
SOLUTIONS TO PROBLEM SET 4

MAT 141

Abstract. These are the solutions to Problem Set 4 for the Euclidean and Non-
Euclidean Geometry Course in the Winter Quarter 2020. The problems were posted
online on Saturday Feb 15 and due Friday Feb 21 at 10:00am.

Problem 1. Decide whether the following points P ∈ R3 belong to the 2-sphere S2:

(1, 0, 0), (0, 1, 0), (1, 1, 0), (1/
√

2, 1/
√

2, 0),

(1/2, 0, 1/2), (1/
√

3, 1/
√

3, 1/
√

3), (1/4, 1/2, 1/2).

Solution. Remember that the definition of the 2-sphere is

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} ⊆ R3,

the set of all points in R3 with norm 1. Therefore, to figure out whether a point is in
S2, we just need to calculate its norm. We find that

(1, 0, 0), (0, 1, 0), (1/
√

2, 1/
√

2, 0), and (1/
√

3, 1/
√

3, 1/
√

3)

all have norm 1, so these are in S2. The rest of the points given do not have norm 1,
so they are not in S2.

Problem 2. For each pair of axis l1, l2 ⊆ R3, find a linear isometry ϕ ∈ Iso(R3),
ϕ : R3 −→ R3, such that ϕ(l1) = l2.

(a) Let l1 = 〈(1, 0, 0)〉 be the oriented axis spanned by the vector (1, 0, 0), and
choose l2 = 〈(0, 0, 1)〉.

(b) Let l1 = 〈(0, 1, 0)〉 and choose l2 = 〈(0, 0, 1)〉.

(c) Let l1 = 〈(1, 1, 0)〉 and choose l2 = 〈(0, 0, 1)〉.

(d) Let l1 = 〈(1, 1, 2)〉 and choose l2 = 〈(0, 0, 1)〉.

Solution. This is essentially what we did in Discussion 6, constructing the matrix that
rotates a given point P to the point (0, 0, 1) on the z-axis. Remember, we first perform
a rotation Rz,φ to bring P to the yz-plane (to make x = 0), and then we perform a
rotation Rx,ψ to bring P ′ = Rz,ϕ(P ) to the point (0, 0, 1) on the z-axis. We’ll need to
use the formulas

Rz,φ =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , and Rx,ψ =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .
1
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Then, our transformation will be ϕ = Rx,ψ ◦Rz,φ. Since ϕ is a composition of rotations
at the origin, it is guaranteed to be a linear isometry of R3. (Note, in the problems be-
low, you should always check that ϕ(P ) = (0, 0, 1) and that ϕ is an orthogonal matrix.)

Remark. Be aware that the answer ϕ is not unique. Once you’ve used ϕ to rotate P
to some given point Q (here something on the positive z-axis), any further rotation γ
about Q will produce a new isometry that fixes Q. Forming the composition γ ◦ϕ will
produce a linear isometry just as valid as the original ϕ. (Really, any 3× 3 orthogonal
matrix will due, as long as it sends P to Q).

(a) This is really just rotation about the y-axis, but it will follow systematically
from our procedure described above. To rotate P = (1, 0, 0) into the yz-plane,
we perform Rz,π

2
, resulting in

Rz,π
2
(P ) = (0, 1, 0).

For the second stage, use part (b) below, which rotates (0, 1, 0) to (0, 0, 1).
Therefore,

ϕ = Rx,π
2
◦Rz,π

2
=

1 0 0
0 0 −1
0 1 0

0 −1 0
1 0 0
0 0 1

 =

0 −1 0
0 0 −1
1 0 0

 .

Remark. We could also have found a valid isometry more geometrically. The
columns of our matrix could be given by the images of the basis vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1) under a rotation about the y-axis by π

2
. We definitely

want (1, 0, 0) 7→ (0, 0, 1). Since we are rotating about the y-axis, we can choose
(0, 1, 0) 7→ (0, 1, 0). Finally, by imagining the picture, we see that (0, 0, 1) 7→
(−1, 0, 0). Therefore, our rotation is0 0 −1

0 1 0
1 0 0

 ,
another valid answer.

(b) Since P = (0, 1, 0) is already in the yz-plane, we only need to rotate P into
the z axis. Draw the yz-plane to see that the rotation Rx,π

2
will do the trick.

Therefore,

ϕ = Rx,π
2

=

1 0 0
0 0 −1
0 1 0

 .
(c) Here, P = (1, 1, 0) isn’t a point on the sphere, so it can’t be sent to (0, 0, 1).

