
SOLUTIONS TO PROBLEM SET 1

MAT 141

Abstract. These are the solutions to Problem Set 1 for the Euclidean and Non-
Euclidean Geometry Course in the Winter Quarter 2020. The problems were posted
online on Friday Jan 10 and due Friday Jan 17 at 10:00am.

Problem 1. Consider the Euclidean distance in R2, i.e. the distance between two
points P = (x1, y1) and Q = (x2, y2) is

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2.
(i) Prove that this distance function d : R2×R2 −→ R satisfies the following three

properties:

(a) For any pairs of points P,Q ∈ R2,

d(P,Q) ≥ 0,

and equality only occurs if P = Q.

(b) For any pairs of points P,Q ∈ R2,

d(P,Q) = d(Q,P ).

(c) For any three points P,Q,R ∈ R2,

d(P,Q) ≤ d(Q,R) + d(R,P ).

(ii) Describe for which triples of points P,Q,R ∈ R2 the general inequality

d(P,Q) ≤ d(Q,R) + d(R,P ).

that you have proven in Part (i).c is actually an equality.

Solution.

(i) These properties (positive, symmetric, and triangle inequality) are the most
important qualities of any distance function. In a general metric space, any
function that behaves like this is a valid notion of “distance”.

(a) In coordinates, write P = (x1, y1) and Q = (x2, y2). The distance function
is always nonnegative, because it is the (positive) square root of the sum of
two nonnegative terms (x2−x1)2 and (y2−y1)2. Suppose we have equality:
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d(P,Q) = 0. Then√
(x2 − x1)2 + (y2 − y1)2 = 0.

Squaring both sides, we have

(x2 − x1)2 + (y2 − y1)2 = 0.

The only way that two nonnegative terms can sum to zero is if both of
them are identically zero, so

(x2 − x1)2 = 0 and (y2 − y1)2 = 0.

Rearranging, we see that x2 = x1 and y2 = y1, so P = Q.

(b) For any real number t ∈ R, we have (−t)2 = t2, so

(x1 − x2)2 = (−(x2 − x1))2 = (x2 − x1)2,

and similarly, (y1 − y2)2 = (y2 − y1)2. Using these, we calculate

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2

=
√

(x1 − x2)2 + (y1 − y2)2

= d(Q,P ).

(c) We are free to perform any isometries we want before doing our analysis
(replacing P , Q, and R with their images), because any isometry will
not change the distances that we care about. Therefore, by performing a
translation so that P goes to the origin, and then performing a rotation
so that (the new image of) R lands on the positive x-axis, we may assume
that P = (0, 0) and R = (x3, 0). If you like, we’ve taken three points in
ambient space and just chosen a convenient coordinate system in which to
work. Our calculations are now easier.

Replacing d(P,Q), d(Q,R), and d(R,P ) with their formulas, we see that
we need to prove√

x22 + y22
?

≤
√

(x3 − x2)2 + y22 + x3,

where the “?” is to remind you that this isn’t derived yet, but something
that we want to show. The proof is complete when we can manipulate this
formula into something that is obviously true. First, square both sides,
expand, and combine terms, giving

x22 + y22
?

≤ ((x3 − x2)2 + y22) + 2x3

√
(x3 − x2)2 + y22 + x23

= 2x23 + x22 − 2x3x2 + y22 + 2x3

√
(x3 − x2)2 + y22.

Cancelling terms, rearranging, and dividing by 2, we now have

x3x2 − x23
?

≤ x3

√
(x3 − x2)2 + y22.
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If x3 = 0, then our original inequality is already true (make sure you see
why), so now assume x3 6= 0. Divide both sides by x3, giving

x2 − x3
?

≤
√

(x3 − x2)2 + y22.

Now square both sides again. We finally have

(x2 − x3)2 ≤ (x3 − x2)2 + y22,

which is obviously true, so the original inequality was true.

Alternatively, recall Euclid’s proof from Discussion 1:

We want to show AC < AB+BC. Place a fourth point D on the line containing
AB, such that BD = BC. Then 4DBC is an isosceles triangle, so ∠BDC =
∠DCB, which we call α. Notice then that the angle β is larger than α. Compare
β to the copy of α at D. Since β > α, the sides opposite to these angles are
also in the same relation: AD > AC. Then

AB +BC = AB +BD = AD > AC,

which is what we wanted.

