SOLUTIONS TO PROBLEM SET 2

MAT 145 COMBINATORICS

ABSTRACT. These are solutions corresponding to the Problem Set 2 of the Combi-
natorics Course in the Winter Quarter 2019. The Problem Set was posted online on
Tuesday Jan 15 and is due Friday Jan 25 at the beginning of the class at 9:00am.

Information. These are the solutions for the Problem Set 2 corresponding to the
Winter Quarter 2019 class of MAT 145 Combinatorics, with Prof. Casals and T.A.
A. Aguirre. The Problems are written in black and the solutions in blue.

Problem 1. By induction, prove the following two identities:

1
1+2+3+...+(n—1)+n:@, Vn € N,
and
n(3n —1)
2 )
Solution. It is trivial to check the base case for n = 1. Assume by inductive hypothesis
that:

1+44474+...+4Bn-1)—2)+Bn—-2) = Vn € N.

1
1+2+3+...+(n—1)+n=@
Adding (n + 1) on both sides:
+1
1+2+3+...+(n—1)+n:%Hrﬁl):(rﬁl) <g+1> =(n+1)(n+2)

Likewise for the other identity the base case is easy to verify. By inductive hypothesis
assume that:

an—1
1+4+7+...+(3(n—1)—2)+(3n—2):%
Adding 3(n + 1) — 2 on both sides:

n(3n —1)

Bn*—n)+(6n+2) (n+1)B(n+1)—1)

1+44. . . +(3(n+1)—2) = +(3(n+1)-2) = —

2 2 2

Problem 2. Show that 47! > n? for n > 3.
Hint: Use induction, and notice that the base case is n = 3.

Solution. The base case is true since 4> > 32. Assume by indictive hypothesis that

47~ > n? for some n. Then multiplying by 4 on both sides of the inequality we have:
1
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4" > 4n* = (2n)® > (n +1)?

Note that if n > 3 certainly 2n = n+n > n+1 and the result follows because f(z) = z?
is a strictly increasing function. 0

Problem 3. (20 pts)
(a) (10 pts) Show that the following equality holds:

1 1
12+22+32+...+(n—1)2+n2:(n; )+2<n—£ ) Vn € N,

Hint: If you proceed by induction, you might want to use Theorem 1.8.2. If you
search for a combinatorial proof, consider the set

X ={(i,4,k) : 0<14,5 <k <n}.
(b) (10 pts) Prove the following formula:

n+1

2
5 ), Vn € N,

13+23+33+...+(n—1)3+n3:(

Hint: As above, if you proceed by induction, you might want to use Theorem
1.8.2. If you want a combinatorial proof, you might want to consider the set

X ={(,4,k,1):0<i,j,k<l<n}.

Solution. The inductive proofs are very similar to Problems 1 and 2, we shall thus
present combinatorial proofs.

(a) For a combinatorial way of seeing this identity consider the set of triples of the
form

{(1,7,k) : 0<i,j <k <n}.

To count these we can condition on the value of £ and then sum over k£ =
0,1,..m — 1,n. In fact for a fixed k there are k% admissible values for i, j
namely 0,1,...k — 1. Summing over k& we obtain the left hand side. For the
right hand side we divide the set of triples {(7,7,k) : 0 < i,5 < k < n} into
the three possible cases ¢ = j, i < 7 and ¢ > j. For i = 7 we clearly have
(""2“) possible combinations. To see this note that we are choosing two distinct
numbers from {0, 1,...n} the higher of which will be & while the lower one will
be i = j. For each of the cases i < j < k and j < i < k we are instead choosing
three distinct integers from {0, 1,...n} which shows the desired formula. O
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(b) Following Part (a), we can interpret the left hand side as the number of 4-tuples
X ={(i,4,k,1): 0<i,5,k <l <n}

by conditioning on the value of [ and then summing over its possible values
[=0,1,....,n—1,n.

For the right hand side, the number (”'2“) . (";’1) counts all pairs of tuples
{(a,b), (¢,d)} with a < b and ¢ < d. The set of such pairs of tuples is in
bijection with X = {(¢,4,k,1) : 0 < 4,7,k <1 < n}; in other words both sets
have the same cardnality. Indeed, to construct the bijection let us split into the
3cases i < j, 1> jand i = k. If i < j we send (7,74, k,1) to {(4,7), (k,1)} (sp
that i # j and k # [). If i > j we likewise we send (1,7, k, 1) to {(4,7), (k,1)}
(so that i # j and k # 1). Finally if ¢ = j we map (4,7, k, 1) to {(k,1), (i,1)} (so
that k& # [ and 7 # [). It might be a bit tricky to see how the inverse for this
last part is unambiguous but its not hard to convince yourself that since i = j

there is only one possible value of j for the inverse of {(k,1), (¢,1)}. O

Problem 4. (20 pts) Let P(n) be an n-sided regular polygon in the plane. A trian-
gulation of the polygon is a decomposition of the interior of the polygon into triangles,
such that each triangle only intersects another triangle along one of its three sides. In
Figure I have depicted the different possible triangulations for the triangle P(3), the
square P(4), the pentagon P(5) and the hexagon P(6).

