
MAT 145: PROBLEM SET 4

DUE TO FRIDAY FEB 22

Abstract. This problem set corresponds to the sixth week of the Combinatorics
Course in the Winter Quarter 2019. It was posted online on Friday Feb 15 and is
due Friday Feb 22 at the beginning of the class at 9:00am.

Information. These are the solutions for the Problem Set 3 corresponding to the
Winter Quarter 2019 class of MAT 145 Combinatorics, with Prof. Casals and T.A. A.
Aguirre. The Problems are written in black and the solutions in blue.

Problem 1. Show that there exists no graph G = (V,E) with |V | = 48 vertices such
that the degrees of 30 of the vertices are 16, the degree of 15 vertices is 9 and the
degree of the remaining 3 vertices is 12.

Solution. The number of odd-degree vertices is even, and thus no such graph can exist,
since it should have 15 vertices of degree 9. Alternatively, the sum of the degrees of the
vertices is twice the number of edges and therefore even. However 30×16+15×9+3×12
is odd.

Problem 2. Let G = (V,E) be a connected graph, an edge e ∈ E is a cut-edge if
G \ {e} is disconnected. Show that if G admits an Euler circuit, then there exist no
cut-edge e ∈ E.

Solution. By the results in class, a connected graph has an Eulerian circuit if and only
if the degree of each vertex is a nonzero even number. Suppose connects the vertices
v and v′ if we remove e we now have a graph with exactly 2 vertices with odd degrees.
Recall that a graph has an Eulerian path (not circuit) if and only if it has exactly two
vertices with odd degree. Thus the existence of such Eulerian path proves G− {e} is
still connected so there are no cut edges.

Problem 3. (20 pts) For each of the three graphs in Figure 1, determine whether they
have an Euler walk and/or an Euler circuit. Justify your answer, i.e. if an Euler walk
or circuit exists, construct it explicitly, and if not give a proof of its non-existence.

Solution. The vertices of K5 all have even degree so an Eulerian circuit exists, namely
the sequence of edges 1, 5, 8, 10, 4, 2, 9, 7, 6, 3 . The 6 vertices on the right side of this
bipartite K3,6 graph have odd degree. Recall that an Eulerian walk exists if and only if
the number of vertices with odd degree is at most 2 hence there are no Eulerian walks
(nor Eulerian circuits since that is an even stronger condition). Finally the wheel W10

has no Eulerian walks either since all its vertices have odd degree.
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Figure 1. The three graphs for Problem 3 K5, K3,6 and the Wheel W10.

Figure 2. The Eulerian circuit for K5.

Problem 4. (20 pts) Let n,m ∈ N be two natural numbers. Let Kn be the complete
graph in n vertices, and Kn,m the complete bipartite graph in n and m vertices1. See
Figure 3 for two Examples of such graphs.

Figure 3. The K4,7 on the Left and K6 on the Right.

(a) Determine the number of edges of Kn, and the degree of each of its vertices.
Given a necessary and sufficient condition on the number n ∈ N for Kn to
admit an Euler circuit.

(b) Determine the number of edges of Kn,m, and the degree of each of its vertices.
Given a necessary and sufficient condition on the numbers n,m ∈ N for Kn,m

to admit an Euler circuit.

1In class, we also called Kn,m the utility graph.
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(c) Show that the complete bipartite graph Kn,m admits a Hamiltonian cycle if
and only if n = m.

Solution.

(a) Fix a given vertex v1, then since Kn is the complete graph it is connected
to the other (n − 1) vertices. Take any another vertex v2, we have already
counted the edge connecting it with v1 hence at this step we add n − 2 edges
connecting it the rest of the vertices and so on. Iterating this procedure we

have (n − 1) + (n − 2) + ... + 2 + 1 = (n−1)n
2

vertices. With this construction
it is clear that each vertex of the complete graph has degree (n− 1). Thus Kn

admits an Euler circuit if and only if n is odd.

(b) Each of the n vertices on the left side of Kn,m is connected to the m vertices
on the right. Therefore there are n×m vertices, with n vertices have degree m
and m vertices having degree n. Thus Kn,m has an Eulerian circuit if and only
if both n and m are even.

