
MAT 145: PROBLEM SET 6

DUE TO FRIDAY MAR 8

Abstract. This problem set corresponds to the eighth week of the Combinatorics
Course in the Winter Quarter 2019. It was posted online on Friday Mar 1 and is due
Friday Mar 8 at the beginning of the class at 9:00am.

Information: These are the solutions for the Problem Set 5 corresponding to the
Winter Quarter 2019 class of MAT 145 Combinatorics, with Prof. Casals and T.A. A.
Aguirre. The Problems are written in black and the solutions in blue.

Problem 1. Let n ∈ N be a natural number. Show that the complete bipartite graph
Kn,n admits n! perfect matchings.

Solution Let Kn,n = A∪B. Take the first node in A, we can connect it to n different
nodes in B. For the second node in A we must exclude the node in B that has been
connected to the first node in A so we have n− 1 options. Continuing this procedure
we obtain n! distinct perfect matchings.

Problem 2. Let G be connected graph with 12 vertices. Suppose that it admits an
planar embedding G ⊆ R2 dividing the plane R2 into 20 faces. How many edges does
G have ?

Solution Euler’s formula v − e + f = 2 gives us that there are 30 edges.

Problem 3. (20 pts) Solve the following three problems.

(a) (10 pts) Show that the three connected graphs in Figure 1 are not bipartite,
and find a perfect matching in the first and third graphs.

Figure 1. The three graphs for Problem 3.(a).

(b) (5 pts) Prove that the three connected graphs in Figure 2 do not admit any
perfect matching. (Note the the second and third graphs are K3,2 and K2,5.)

(c) (5 pts) Let n,m ∈ N be two natural numbers. Show that the complete bipartite
graph Kn,m admit a perfect matching if and only if n = m.
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Figure 2. The three graphs for Problem 3.(b).

Solution

(a) Recall Theorem in the book that says that any graph that contains an odd
length cycle has no 2-colorings (i.e. perfect matchings). The first and thirds
graphs contain a 5-cycle while the second one contains a 3-cycle.

Figure 3. Perfect matchings for the first and third graphs.

(b) Any perfect matching of these graph must contain the center node and there-
fore exactly one of the edges coming out of it. This implies that such perfect
matching must contain a perfect matching of the following subgraph:

Figure 4. Onethe subgraphs attached to the center node.

Now this subgraph contains no perfect matching because it has an odd number
of vertices. The other two graphs are K3,2 and K2,5; they do not contain a
perfect matching by section (c) of this exercise.
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(c) If n = m we have in fact n! perfect matchings by Problem 1. Conversely
suppose that there are no perfect matchings in Kn,m then by Hall’s theorem
either m 6= n or for every subset S of k nodes of A is connected than less than
k nodes in B. If n 6= m we are done. Otherwise suppose that the k nodes
of S reach |N(S)| < k nodes in B where N(S) is the neighboring set of S.
The number of outgoing edges from S (m×|S|) and incoming edges into N(S)

(n×|N(S)|) have to match so |S|×m = |N(S)|×n; equivalently n
m

= |A|
|N(A)| > 1

which shows n 6= m

Problem 4. (20 pts) Solve the following three parts.

(a) (10 pts) Let G = (V,E) be a connected bipartite graph. Suppose that every
vertex v ∈ V has the same degree. Show that G admits a perfect matching.

(b) (5 pts) Give an example of a connected graph G such that every vertex v ∈ V
has the same degree, but G does not admit a perfect matching.

(c) (5 pts) For any n ∈ N, a natural number, give an example of a connected
bipartite graph G = (V,E) with |V | = n and G does not admit a perfect
matching.