(ii) Notice that in Euclid’s proof above, the inequality is strict (< instead of ≤).
That’s because you never get equality in an actual triangle. Equality is achieved
if and only if P , Q, and R lie on a common line with R either between P and
Q or the same as P or Q.

Here’s a proof. Suppose all our points are distinct. If they are not collinear, then
Euclid’s construction above shows that we don’t have equality in the triangle
inequality. If they are collinear but R is not in the middle, then either d(Q,R)
(if P is in the middle) or d(R,P ) (if Q is in the middle) is strictly the largest
of our three distances, so we don’t have equality. If they are collinear with R
in the middle, then equality follows from a quick picture.

Next, suppose two points coincide, with the third distinct. If P and Q are
the coincident points, then the left side of the inequality is zero, but the right
side isn’t, so we don’t have equality. If R coincides with P , then our formula
reads d(P,Q) ≤ d(Q,R) + 0 = d(Q,P ), which forces equality, and similarly if
R coincides with Q. Finally, if all three points are the same, then all distances
are zero, and we have equality.
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Problem 2. For each of the following maps f : R2 −→ R2, decide whether they
are isometries of the Euclidean plane R2 or not. If they are not isometries, provide a
counter-example, and if they are, provide a proof.

(a) f(x, y) = (−2x, x+ y),

(b) f(x, y) = (cos(x), y),

(c) f(x, y) = (x2, y),

(d) f(x, y) = (y, x),

(e) f(x, y) = (−x,−y),

(f) f(x, y) = (x, xy),

Solution. Recall the definition: A function f : R2 → R2 is called an isometry if, for
any points P,Q ∈ R2, we have

d(f(P ), f(Q)) = d(P,Q).

To prove f is an isometry, we prove it for general points P and Q, and to prove f is
not an isometry, we produce a specific pair of points for which the equation above fails.

(a) This is not an isometry because d((1, 0), (0, 0)) = 1, while

d(f(1, 0), f(0, 0)) = d((−2, 1), (0, 0)) =
√

22 + 12 =
√

5 6= 1.

(b) This is not an isometry because d((π, 0), (0, 0)) = π, while

d(f(π, 0), f(0, 0)) = d((−1, 0), (1, 0)) = 2 6= π.

(c) This is not an isometry because d((2, 0), (0, 0)) = 2, while

d(f(2, 0), f(0, 0)) = d((4, 0), (0, 0)) = 4 6= 2

(d) This is reflection through the line y = x. It is an isometry because, for two
points (x1, y1), (x2, y2) ∈ R2 in the plane, we have

d(f(x1, y1), f(x2, y2)) = d((y1, x1), (y2, x2))

=
√

(y2 − y1)2 + (x2 − x1)2

=
√

(x2 − x1)2 + (y2 − y1)2

= d((x1, y1), (x2, y2)).
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(e) This is a rotation through π about the origin. It is an isometry because, for
two points (x1, y1), (x2, y2) ∈ R2 in the plane, we have

d(f(x1, y1), f(x2, y2)) = d((−x1,−y1), (−x2,−y2))

=
√

(−x2 + x1)2 + (−y2 + y1)2

=
√

(x2 − x1)2 + (y2 − y1)2

= d((x1, y1), (x2, y2)).

(f) This is not an isometry because d((0, 1), (0, 0)) = 1, while

d(f(0, 1), (0, 0)) = d((0, 0), (0, 0)) = 0 6= 1.

Problem 3. (20 pts) Let P = (3, 4) ∈ R2 be a point and L ⊆ R2 be the line

L = {(x, y) : y =
√

3x−
√

3 + 2}.

(a) Let Rπ/3,P be the counter-clockwise rotation by π/3-radians centered at P .
Find a formula for the isometry Rπ/3,P .

(b) Where does the point (−2,−7) map under Rπ/3,P ?

(c) Let rL be the reflection along the line L. Find a formula for the isometry rL.

