{(1,0,2,0),(2,0,1,1)\}
$$

and the vector subspace

$$
U=\left\{x_{2}=0,-2 x_{1}+x_{3}+3 x_{4}=0\right\} .
$$

(7) $V=\mathbb{R}^{4}$ and

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\{(1,-3,2,0),(2,0,1,1),(0,0,0,1)\}
$$

and the vector subspace

$$
U=\left\{8 x_{1}+5 x_{2}-x_{3}+17 x_{4}=0\right\}
$$

Problem 3. Given two subsets $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{s}\right\}, v_{i}, w_{j} \in V, 1 \leq i \leq k$ and $1 \leq j \leq s$, prove or disprove whether $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$.
(1) Let $V=\mathbb{R}^{2}$ and

$$
\begin{aligned}
\left\{v_{1}\right\} & =\{(2,-3)\}, \\
\left\{w_{1}\right\} & =\{(1,-3)\} .
\end{aligned}
$$

(2) Let $V=\mathbb{R}^{3}$ and

$$
\begin{aligned}
\left\{v_{1}\right\} & =\{(2,-4,6)\} \\
\left\{w_{1}\right\} & =\{(1,-2,3)\}
\end{aligned}
$$

(3) Let $V=\mathbb{R}^{3}$ and

$$
\begin{aligned}
& \left\{v_{1}, v_{2}\right\}=\{(2,-4,6),(1,0,0)\} \\
& \left\{w_{1}, w_{2}\right\}=\{(1,-2,3),(0,0,1)\}
\end{aligned}
$$

(4) Let $V=\mathbb{R}^{3}$ and

$$
\begin{aligned}
& \left\{v_{1}, v_{2}\right\}=\{(1,2,-3),(-5,6,-1)\} \\
& \left\{w_{1}, w_{2}\right\}=\{(4,0,-4),(1,-2,1)\}
\end{aligned}
$$

Problem 4. Solve the following parts:
(1) Find an example of 3 vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ and of 3 vectors $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{4}$ such that $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \neq \operatorname{span}\left(w_{1}, w_{2}, w_{3}\right)$ and $\operatorname{span}\left(v_{1}, v_{2}\right)=\operatorname{span}\left(w_{1}, w_{2}\right)$.
(2) Do there exist 3 vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{4}$ and 3 vectors $w_{1}, w_{2}, w_{3} \in \mathbb{R}^{4}$ such that $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \neq \operatorname{span}\left(w_{1}, w_{2}, w_{3}\right)$ but

$$
\begin{aligned}
\operatorname{span}\left(v_{1}, v_{2}\right)= & \operatorname{span}\left(w_{1}, w_{2}\right), \quad \operatorname{span}\left(v_{1}, v_{3}\right)=\operatorname{span}\left(w_{1}, w_{3}\right), \\
& \text { and } \operatorname{span}\left(v_{3}, v_{2}\right)=\operatorname{span}\left(w_{3}, w_{2}\right) ?
\end{aligned}
$$

(3) Suppose that $w \in V$ is not a linear combination of $\left\{v_{1}, \ldots, v_{k}\right\}$. Show that $a \cdot w \in V$ satisfies $a \cdot w \notin \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ for all $a \in \mathbb{R}$ non-zero.