Solution

(a) If V = A ∪B we first show that |A| = |B|. Suppose the degree of every vertex
is k. Then there are k|A| outgoing edges from A. Since each vertex in B has ex-
actly k incoming edges we have that |A| = B. Now let’s consider a subset S ⊂ A
of m nodes. Denote by N(S) the subset of B reached by outgoing edges from
S. The number of outgoing edges from S has to match the incoming edges to
N(S). To show the existence of a perfect matching by Hall’s theorem it suffices
to show that |N(S)| ≥ m. Suppose by contradiction that |N(S)| < m. We have
m×k outgoing edges from A but |N(S)|×k < m×k incoming edges into N(S) .

(b) By part (a) we must look for examples that are not bipartite. Consider K5, it
is clearly connected and all its vertices have degree 4 however it has no perfect
matching because it has an odd number of nodes.

(c) By part (a) we must for examples where not all vertices have the same degree.
For a given n ∈ N consider l,m such that l 6= m and l + m = n. Then Kl,m is
connected but by exercise 3c it contains no perfect matching.

Problem 5. (20 pts) Let r, n ∈ N be two natural numbers with r ≤ n. An r × n
matrix M consisting of r rows and n columns is said to be a Latin rectangle of size
(r, n), if all the entries Mij belong to the set {1, 2, 3, . . . , n}, for 1 ≤ i ≤ r, 1 ≤ j ≤ r,
and the same number does not appear twice in any row or in any column. By defini-
tion, a Latin square is a Latin rectangle of size (n, n), i.e. a Latin rectangle with r = n.

For instance, with r = 3, n = 5, the following two matrices are Latin rectangles
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 1 2 3 5 4
2 3 5 4 1
4 5 1 2 3

 ,

 1 3 4 5 2
4 1 5 2 3
2 4 1 3 5


whereas the following two matrices are not Latin rectangles 1 2 5 3 4

2 3 5 4 1
4 5 1 2 3

 ,

 1 3 4 5 1
4 1 5 2 3
2 4 1 3 5

 .

(a) (5 pts) Show that two different Latin squares of size 3 × 3 exist. In addition,
construct a Latin square of size 4× 4.

(b) (10 pts) Let M be a Latin rectangle of size (r, n) with r < n. Show that it is
possible to add a row to M such that the resulting (r + 1, n) rectangle is also
a Latin rectangle.

Hint: Build a bipartite graph G(M) = (A ∪ B,E) from the Latin rectangle M
according to the possible numbers (vertices in A) which can go into each column
entry (vertices in B) of the new row. Then use Hall’s Theorem to prove that
G(M) admits a perfect matching.

(c) (5 pts) Show that any Latin rectangle of size (r, n) can be completed, by adding
rows, to a Latin square of size (n, n).

Solution

(a) Consider the following two (3, 3) Latin squares:1 2 3
2 3 1
3 1 2

 2 3 1
1 2 3
3 1 2


For a Latin square of size (4, 4) consider:

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3


(b) Let A be the set of columns of the Latin rectangle (note that |A|=n) and

B = {1, 2, 3, ..n} (so that we also have |B| = n). For the edge set E we will
connect the vertices in A and B in the following way. Take a column ci, there
are exactly n− r integers {1, 2, 3, ..n} that do not appear in ci then we connect
the node in A representing ci to the nodes in B that represent the integers
that do not appear in ci. At this point note that if we show that there exists a
perfect matching we can construct a new row such that the rectangle (r + 1, n)
is still Latin. This is because by construction each column ci was extended
with an integer not appearing in it and the r + 1-th row now contains n dis-
tinct integers (because it is a perfect matching). The existence of the perfect
matching will follow from Hall’s theorem. The graph we constructed is clearly
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bipartite and |A| = |B|. Note as well that every vertex has degree n− r. This
is clear for the vertices in A. For the vertices in B we note that each integer
{1, 2, 3, ..., n} appears r times in the Latin square (r, n) because it appears once
in each row. Therefore there are exactly n − r columns in which it does not
appear and hence the degree of the nodes in B is n − r. Therefore if S ⊂ A
then there are |S| × (n − r) outgoing edges from S which have to match the
number of incoming edges into N(S). Since the degree of the vertices in N(S)
is also (n− r) we have that |S| = |N(S)| so by Hall’s theorem there is a perfect
matching.