(d) Describe where the points (1, 2), (−2,−7) and (3, 4) map under the isometry rL.

(e) Consider the compositionRπ/3,P◦rL. Where does the origin (0, 0) ∈ R2 map to ?

(f) Consider the composition rL ◦Rπ/3,P . Compute the imagine of the origin (0, 0)
under this isometry and compare with Part (e).

Solution.

(a) To rotate about a point P different from the origin, we translate that point to
the origin, rotate about the origin in the usual way, and then translate back to
P . In formulas,

Rθ,P = tPRθt
−1
P = tPRθt−P ,
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where Rθ is the usual linear isometry of counter-clockwise rotation by θ about
the origin, and tP is the isometry of translation by P . This is called the conju-
gate of Rθ by tP . Think of it like you would the change-of-basis formula from
linear algebra.

Therefore,

Rπ/3,(3,4) = t(3,4)Rπ/3t(−3,−4).

Let’s apply these one by one to a point (x, y) (remember that function compo-
sition is read right to left!). First, the translation t(−3,−4) produces new points

x′ = x− 3

y′ = y − 4.

Next, remember that the functionRθ is the same as multiplying a column vector
on the left by the matrix [

cos θ − sin θ
sin θ cos θ

]
,

which, for our case of θ = π/3 becomes[
cos π

3
− sin π

3
sin π

3
cos π

3

]
=

1

2

[
1 −

√
3√

3 1

]
,

so applying this function to our new coordinates gives

x′′ =
1

2
x′ −

√
3

2
y′ =

1

2
(x− 3)−

√
3

2
(y − 4)

y′′ =

√
3

2
x′ +

1

2
y′ =

√
3

2
(x− 3) +

1

2
(y − 4).

Finally, we apply t(3,4)

x′′′ = x′′ + 3 =
1

2
(x− 3)−

√
3

2
(y − 4) + 3

y′′′ = y′′ + 4 =

√
3

2
(x− 3) +

1

2
(y − 4) + 4,

so our formula is

Rπ/3,P (x, y) =

(
1

2
(x− 3)−

√
3

2
(y − 4) + 3,

√
3

2
(x− 3) +

1

2
(y − 4) + 4

)
.

Notice in particular that the point P = (3, 4) is fixed by this function, as it
should be.

(b) Plugging in (x, y) = (−2,−7) above, we have

Rπ/3,P (−2,−7) =

(
1 + 11

√
3

2
,
−3− 5

√
3

2

)
.
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(c) The formula for rL can again be found by conjugation, but here is a more
straightforward approach: to reflect a point (x0, y0) about a line L given by
y = mx + b, first draw the perpendicular line to L passing through (x0, y0),
which has equation

y = − 1

m
(x− x0) + y0.

This crosses line L at the x-value

x̂ =
m(y0 − b) + x0

m2 + 1
= x0 +

m

m2 + 1
(y0 − b−mx0).

The reflection point is twice as far (along our perpendicular) from (x0, y0) as is
this intersection, so the x-value of the reflection of (x0, y0) about L is

x0 +
2m

m2 + 1
(y0 − b−mx0).

Plugging this in for x in our equation for the perpendicular, we get the corre-
sponding y-value, showing that reflection through L is given by

(1) (x, y) 7→
(
x+

2m

m2 + 1
(y − b−mx), y − 2

m2 + 1
(y − b−mx)

)
,

where we have removed the subscripts to call (x0, y0) simply (x, y). (Note, this
construction cannot apply to vertical lines.)

For our purposes, we have m =
√

3 and b = −
√

3 + 2, so

rL(x, y) =

(
−x+

√
3y − 2

√
3 + 3

2
,

√
3x+ y −

√
3 + 2

2

)
.

For a quick “sanity check”, notice that

rL(x,
√

3x−
√

3 + 2) = (x,
√

3x−
√

3 + 2),

so L is fixed by rL, as you’d expected.