(c) If n = m then there are 2n vertices each with degree n so by Dirac’s theorem
there is a Hamiltonian cycle. Conversely, let’s suppose that Kn,m has partition
{v1, v2...vn} ∪ {w1, w2...wm}. Note that in a bipartite graph any Hamiltonian
cycle must alternate between the two subsets of the partition. Now assume
that we have a Hamiltonian cycle starting and ending at v1. Since the graph is
complete, let’s make it v1w1v2w2....vnwnv1. Now every vertex (except v1) has
been reached exactly once so m = n. In other words if m > n some of the wi’s
would not have been reached and conversely if m < n some of the wi’s would
have been reached more than once.

Problem 5. (20 pts) Show that there are exactly three connected graphs with 4 ver-
tices or less which admit an Euler circuit. In addition, list four different connected
graphs with 5 vertices which admit Euler circuits, and find five different connected
graphs with 6 vertices with an Euler circuits.

Solution. By convention we say the graph on one vertex admits an Euler circuit.
There is only one connected graph on two vertices but for it to be a cycle it needs
to use the only edge twice. On 3 vertices, we have exactly two connected graphs, a
”straight line” v1e1v2e2v3 (here vi, ei represents the i-th vertex and edge respectively)
and the triangle v1e1v2e2v3e3v1. It’s easy to check that the straight line has two vertices
of odd degree while the triangle only has vertices of even degree hence it admits an
Eulerian circuit. Thus we must only have one Eulerian connected graph on 4 vertices.
Indeed, here are all the connected graphs on four vertices. By the parity criterion we
can see that only the one on the top right is Eulerian.

Again, by the parity criterion, we can find 4 connected graphs on 5 vertices below are
Eulerian.
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Figure 4. All connected graphs on 4 vertices.

Figure 5. All Eulerian graphs on 5 vertices.

And likewise for these 5 connected graphs on 6 vertices.

Figure 6. All Eulerian graphs on 6 vertices.

Althought not needed for this problem, this is in fact the full classification of connected
Eulerian graphs of 5 and 6 nodes respectively. See the Wolfram MathWorld entry for
Eulerian Graph.

Problem 6. (20 pts) Decide whether the following statments are true or false. In case
the statement is true, provide a proof, and if it is false, provide a counter-example.

(a) The Petersen Graph does admit a Hamiltonian cycle.
See Figure 7 (Left) for a depiction of the Petersen graph.
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(b) The Herschel Graph does not admit a Hamiltonian cycle.
See Figure 7 (Right) for a depiction of this graph.

Figure 7. The Petersen Graph (Left) and the Herschel Graph (Right).

(c) Every connected graph in 7 vertices admits a Hamiltonian cycle.

(d) Let G = (E, V ) be a graph such that for all non-adjacent vertices x, y ∈ V

deg(x) + deg(y) ≥ |V | − 1.

Then G is connected.
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Solution.

(a) False. Notice that there are 2 subgraphs; the inner star and the outer penta-
gon and that they are connected by 5 edges. Any Hamiltonian cycle must then
travel along these edges an even number of times. We thus have that we use
these edges either twice or four times. Without loss of generality let’s suppose
we wish to start an end our cycle in some point in the outside pentagon (if we
start in the star the argument is different). By rotational symmetry all points
are the same so say we start at the bottom left vertex of the pentagon. If we
visit the outer pentagon first we enter the inner star at the bottom right corner
and then notice that once we only have one path to visit the vertices of the
star. If we follow it we either stop before visiting each vertex or visit a vertex
(other than the starting one) twice before visitng them all. Likewise if we enter
the star right by following this unique (Hamiltonian) path we see that we exit
it at the rightmost vertex of the pentagon. Since this is not adjacent to the
base vertex (bottom left), in order to preserve the Hamiltonian condition we
have to choose either the clockwise or counterclockwise direction to get back
to the base vertex. Either way we will miss at least one vertex. We can argue
similarly to show that there is no way to have a Hamiltonian cycle by using
four of the vertices connecting the star and the pentagon.

