
MAT 145: PROBLEM SET 5

DUE TO FRIDAY MAR 1

Abstract. This problem set corresponds to the sixth week of the Combinatorics
Course in the Winter Quarter 2019. It was posted online on Friday Feb 22 and is
due Friday Mar 1 at the beginning of the class at 9:00am.

Information: These are the solutions for the Problem Set 5 corresponding to the
Winter Quarter 2019 class of MAT 145 Combinatorics, with Prof. Casals and T.A. A.
Aguirre. The Problems are written in black and the solutions in blue.

Problem 1. There are six different, i.e. mutually non-isomorphic, trees with six ver-
tices. Draw these six trees.

Hint: For further practice, there is a unique tree with each of exactly 1, 2 or 3 vertices,
there are two trees with 4 vertices and three trees with 5 vertices.

Solution. See Figure 1 for the six trees.

Figure 1. The six non-isomorphic trees on six vertices.

Problem 2. A leaf is a vertex of degree 1. Prove that if a tree T = (V,E) has a vertex
of degree d, then it has at least d leaves.

Solution. Let v denote such vertex. Suppose that k ≤ d of the neighbors of v are
leaves. If k = d we are done. If k < d then there are d− k vertices adjacent to v that
have at least another neighbor. Again for each of those either they are a leaf or they
have another adjacent vertex. Since T is a tree all the new vertices we get reiterating
this procedure are distinct or else there would be a cycle. Eventually we reach at least
d leaves. �
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Problem 3. (20 pts) Let G = (V,E) be a connected graph, a connected subset T ⊆ E
is said to be a spanning tree for G if it satisfies the following two properties:

(i) Every vertex of G belong to an edge of T ,
(ii) The edges in T form a tree.

Solve the following two problems.

(a) Find a spanning tree for each of the graphs in Figure 2. Are they unique in
these cases ?

(b) Show that every connected graph has at least one spanning tree.

Figure 2. The three graphs for Part (a), find a spanning tree.

Solution.

(a) See Figure 3 for examples of spanning trees. Neither of them is unique since we
can choose the edges we delete in order to break their cycles in several ways.

Figure 3. Spanning trees for the graphs in Figure 2.

(b) By definition, a connected graph is a tree if and only if it contains no cycles.
Therefore, start with an arbitrary finite connected graph. We only have finitely
many cycles. Every time we find one we remove one of the edges comprising
it. This procedure keeps the graph connected and leaves the vertex set intact.
After removing every cycle we are left with a spanning tree. �
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Problem 4. (20 pts) Let n,m ∈ N be two natural numbers.

(a) Show that the number of spanning trees of the complete graph Kn is nn−2.

(b) (8.5.12) A (n,m)-dumbbell graph is constructed by considering the complete
graph Kn on n vertices, the complete graph Km on m nodes, and connecting
them by a single edge. Figure 4 depicts the case n = 4 and m = 5. Find the
number of spanning trees of a dumbbell graph.

Figure 4. The (4, 5)-dumbbell graph.

Solution.

(a) The Prüfer correspondence gives a bijection between labeled trees on n nodes
and sequences of integers {1, 2, 3...n} of length n− 2. Thus it suffices to estab-
lish a bijection between spanning trees of Kn and labeled trees. Note that any
labeled tree on n nodes is automatically a spanning tree of Kn (it embdeds in
it i.e we just add all the missing nodes to get Kn). So there are at least nn−2

spanning trees by the Prüfer correspondence. Conversely we label the nodes to
Kn and create a spanning tree using the procedure in problem 3b. No matter
how we remove edges are left with a labeled tree on n nodes so we have at
most nn−2 distinct spanning trees. The two inequalities together imply that
the number of spanning trees of Kn is nn−2.

(b) Note that the (4,5)-dumbell graph is comprised by complete graphs on 4 and 5
vertices respectively joined by a bridge. Any spanning tree of the whole graph
must use the bridge edge and will be a spanning tree within each of the 2
cliques with roots at the vertices of the bridge edge. However note since this
is an undirected graph any vertex can be taken to be the root. By the formula
from part (a) we have mm−2 spanning trees for the left clique and nn−2 for the
right one. Thus the total number of spanning trees is mm−2 × nn−2. For the
(4, 5) dumbbell graph this would give us 2000 spanning trees.
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Problem 5. (20 pts) The Prüfer correspondence1 allows us to prove Cayley’s Theorem.
This problem gives direct practice on that correspondence.