(d) The point (1, 2) lies on L, so it is fixed by rL. For the others, we calculate

rL(−2,−7) =

(
5− 9

√
3

2
,
−5− 3

√
3

2

)
and rL(3, 4) = (

√
3, 3 +

√
3).
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(e) We calculate using the formulas from parts (a) and (c):

Rπ/3,P ◦ rL(0, 0) = Rπ/3,P (rL(0, 0))

= Rπ/3,P

(
3

2
−
√

3, 1−
√

3

2

)

=

(
21 + 2

√
3

4
,
10− 7

√
3

4

)
.

(f) We calculate using the formulas from parts (a) and (c):

rL ◦Rπ/3,P (0, 0) = rL(Rπ/3,P (0, 0))

= rL

(
3

2
+ 2
√

3, 2− 3
√

3

2

)

=

(
−3

2
−
√

3, 5−
√

3

2

)
.

Notice that this differs from the image of the origin in part (e). That is, reflec-
tion in L does not commute with rotation about P .

Remark: In the language of abstract algebra, we say that the group of isome-
tries of the plane, Iso(R2), is a non-abelian group.

Problem 4. (20 pts) In this problem we explore basic compositions of rotations and
translations. Solve the following parts:

(a) Let θ, φ ∈ S1 be two angles. Show that

Rθ ◦Rφ = Rθ+φ.

(b) Let θ ∈ S1 be an angle. Find the unique angle φ ∈ S1 such that Rθ ◦ Rφ = Id
is the identity map Id(x, y) = (x, y).

(c) Let (α, β) and (γ, δ) be two points in the Euclidean Plane R2. Prove that

t(α,β) ◦ t(γ,δ) = t(α+γ,β+δ).

(d) Let (α, β) ∈ R2 be a point in Euclidean plane. Find the unique (γ, δ) ∈ R2

such that the composition t(α,β) ◦ t(γ,δ) = Id.

Solution.
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(a) Rather than use function notation, it is more convenient to identify a linear
operator (such as a rotation) with its corresponding matrix in the standard
basis {(1, 0), (0, 1)} of R2. Then map composition is matrix multiplication, and
we find

Rθ ◦Rφ =

[
cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]
=

[
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cos θ cosφ

]
=

[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
= Rθ+φ,

where we used the famous formulas for the sine and cosine of the sum of two
angles. This formalizes the idea that rotating twice should be the same as
rotating once through the angle equal to the sum of the angles of the two indi-
vidual rotations.

Remark: Notice that, in addition, we have

Rθ ◦Rφ = Rθ+φ = Rφ+θ = Rφ ◦Rθ,

so rotations commute.

(b) The identity map corresponds to the matrix

Id =

[
1 0
0 1

]
,

so we are searching for an angle φ such that[
1 0
0 1

]
= Id = Rθ ◦Rφ = Rθ+φ =

[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
.

This will be satisfied if and only if

cos(θ + φ) = 1 and sin(θ + φ) = 0.

The only angle with cosine 1 and sine 0 is the angle 0, so θ + φ = 0, meaning
φ = −θ, also showing uniqueness. Therefore, rotations have unique inverses
given by rotations through the opposite angle.

Remark: In terms of algebra, we say that rotations of the plane form an
abelian group, SO(2,R). This is how the circle S1 is given the structure of a
group.

(c) Function notation is now preferred, because translations are not linear maps.
For any point (x, y) ∈ R2, we have

t(α,β) ◦ t(γ,δ)(x, y) = t(α,β)(t(γ,δ)(x, y))

= t(α,β)(x+ γ, y + δ)

= (x+ γ + α, y + δ + β)

= t(α+γ,β+δ)(x, y).
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Since the identity holds for all inputs, we conclude that the functions are equal,
t(α,β) ◦ t(γ,δ) = t(α+γ,β+δ). As with rotations, translating twice along two vectors
is the same as translating once along the sum of those vectors.

Remark: Again notice the commutativity property:

t(α,β) ◦ t(γ,δ) = t(α+γ,β+δ) = t(γ+α,δ+β) = t(γ,δ) ◦ t(α,β).

(d) We want to find a vector (γ, δ) ∈ R2 such that, for all points (x, y) ∈ R2, we
have

Id(x, y) = t(α,β) ◦ t(γ,δ)(x, y).

Evaluating both sides, we have

(x, y) = (x+ γ + α, y + δ + β).