Show that a triangulation of P(n) must have exactly (n — 2) triangles.
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FiGURE 1. The triangle, the square with its two possible triangulations,
the pentagon with its five possible triangulations and the hexagon with
its fourteen possible triangulations.

Solution. It is easiest to proceed by strong induction in this exercise. This means
that in the inductive step we not only assume that the statement holds for n but also
for all £ < n. The base case is trivial to check, a triangle has a unique triangulation
namely itself. Now assume that every k-gon with & < n has (k — 2) triangulations and
let’s consider an (n + 1)-gon and draw a diagonal edge connecting two of its vertices.
Suppose that on one side of the diagonal we have k of the original vertices from the
n + 1-gon (note k > 2 or else the diagonal we drew is one of the edges of the original
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n + l-gon). Therefore together with the diagonal we have a k + 1-gon with & — 1
triangulations by strong inductive hypothesis. On the other side of the diagonal we
have n — k41 edges from the original n+ 1-gon which together with the diagonal form
an n — k4 2-gon. Since k > 2 (and thus n — k42 < n) by strong inductive hypothesis
we have n — k triangulations on this side. Combining the triangulations on either side
of the diagonal we have (n — k) + (k—1) =n—1= (n+ 1) — 2 triangulations in total
which proves the desired result. U

Problem 5. (20 pts) Let n € N be a natural number and let X C N be a subset with
n + 1 elements. Show that there exist two natural numbers z,y € X such that x —y
is divisible by n.

Solution. By the Pigeonhole Principle, if we have n 4+ 1 natural numbers, then at
least two of them must belong to the same congruence class modulo n; in other words,
the have the same reminder when you divide them by n. So we have at least one
pair x,y such that x = kyn + r and y = kon + r for some integers ki, ky. Therefore
x —y = (k1 — ko)n which shows the desired result. O

Problem 6. (20 pts) How many natural numbers n € N between 1 and 100 are there
which are not divisible by 5 nor divisible by 7 7

Solution. Let A denote the set of natural numbers less than or equal to 100 that
are divisible by 5 and B the set of natural numbers less than or equal to 100 that are
divisible by 7. The set of of natural numbers less than or equal to 100 divisble by
neither is thus AN B¢ = (AU B)¢ where A° and B¢ are the respective complements
in {1,2,3...,99,100}. Some set arithmetic and the Inclusion-Exclusion formula give us
that:

(AU B)“| =100 — [(AU B)| = 100 — (|A| + |B| — |[AN B|) = 68
Clearly |A| = 20, |B| = 14 and |AN B| = 2 (multiples of 35 less than or equal to 100).0]
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Problem 7. (20 pts) Let n € N be a natural number and X a finite set with n
elements. Show that the number of permutations of X such that no element stays in
the same position is

(D!
my CL
k=0

For instance, there are 6 = 3! permutations of 3 elements, but only 2 of them are
permutations which fix no element. Similarly, there are 24 = 4! permutations of 4
elements, but only 9 which fix no element.

Hint: Use the Inclusion-Fxclusion Principle, with the ith set being the set of permuta-
tions which fix the ith element of X.

Solution. Denote by D the set of permutations that fix no element and by S,, the
whole set of permutations. Moreover, let A; denote the set of permutations that fix
the i-th element and |A;| be its cardinality. Now observe that D is the complement
of the set of permutations that fix at least one element. The later set’s cardinality is
given by the Inclusion-Exclusion formula:

n

i=1 i=1 1<i<j<n 1<i<j<k<n

Here |A;, N...NA;, | = (n — k)! os the number of permutations that fix & labels ( that
is, the number of way to arrange the remaining (n — k) labels). On the other hand
clearly there are (Z) ways to choose those k labels on the first place. With this in mind
and doing some simple set arithmetic:

n

U

i=1

D[ = [Sn|—

nl nl  nl —1)F1p) "L (=1)k

In the second to last equality we used (})(n — k)! = 2. O

=D 1A= D> JANA [+ + Y JANAN A=+ (=) A N0 Ay

- n'—((?) (n—1)! — (Z) (n—2)! + (g) (n—3) — .4 (—=1)*? (Z)o')
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Problem 8. Consider an infinite grid in the plane, and color every intersection with
either red, green, or blue. Prove that for any possible choices of coloring, there always
exists a rectangle in the plane such that all four of its vertices are the same color.

Figure 3 depicts a piece of such a grid with a rectangle with red vertices.

FIGURE 2. A piece of the grid colored with green, blue and red, and a
yellow rectangle inside it with four red vertices.

Solution. In fact, a much smaller finite grid will suffice. Suppose we restrict our
attention to for rows only and look at the infinitely many 4 element columns. Since
we have 3 colors by the pigeonhole principle each column has at least one color repeat.
Now let us look at the number of different arrangements (position in the column and
color) in which this color repeat can happen. The color repeat is just a pair of points
in the 4 point column with the same color. Therefore we have (;1) = 6 color repeats
per color for a total of 6 x 3 (3 colors). Thus if we have at least 19 columns by the
pigeonhole principle there will be at least one parallel color repeat thereby forming a
monochromatic rectangle. The situation is only better with an infinite gird. O