(c) This is an immediate consequence of applying the result from 5b inductively.
We iterate the construction of the new row n − r times to get a Latin square
of size (n, n)

Problem 6. (20 pts) Consider a standard French deck of cards, with 4 suits and 13
values per suit, and shuffle it randomly. Deal 13 different piles, each pile containing
4 cards, the cards being face up. Show that you can always select exactly one card from
each pile such that the 13 selected cards have the values {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}.

Hint: Translate the problem into a problem about perfect matchings on graphs, and
then apply Hall’s Theorem.

Solution Consider the bipartite graph (A∪B,E) where A is the set of the 13 piles and
B = {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}. Now as for the edges we connect each pile in A
with the (up to 4) values in B that it contains. Clearly we have |A| = |B|. Moreover
if we pick k nodes in A the k piles they represent will contain 4k cards so there must
be at least k distinct values in them. Hence those k nodes are connected to at least
k nodes in B and by Hall’s theorem there is a perfect matching. The existence of the
perfect mathcing precisely implies that we can select a card in each pile so that the 13
selected cards have the values {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K}.

Problem 7. (20 pts) Solve the following two parts.

(a) For each of the six connected graphs in Figure 5, decide whether they are planar
or not. If a graph is planar, draw a planar embedding. Else, give an argument
showing its non-planarity.

(b) Let n ∈ N, prove that Kn is planar if and only if n ≤ 4.

Solution

(a) All the graphs are planar. See the figure below for their planar embeddings.

(b) First we show that if n > 5 Kn is not planar. For the case n = 5 Theorem
12.2.1 in the book shows K5 is not planar. For n ≥ 6 we note that Kn jas(
n
2

)
= n(n−1)

2
edges. Theorem 12.2.2 in the book says that a planar graph on

n nodes has at most 3n − 6 edges. Finally note that n(n−1)
2

> 3n − 6 if n ≥ 6
so there are no complete planar graphs on 5 or more edges. Conversely, for
n = 1, 2, 3 we have that Kn are a single node, a straight line connecting two
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Figure 5. The six graphs for Problem 7.(a).

Figure 6. Planar embeddings for the six graphs in Problem 7.(a).

nodes and a triangle respectively; all of which which are clearly planar. We
can see that K4 is planar, in fact it is the second graph in the bottom row of
section (a) of this problem.

Problem 8. Let n,m ∈ N be two natural numbers, n ≤ m.

(a) Show that the complete bipartite graph Kn,m is planar if and only if n ≤ 2.

(b) Characterize in terms of n,m ∈ N which (n,m)-dumbbell graphs are planar.

Solution

(a) Take a look at the second and third graphs in Problem 7. (a). (K3,2 and K2,5).
Their planar embeddings involved taking the partition of size 2 and moving
each of the two nodes to the right and left of the other partition respectively.
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This is clearly possible for any m so if n ≤ 2 then Kn,m is planar. If n ≥ 3
then at least two nodes in the partition of size n would have to be in the same
side with respect to the other partition. Since we are dealing with the complete
bipartite graph the edges coming from these two nodes will have to intersect
before reaching the nodes in the other partition so Kn,m is not planar for n ≥ 3.

(b) If the complete graphs of size n,m are planar then certainly the dumbell graph
is planar. The graphs Kn and Km have planar embeddings on their own and the
addition of the bridge edge will keep things planar. By the previous problem
for n,m ≤ 4 the (n,m)-dumbell graphs are planar. For the converse we use the
following lemma: If G is planar then every subgraph of G is planar. Therefore,
if either Kn or Km fails to be planar the whole dumbell graph will not be planar.
Again by the previous problem this is the case if either n ≥ 5 or m ≥ 5.