Equal points must have equal coordinates, so this means

x = x+ γ + α and y = y + δ + β,

which solves to γ = −α and δ = −β, so the desired vector is (γ, δ) = (−α,−β),
and it is unique.

Remark: In terms of algebra, we say that translations of the plane form an
abelian group. This group is isomorphic to R2 itself (under point wise addi-
tion), because we can always identify a translation t(α,β) with the point (α, β)
to which it sends the origin.

Problem 5. (20 pts) Let L = {(x, y) : y = 0} ⊆ R2 and M = {(x, y) : x = 0} ⊆ R2

be the x and y-axis respectively.

(a) Show that rLrM(x, y) = (−x,−y).

(b) Prove that there exists no line N ⊆ R2 such that

rN = rLrM ,

where L,M are as in Part (a). Thus, we learn that the composition of reflec-
tions is not always a reflection.

(c) Find an angle φ ∈ S1 such that the composition rLrM in Part (a) equals the
rotation Rφ, i.e. Rφ = rLrM . Thus, we learn that the composition of reflections
can sometimes be a rotation.

(d) Find all the angles θ ∈ S1, if any, such that the rotation Rθ, centered at the
origin, commutes with any reflection rL, where L is a line through the origin:

Rθ ◦ rL = rL ◦Rθ.
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Solution.

(a) We already know that reflection in L is the standard reflection, rL(x, y) =
(x,−y). By drawing a picture or constructing the conjugation, we can see that
rM(x, y) = (−x, y). Then

rLrM(x, y) = rL(−x, y) = (−x,−y)

for any (x, y) ∈ R2.

Remark: Note that you get the same result if you compute rMrL(x, y), so
these reflections commute.

(b) Notice that rLrM is rotation about the origin through and angle π. Therefore,
it fixes only the origin. That is, for (x, y) ∈ R2,

rLrM(x, y) = (−x,−y)

is equal to (x, y) if and only if (x, y) = (0, 0). But if rLrM = rN for some line
N , then rLrM would fix every point on N . Since rLrM fixes only the origin, no
such line N can exist.

Remark: Any composition of an even number of reflections is never a reflec-
tion. Heuristically, reflections reverse the orientation of the plane, so an even
number of them in a row will preserve orientation. As another extreme exam-
ple, for any reflection rS, we have rSrS = Id. But the identity is not a reflection,
because reflections fix only a single line, while the identity fixes the whole plane.

(c) As remarked in the solution to (b), φ = π will suffice. To see why, notice that
that

Rπ(x, y) = (x cosπ − y sin π, x sin π + y cos π) = (−x,−y) = rLrM(x, y).

Since these two functions agree on all points (x, y) ∈ R2, they are the same
function.

(d) The only possible angles are 0 and π. If we are looking at lines L through
the origin, then reflections through these lines (with the exception of the one
vertical line through the origin) are given by Eq. (1) for various values of m,
setting b = 0. These formulas are then linear (no constants or higher powers
of x or y). The remaining vertical reflection is also linear, because it is the
map (x, y) 7→ (−x, y) from part (a). (Alternatively, one can see that these are
all linear because they are conjugations of the standard reflection by rotations
through the origin.) Therefore, we can treat all equations like matrix equations
(this will allow us to pull in minus signs below).

Clearly the angle 0 ∈ S1 satisfies this condition, because R0 = Id, and so

R0rL = Id rL = rL = rL Id = rLR0
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for any line L through the origin. For the angle θ = π, we notice from our
calculation in part (c) that Rπ = − Id, so a nearly identical calculation gives

RπrL = − Id rL = −rL = −rL Id = rL(− Id) = rLRπ

for any line L through the origin.

No other angle is possible. Fix an angle θ ∈ S1 with θ 6= 0 and θ 6= π. We need
to produce a line L through the origin such that

RθrL 6= rLRθ.

In fact, the commutativity condition will fail for all such lines L. So let L be
any line through the origin. To show that our condition fails, we just need to
show that the functions RθrL and rLRθ take different values on at least one
point P . Let P be a point on the line L different from the origin. Then it is
fixed by the reflection rL, so we have

RθrL(P ) = Rθ(P ).