(a) Draw the five labeled trees corresponding to the following five Prüfer codes:

{4, 4, 4}, {0, 0, 0}, {1, 2, 4}, {0, 3, 6, 2, 5}, {2, 3, 4, 5, 6}.

(b) Find the Prüfer code of the five labeled trees depicted in Figure 5.

Figure 5. The five trees for Problem 5 Part (b).

Solution.

(a) See the Figure 6 below, where we have obtained these trees by using the fol-
lowing algorithm2: Given: a string S of length n − 2 on alphabet {v1, ..., vn},
with v1 < v2... < vn. Repeat until S is empty and alphabet has size 2:

(1) Identify the lowest letter in the alphabet that does not appear in thestring,
vi say, and the first element of the string,vj say.

(2) Add vi to the graph being constructed (if it isn’t already there), and join
it to vj (adding vj to the graph first if necessary).

(3) Remove vi from the alphabet, and remove the first term from the string.
Join the two remaining vertices in the alphabet.

(b) In clockwise order starting from the top left: {1, 3, 3}, {5, 2, 1, 8, 1, 8, 3, 9, 2, 6, 5, 5, 6},
{0, 0, 0, 0, 0}, {3, 0, 0}, {2, 2, 1, 3}

1See Section 8.4 and the Lecture on Friday February 22nd.
2The convention that the node labeled with 0 is always the root means that if at any point in this

algorithm the node 0 is a leaf with lowest degree we disregard it and take the next lowest leaf.
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Figure 6. Solution to Problem 5.(a).

Problem 6. (20 pts) A binary tree is a rooted tree in which each vertex has at most
two children, which are ordered, and are referred to as the left child and the right
child. For instance, there are 2 binary trees in two vertices and 5 binary trees in three
vertices, depicted in Figure 7. Let n ∈ N be a natural number.

(a) Show that the number of binary trees in n vertices is Cn = 1
n+1

(
2n
n

)
.

Hint: Notice that the numbers Cn = 1
n+1

(
2n
n

)
satisfy the recursion

Cn+1 =
n∑

i=0

CiCn−i.

(b) Establish a bijection between binary trees in n vertices and triangulations of
regular convex (n + 2)-gon. How many triangulations does an octagon have ?

Solution.

(a) To show the equality we wish to establish a bijection between pairs of binary
trees on i and n− i edges and binary trees on n + 1 edges. Note by inductive
assumption the right hand side is counting the number of binary trees rooted
trees such that one of the descendants of the true is the binary tree on i ver-
tices and the other one is a binary tree on n − i vertices. Together with the
root they form a (rooted) binary tree on n + 1 vertices. Counting all the cases
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Figure 7. The two rooted binary trees with two vertices (Left) and the
five rooted binary trees with three vertices (Right).

0 ≤ i ≤ n we get Cn+1 =
∑n

i=0 CiCn−i. Note that in the setting of the binary
tree the labeling distinguishes between the two sides so we are not overcounting
by summing CiCn−i and then Cn−iCi. Conversely, suppose we have a rooted
tree on n + 1 vertices. Deleting the root we are left with binary subtrees with
the left and right descendant as their roots. We can have 0 ≤ i ≤ n vertices on
the left subtree (i.e possibly empty or possibly the whole rest of the tree and
every possibility in between) and n − i vertices on the right one. Adding all
these possiblities we get the recursion Cn+1 =

∑n
i=0CiCn−i

(b) From Problem Set 2, we know that there will be exactly n with n−1 diagonals.
The goal is to identify these the 2n + 1 edges (n + 2 from the original n-gon
and n − 1 from the diagonals) in this triangulation with the 2n + 1 vertices
in a binary tree of size n (note that it has by definition n internal nodes and
n + 1 leaves). Use n + 1 letters to encode all but one of the sides of the n-gon
(these will corresponds to the leaves of the binary tree). For each subsequent
unlabeled edge in the triangulation let’s denote it by the concatenation (with
parentheses) of the two labels for the other edges of the triangle. Now there is
clearly a bijection between words on n + 1 letters with closed parentheses and
binary trees. Namely each letter is a leaf and each occurence of parenthesis is
an internal node with its two descendants being the vertices encoded by the
substrings within it.