(b) True. First observe that this is a bipartite graph with partition

{v1, v5, v6, v7, v11} ∪ {v2, v3, v4, v8, v9, v10} := A ∪B.

Therefore any Hamiltonian cycle must alternate between vertices from each set.
Suppose we wish to start our Hamiltonian cycle at v1. After having visited each
vertex of A and 5 of B we have an acceptable cycle but it has missed one vertex
B so it is not Hamiltonian. If we insist on having visited all vertices of B we
must have visited either v1 3 times or some other vertex of A twice; at any rate
this would not be a Hamiltonian cycle either.

(c) False. Consider the ”straight line” graph that is v1e1v2e2v3e3v4e4v5e5v6e6v7.
Clearly any loop that visits more than two vertices is visiting more than one
vertex twice.

(d) True. We assume that |V | > 1 or else the problem is trivial. Now let’s create
another graph G′ = (E ′, V ′) by adding another vertex v′ and connecting it to
every vertex in G. Now clearly this raises the degree of each vertex of G by one.
We thus have that |E ′| = |E| + |V | and |V ′| = |V | + 1 and moreover by this
observation and our assumption, deg(x)+deg(y) ≥ |V |+1 = |V ′| for every pair
of non-adjacent vertices in V ′ (Note that v′ is adjacent to everyone else so we
don’t need to worry about pairs containing it). Ore’s theorem now implies that
G′ contains a Hamiltonian cycle. In particular we have can pick the following
cycle {v′x1x2...xnv

′} where x1, x2...xn are all the vertices of G which proves G
is connected.
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Problem 7. (20 pts) Let n ∈ N be a natural number and Kn the complete graph in
n vertices. Show that Kn admits (n− 1)! different2 Hamiltonian cycles.

Solution Let’s pick a starting vertex v1. Since Kn is complete at any given step
we can travel to any of the other (n − 1) vertices. However to keep it Hamiltonian
we have to avoid the vertices we have already visited. This means that at the k-th
step we have (n − k − 1) possibilities. Thus the number of Hamiltonian walk should
be (n − 1) × (n − 2)...(n − k)...2 × 1 = n!. Note that by the remark below we are
considering lists up to cyclic ordering so we don’t need to count the n ways to choose
v1.

Problem 8. (De Bruijn Graphs) Consider the set S(n) of binary sequences of length
n, which is given by

S(n) := {(s1, . . . , sn) : si ∈ {0, 1}, 1 ≤ i ≤ n}.
Construct the directed3 graph Bn whose vertex set is S(n), and such that each ver-
tex v = (s1, . . . , sn) has the following two edges going out of it, going to the vertices
(s2, , s3, . . . , sn, 0) and (s2, , s3, . . . , sn, 1). Show that Bn admits a (directed) Euler cir-
cuit for all n ∈ N.

Solution. We use the following lemma: a directed graph admits an Eulerian circuit
if and only if it is connected and the in degree of each vertex is the same as the out
degree. Now note that although the construction is inductive this is not a graph with
growing word length (such as one resembling a genalogical tree) since all the words are
of fixed length. However the construction lets us identify exactly where the in edges
are coming from and where the out edges are going to. Fix a word (vertex). For the
out edges; delete the first letter and attach attach either a 0 or 1 at the end and those
are the words (vertices) you are travelling to. For the in edges we do the opposite.
Fix a word, delete the last letter and the in vertices are coming from the words with
either a 1 or 0 concatenated in front of this n − 1 substring . This shows that the in
and out degrees for each vertex are the same. For connectedness we need only note
that by appplying the procedure of deleting the last letter and attaching a 0 or 1 at
the beginning of it, we eventually visit every possible binary string.

2A Hamiltonian cycle is considered to be an ordered list of all vertices, where only adjacent vertices
are allowed to be consecutive. Such a list is only considered up to cyclic ordering.

3A graph is directed if the edges are oriented, i.e. each edge goes from a vertex to another vertex,
that is, all the edges are directed from one vertex to another.