On the other hand, we need to look at

rLRθ(P ).

If we had the equality Rθ(P ) = rLRθ(P ), then that means that the point Rθ(P )
is fixed by the reflection in L, so Rθ(P ) must lie on the line L. But Rθ is an
isometry, so Rθ(P ) is the same distance from 0 as is P . There are only two such
points on L, namely P and −P . Since P is not the origin, it is not fixed by
Rθ (remember θ 6= 0, so Rθ fixes only the origin), so we know that Rθ(P ) 6= P .
Therefore, Rθ(P ) = −P . But no two rotations send P to the same location
(why?), and Rπ(P ) = −P already, so we would be forced to conclude that
θ = π. Since we are assuming θ 6= π, we have a contradiction, meaning that

RθrL(P ) 6= rLRθ(P ),

so the functions cannot be equal.

In conclusion, rotations through 0 and π commute with every reflection in a line
through the origin, and other rotations commute with none of these reflections.

Problem 6. (20 pts) Consider the square S ⊆ R2 with four vertices given by the
points (−1,−1), (−1, 1), (1, 1), (1,−1) ∈ R2. The square consists of the convex hull of
these four points, i.e. the region given by

S = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.
(a) Show that there exists no translation t(α,β) : R2 −→ R2, except for the identity,

such that t(α,β)(S) ⊆ S, i.e. the translation sends the square to the square.

(b) Find four distinct lines L1, L2, L3, L4 ⊆ R2 such that the reflections rLi
, 1 ≤

i ≤ 4, all satisfy the inclusion rLi
(S) ⊆ S.

(c) Find 27 distinct lines M ⊆ R2 such that rM(S) 6⊆ S, i.e. the reflection rM
maps the square S not inside the square S.
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(d) Find all angles θ ∈ S1 such that Rθ(S) ⊆ S.

(e) Find infinitely many angles θ ∈ S1 such that Rθ(S) 6⊆ S.

Solution.

(a) Suppose t(α,β) is such a translation. We show that it maps at least one corner
of S to a point not in S, unless (α, β) = (0, 0). If either α < 0 or β < 0 then
t(α,β)(−1,−1) = (−1 +α,−1 + β) has a coordinate less than −1, so it is not in
S. If either α > 0 or β > 0 then t(α,β)(1, 1) = (1 + α, 1 + β) has a coordinate
greater than 1, so it is not in S. Therefore, neither of these are possible if we
require that t(α,β)(S) ⊆ S, so we are forced to conclude α = β = 0. This means
that our translation is

t(α,β) = t(0,0) = Id,

the identity map.

(b) Our four lines are the x- and y-axes along with the lines through the origin with
slopes 1 and −1. They all map S to S exactly, which you can see by drawing
them on a sheet of paper and folding along each line.

(c) Any lines other than those described in (b) will suffice. Setting b to 0 in Eq.
(1) gives linear equations for reflections in all of these lines. That formula (with
b = 0) is identical to the action of the matrix

1

m2 + 1

[
1−m2 2m

2m m2 − 1

]
.

The image of this matrix on the corner (1, 1) ∈ S is

rm(1, 1) =
1

m2 + 1

[
−m2 + 2m+ 1
m2 + 2m− 1

]
,

Where rm denotes reflection through the line y = mx. We have already covered
the cases m = 0, m = 1 and m = −1 (the vertical line can be thought of as
m =∞ or m = −∞).

If m < −1, then the x-component of rm(1, 1) is less than −1, which can be
checked by multiplying by the denominator and simplifying. This means that
that rm(1, 1) is not in the square S. Similarly, if −1 < m < 0, then the
y-component of rm(1, 1) is less than −1. Next, if 0 < m < 1, then the x-
component of rm(1, 1) is greater than 1. Finally, if 1 < m, then the y-component
of rm(1, 1) is greater than 1, so rm(1, 1) is never in the square S if m 6= 0, m 6= 1,
and m 6= −1.

Therefore, for any line M not considered in part (b), rM(S) 6⊆ S. Pick your 27
favorite slopes. I like m = 1

2
, 1
22
, . . . , 1

227
.