Alternatively, for each triangulation we can take the polyhedral dual where
each triangle becomes a node and nodes are adjacent if and only if their corre-
sponding triangles are adjacent. The resulting graph will be a binary tree and
different triangulations will induce distinct trees. See Figure 9 below.



MAT 145: PROBLEM SET 5 7

(a) Binary tree corresponding to the left tri-
angulation in the previous figure

Figure 8. Bijection between triangulations and binary trees.

Figure 9. Solution to Problem 6.(b) via dual graph.

Problem 7. (20 pts) Solve the following two problems.

(a) Let n1, n2, n3 . . . , nd be a sequence of d natural numbers and d ≥ 2. Show that
there exists a tree T = (V,E) with vertex degrees exactly n1, n2, n3 . . . , nd if
and only if n1 + n2 + n3 + . . . + nd = 2d− 2.

(b) Let T = (V,E) be a tree with no vertices of degree 2. Show that there are more
leaves3 than non-leaves.

Solution.

(a) One direction is simple. In any graph we have that
∑

i∈V ni = 2|E| and in par-
ticular for trees |E| = |V |−1 which shows the desired equality. For the converse
suppose we proceed by induction to show that if a graph satisfies the condition

3By definition, as explained in Problem 2 above, a leaf is a vertex of degree 1.
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on the degree sequence then it is a tree. IF |V | = 1 then n1 = 0 = 2|V | − 2
and T is clearly a tree. For the inductive step suppose that for all |V | = d ≤ N
the identity n1 + n2 + n3 + . . . + nd = 2d − 2 implies the graph T = (V,E) is
a tree. Adding the d + 1-th vertex (denote this new graph by T ′) increases the
right hand side by 2 and hence so must the left hand side (this equality is the
assumption for this direction). On the left hand side however we are adding
nd+1 ≥ 1. Since each edge connects to vertices if nd+1 > 1 we will be increasing
more than ni by at least once hence resulting in the left hand side increasing
by at least 4. Therefore nd+1 = 1 and some other ni increases by exactly 1.
Note that this precisely corresponds to d + 1 being a leaf attached to the old
tree so we generated a new tree.

(b) Since T is a tree we know that |E| = |V | − 1 = d − 1. Then let nl denote the
number of leaves so that d − nl is the number of nonleaves. The leaves have
clearly degree 1 and the nonleaves have degree at least 3 therefore by the degree
formula:

2(d− 1) ≥ nl + 3(d− nl) =⇒ nl ≥
d

2
+ 1

Thus leaves constitute more than half the nodes, as desired. �

Problem 8. Let G = (V,E) be a connected graph. Show that G is a tree if and only
if any three pairwise vertex-intersecting paths in G have a common vertex.

Solution. First let’s assume G is a tree and P1, P2, P3 are pairwise intersecting path.
Let P1 = v1v2...vn. By assumption there exist i, j such that vi ∈ P2 and vk ∈ P3. With-
out loss of generality let i < k and assume by contradiction that there are no common
vertices to all three paths. By this assumption then there exists i ≤ j < k such that
vj ∈ P2 but vj+1 /∈ P2 then the edge vjvj+1 is in neither P2 nor P3. Now deleting this
edge will turn the tree into a disconnected graph. Since P2 and P3 are paths each has to
be within a connected component. However note that vi ∈ P2 and vk ∈ P3 are in differ-
ent connected components thus contradicting the assumtption that P2 and P3 intersect.

Conversely, suppose G is not a tree then there exists a cycle and it will be of length
at least 3. Let v1, v2, v3 be vertices in this cycle and P1 the path connecting v1 and v2,
P2 the path connecting v2 and v3 and P3 the path connecting v3 and v1. Then these
paths intersect pairwise but have no common intersection vertex. �


