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explain why the theorem may be applied.

(B) Organize your work, in a reasonably neat
and coherent way, in the space provided. Work
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(C) Mysterious or unsupported answers will
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correct answer supported by substantially cor-
rect calculations and explanations will receive
partial credit.
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this.
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1. (20 points) (Graph Profiling) Consider the graph G = (V,E) in Figure 1.

Figure 1: The graph for Problem 1.

(a) (5 points) Show that G does not admits an Euler cycle.

Solution. We have an Euler cycle if and only if every vertex has even degree. The
vertex in the very middle (and many others) has degree 5. 2

(b) (5 points) Prove that there exists a Hamiltonian cycle.

Solution. A Hamiltonian cycle can be found directly in the graph. 2

(c) (5 points) Prove that χ(G) ≥ 3, i.e. G is not bipartite.

Solution. Note that the outer pentagon is an odd cycle, thus G is not bipartite.2

(d) (5 points) Let T be a spanning tree for G. How many edges does T have ?

Solution For trees |E| = |V |−1 we know that G has 16 vertices so a spanning tree
should have 15 edges. 2
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2. (20 points) (Trees and Cayley’s Theorem) Let Bn be the (n, n)-dumbbell graph,
obtained by joining two disjoint complete Kn graphs with one edge, as depicted in
Figure 2 for the cases n = 4, 5, 6, 7.

(a) (10 points) Show that the number of spanning trees of Bn is n2n−4.

Figure 2: The (n, n)-dumbbell graphs for n = 4, 5, 6, 7.

Solution. Every spanning tree must contain the bridge edge. Now the rest of the
tree must be comprised of 2 different copies of a spanning tree for Kn starting at
the ends of the bridge edge. Note that in an unlabeled tree any node can be taken
to be the root. In particular, we let the nodes of the bridge edge to be the roots of
the left and right copies of Kn. Now recall that the number of spanning trees of Kn

is nn−2 (Problem Set 5). Multiplying we get the total number of spanning trees of
Bn is n2n−4. 2

(b) (10 points) Let Tn be the number of unlabeled trees in n vertices. Show that this
number satisfies the inequality

nn−2 ≤ n!Tn.

Solution. The left hand side is counting the number of spanning trees of a labeled graph
on n vertices. Clearly if we start with any unlabeled tree on n nodes and then assign
labels to the nodes in n! ways (which the right hand side is counting) we must be getting
at least as many different labeled trees as spanning trees of a labeled graph on n vertices.
2
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3. (20 points) (Perfect Matchings) Solve the following two parts.

(a) (5 points) Show that a tree T has at most one perfect matching.

Solution. If the order of the tree is odd there are no perfect matchings so let’s
assume it is even (2n nodes). We know that every tree has at least one leaf. We
will construct the perfect matching iteratively. If there is to be a perfect matching
every leaf must be matched to their neighbor. Start by taking it a leaf and matching
it to its neighbor. Then delete the rest of the edges coming out of that neighbor.
Now we are left with a matched pair of nodes and a smaller tree on 2n− 2 nodes.
This tree again has at least one leaf so we reiterate the procedure. Note that at
every step the leaves can be matched to only one other vertex and that every node
will eventually become a leaf as we prune the tree. Therefore there is exactly one
perfect matching. 2

(b) (10 points) Prove that a bipartite graph G such that all vertices have the same
degree admits a perfect matching.

Solution. Let k be such degree. The total number of outgoing edges from A has to
match those incoming to B. This yields the relationship k|A| = k|B| which shows
|A| = |B|. Now let S ⊂ A where |S| = m. Similarly, the number of outgoing edges
from S has to match the incoming edges to N(S). Suppose by contradiction that
|N(S)| < m. We have m · k outgoing edges from A but |N(S)| · k < m · k incoming
edges into N(S) Thus the two conditions for Hall’s theorem are fulfilled and we
have a perfect matching. 2

(c) (5 points) Construct a graph G = (V,E) in which all vertices have the same degree
but G does not admit a perfect matching.

Solution. Consider any cyclic graph Cn where n is odd. Then all vertices have
degree 2 but there is no perfect matching because there is an odd number of vertices.
2
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4. (20 points) (Planarity And Colorings) Consider the graph G = (V,E) in Figure 3.

(a) (10 points) Show that G is not planar.

Figure 3: The Petersen Graph for Problem 4.

Solution. Recall that if a graph is planar so are all its subgraphs. Petersen’s graph
contains K3,3 which is not planar. (see Problem Set 6, question 8). Alternatively,
Euler’s formula yields that a planar embedding of G will have exactly f = 2−v+3 =
2−10+15 = 7 faces. Since G has no 3 or 4-cycles, it must be that for such a planar
embedding 5f ≤ 2e. This is a contradiction, since 5 · 35 ≤ 2 · 10 does not hold. 2

(b) (10 points) Find the chromatic number χ(G) of G.

Solution. The chromatic number is at most 3 because there exists a 3-coloring as
shown below. On the other hand it has to be strictly greater than 2 because it is
not bipartite;indeed, the outer pentagon is an odd cylce. Hence χ(G) = 3. 2

Figure 4: A 3-coloring of the Petersen graph.
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5. (20 points) (Chromatic Properties)

(a) (10 points) Show that the chromatic polynomial for the complete bipartite graph
K2,3 is given by the polynomial

πK2,3 = x(x− 1)3 + x(x− 1)(x− 2)3.

These graphs Cn are depicted in Figure 5 for n = 3, 4 and 5.

Figure 5: The complete bipartite graph K2,3.

Solution. The three nodes on the left must have colors different to the two on the
right. Now let’s split into two cases. Since there are no edges connecting nodes
within each set of the bipartition the two nodes on the right may or may not have
the same color. These are the two cases we distinguish and correspond to each of
summand in the resulting chromatic polynomial. In the first case, the two nodes
on the right have the same color, and there are x choices for such color. This leaves
(x − 1) possible colors for each of the 3 nodes on the left. This accounts for the
x(x − 1)3 term. In the second case, where the two nodes on the right do have
different colors, we can pick the color for the first one in x ways and that for the
second one in (x− 1) ways; this leaves (x− 2) possibilities for each of the 3 nodes
on the left. This accounts for the second x(x−1)(x−2)3 summand. Summing over
these two alternate possibilities we have

πK2,3 = x(x− 1)3 + x(x− 1)(x− 2)3.

2

(b) (10 points) Let G be a graph with chromatic polynomial

πG(x) = x6 − 15x5 + 85x4 − 225x3 + 274x2 − 120x.

Show that G is non-planar.

Solution Recall that the degree of the polynomial is the number of nodes and that
the coefficient of xn−1 is −e. Then the inequality e ≤ 3n − 6 is not satisfied so
G is non-planar. Alternatively, note that πG(4) = 0 and thus G does not admit
a 4-coloring. Since any planar graph admits a 4-coloring, it must be that G is
non-planar. 2