(d) By drawing congruent squares on two sheets of paper and turning the paper
over the second, we can immediately see that the angles 0, π

2
, π, and 3π

2
map

the square to the square exactly. We show in part (e) that these are the only
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such angles.

(e) The image of the corner (1, 1) under the rotation Rθ is

Rθ(1, 1) = (cos θ − sin θ, cos θ + sin θ) =

(
√

2 sin

(
−θ +

π

4

)
,
√

2 sin

(
θ +

π

4

))
.

For 0 < θ < π
2
, the y-component of Rθ(1, 1) is greater than 1 (check this using

the unit circle), so Rθ(1, 1) is not in the square S. Similarly, for π
2
< θ < π, the

x-component of Rθ(1, 1) is less than 1. Next, for π < θ < 3π
2

, the y-component

of Rθ(1, 1) is less than 1. Finally, for 3π
2
< θ < 2π, the x-component of Rθ(1, 1)

is greater than 1, so Rθ(1, 1) is never in the square S if θ is none of 0, π
2
, π, and

3π
2

.

Therefore, for any angle θ ∈ S1 not considered in part (d), we have Rθ(S) 6⊆ S.

Problem 7. (20 pts) For each of the ten sentences below, justify whether they are true
or false. If true, you must provide a proof, if false you must provide a counter-example.

(a) The linear map f : R2 −→ R2 defined by(
x
y

)
7−→

(
0 −1
1 0

)(
x
y

)
is an isometry.

(b) Any linear map f : R2 −→ R2 of the form(
x
y

)
7−→

(
1 a
0 1

)(
x
y

)
,

with a 6= 0, must be an isometry.

(c) The composition f ◦g : R2 −→ R2 of two isometries f : R2 −→ R2, g : R2 −→
R2 is always an isometry.

(d) Let f : R2 −→ R2 be an isometry. If there exist infinitely many points P ∈ R2

such f(P ) = P , then f = Id must be the identity.

(e) Let f : R2 −→ R2 be a linear isometry which fixes the points (0, 0), (1, 0) and
(0, 1), i.e. f(0, 0) = (0, 0), f(1, 0) = (1, 0) and f(0, 1) = (0, 1). Then f = Id
must be the identity.

(f) The composition of reflections is always a reflection.

(g) The composition of rotations centered at the origin are always rotations.



SOLUTIONS TO PROBLEM SET 1 15

(h) The composition of translations is always a translation.

(i) There is an isometry f : R2 −→ R2 that sends the square S, as defined in
Problem 6, strictly inside itself, i.e.

f(S) ⊆ {(x, y) ∈ R2 : −1 < x < 1,−1 < y < 1}.

(j) For any rotation Rθ : R2 −→ R2, there exists a power n ∈ N such that the
composition Rn

θ = Id.

Solution.

(a) True. This is the matrix for Rπ/2, clockwise rotation about the origin through
π
2
. We have seen that all rotations are isometries.

(b) False. We saw in Discussion 1 the case where a = 1, a shear, and we showed
that it is not an isometry. In fact, this map can never be an isometry, no matter
the value of a 6= 0. This is because d((0, 1), (0, 0)) = 1, while

d((f(0, 1), f(0, 0)) = d((a, 1), (0, 0)) =
√
a2 + 1 6= 1

if a 6= 0.

(c) True. This is part of why isometries form a group. To prove this, we need to
show that the composition f ◦g preserves the distance between points, meaning
that for any two points P,Q ∈ R2, we have

d(f ◦ g(P ), f ◦ g(Q)) = d(P,Q).

Since we are told that g is an isometry, we already know that

d(g(P ), g(Q)) = d(P,Q).

Finally, since f is an isometry, it also preserves the distance between any points,
in particular g(P ) and g(Q), so

d(f ◦ g(P ), f ◦ g(Q)) = d(f(g(P )), f(g(Q)) = d(g(P ), g(Q) = d(P,Q).

We conclude that f ◦ g is an isometry of the plane.

(d) False. Any reflection through a line preserves all points on that line, and every
line contains an infinite number of points. In particular, in Problem 3(b), we
checked directly that the reflection rL preserves all points on L, meaning that
if P is on L, we have rL(P ) = P . And this isometry is certainly not the identity.

(e) True. Recall that a linear map is determined uniquely by its action on a basis.
Since we are given that f is linear, and we know what it does to the basis
{(1, 0), (0, 1)}, it must be determined uniquely. Since the identity Id achieves
all three data points that we care about, we must have f = Id. In fact, given a
basis, the columns of the matrix of a linear map are exactly the images of the
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basis elements, so since f(1, 0) = (1, 0) and f(0, 1) = (0, 1), we can see that the

matrix for f must have first column

[
1
0

]
and second column

[
0
1

]
, so it is the

identity matrix.

Remark: Notice that we did not need the data point f(0, 0) = (0, 0) to con-
clude that f was the unique linear isometry satisfying the requirements. With-
out using this data point, can we conclude that f is the unique isometry overall?
No, because in addition to the identity, there is another isometry which fixes
(1, 0) and (0, 1) (reflection in the line connecting these points).

However, if we consider all three fixed points, f is indeed uniquely determined
to be the identity (among all isometries, linear or not). The Lemma at the
beginning of Stillwell 1.4 (p. 9) guarantees that there is at most one isometry
that can send three non-collinear points A B, C to three determined locations
f(A), f(B), and f(C). Clearly (0, 0), (1, 0), and (0, 1) are not on a line, and
Id fixes each of them as desired. Then by the Lemma, this can be the only
isometry which does so.

(f) False. This is the result of Problem 5(b).

(g) True. We proved this in Problem 4(a).

(h) True. We proved this in Problem 4(d).

(i) False. Suppose f is such an isometry. Then

d(f(1, 1), f(−1, 1)) = d((1, 1), (−1,−1)) = 2
√

2.

Let P = f(1, 1) and Q = f(−1,−1). Then P,Q ∈ f(S) are points in the image
of the square, and they are a distance 2

√
2 from each other. The only pairs

of points in S which achieve this distance are (1, 1) with (−1,−1), and (1,−1)
with (−1, 1). But none of these four points are in f(S), so none of them can
be P or Q. We’ve arrived at a contradiction, so f cannot be an isometry.

(j) False. This is a fun one. By induction on the result of Problem 4(a), we can
show that for any angle θ ∈ S1, we have

Rn
θ = Rnθ.

In order for this rotation to be the identity, we would need nθ to be a multiple
of 2π, so the question becomes: for any angle θ ∈ S1, is there a multiple of θ
which is also some multiple of 2π?

The answer is no. Take θ to be an irrational multiple of 2π, meaning θ = 2πα
for some irrational number α ∈ R. We are searching for an integer n such that

nθ = 2πk

for some integer k. Plugging in θ = 2πα and rearranging, we have

α =
k

n



SOLUTIONS TO PROBLEM SET 1 17

which has no solution for integers n and k, because 2π is irrational. Since there
does not exist a multiple nθ which is a multiple of 2π, we conclude that no
power of Rθ will ever be the identity.

Remark: Notice that, given an angle θ ∈ [0, 2π), the ratio α = θ/2π is in the
interval [0, 1). This ratio determines whether or not there exists a power of Rθ

equal to Id. If α is irrational, the above proof shows that such a power is never
possible (no matter how many times you rotate around by θ, you’ll never get
back to where you started). If α is rational, represent it as α = p

q
for integers

p, q in lowest terms. Then

qθ = (qα)2π = p 2π

is a multiple of 2π, so Rq
θ = Id. In an analytic sense, almost all angles are

irrational multiples of 2π, so if you pick an angle θ at random, there will never
be a power of Rθ equal to the identity.

However, if θ is an irrational multiple of 2π, by taking higher and higher powers
of Rθ, you can always get arbitrarily close to Id (though never exactly Id). In
fact, you can always get arbitrarily close to any rotation Rφ about the origin,
for any φ. This is known as an ergodic theorem; it says that the orbit of mul-
tiples of θ is uniformly distributed around the circle. This does not happen if
θ is a rational multiple of 2π (why?).