Still, we can rotate P to the positive z-axis, and it should land at (0, 0,
√

2).
Alternatively, we could normalize P (multiply it by the reciprocal of its norm)
so that it lands in the sphere, and then proceed as before. It really makes no
difference either way, so let’s stick to the form given. Draw the point P in the
xy-plane to see that we need Rz,π

4
to bring P to the yz-plane. We end up with
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R
z,
π
4
(P ) = (0,

√
2, 0), which is on the same ray from the origin as the point

from (b). Therefore, we rotate to the positive z-axis as before. We have

ϕ = Rx,π
2
◦Rz,π

4
=

1 0 0
0 0 −1
0 1 0


 1√

2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 =

 1√
2
− 1√

2
0

0 0 −1
1√
2

1√
2

0



(d) This one starts out like (c). The projection of P = (1, 1, 2) to the xy-plane
is (1, 1, 0), so we use Rz,π

4
again to rotate to the yz-plane. The rest is a little

harder to visualize than the others, so we recall our algorithm. We have

P ′ = Rz,π
4
(P ) =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


1

1
2

 =

 0√
2

2

 .
In the yz-plane, the vector P ′ makes an angle of arctan

(
−
√
2

2

)
with the pos-

itive z-axis, so we perform Rx,ψ, where ψ = − arctan
(
−
√
2

2

)
= arctan

(
1√
2

)
.

Therefore, our isometry is

ϕ = Rx, arctan(1/
√
2) ◦Rz,π

4
=


1 0 0

0
√

2
3
− 1√

3

0 1√
3

√
2
3


 1√

2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 =


1√
2
− 1√

2
0

1√
3

1√
3
− 1√

3

1√
6

1√
6

√
2
3

 .

Problem 3. (20 pts) Distances in S2. Let (S2, dS2) be the 2-sphere with its distance
function dS2 . We consider the set S2 ⊆ R2 as the set of points

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
and thus use Cartesian coordinates (x, y, z) ∈ S2 for points in S2.

(a) Compute the distance dS2(P,Q) between P = (0, 0, 1) and Q = (0, 1, 0).

(b) Compute the distance between (1/
√

2, 1/
√

2, 0) ∈ S2 and P = (0, 0, 1).

(c) Draw the following four sets in the S2:

Eπ/4 = {R ∈ S2 : dS2(P,R) = π/4}, Eπ/2 = {R ∈ S2 : dS2(P,R) = π/2},
E3π/4 = {R ∈ S2 : dS2(P,R) = 3π/4}, Eπ = {R ∈ S2 : dS2(P,R) = π}.

(d) Show that given any two points P1, P2 ∈ S2, we have the equality

{R ∈ S2 : dS2(P1, R) = dS2(P2, R)} = {R ∈ R3 : dR3(P1, R) = dR3(P2, R)} ∩ S2,

comparing the sets of equidistant points R to P1, P2 in S2 and R3.
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Solution.

(a) Recall the definition: dS2(P,Q) = 2 arcsin
(
1
2
dR3(P,Q)

)
. Here, the Euclidean

distance is
√

12 + 12 + 02 =
√

2, so

dS2(P,Q) = 2 arcsin
(

1
2

√
2
)

=
π

2
.

This makes sense, because these two points lie on the standard equator {x = 0}
in S2, and they make a right angle with the origin.

(b) The Euclidean distance is again
√

1
2

+ 1
2

+ 1 =
√

2, so

dS2(P,Q) =
π

2
.

Therefore, these two points also create a right angle with the origin.

Remark. Note that any point in the xy-plane makes a right angle when con-
nected to any point on the z-axis through the origin. In full generality, dS2(P,Q)
will be π

2
if and only if Q lies on an axis normal to some plane Π through the

origin which contains P . Since there are many such planes Π, there are of
course many points Q which have distance π

2
from a given point P (as we see

in (c) below).

(c) These are lines of latitude If you draw the sphere with (0, 0, 1) at the north
pole, then Eπ/2 is the equator (at latitude 0◦), Eπ/4 and E3π/4 are the horizon-
tal circles at latitudes 45◦ and −45◦, respectively, and Eπ = {(0, 0,−1)} is the
single point at the south pole.

Remark. The greatest distance between two points in S2 is π. Furthermore,
for any single point P , the set of points at distance π from P is just the single
point −P antipodal to P . For any other distance d ∈ (0, π), the set of points
distance d from P forms a circle on the sphere (only a great circle if d = π/2).
When P is the North Pole, these circles are called “lines” of latitude, even
though only one of them is technically a line on the sphere.

(d) We discussed this briefly in Discussion 6. The key is that arcsin is a one-to-one
function (I marked that step with a ∗). We can peel back the layers of these
sets:

{R ∈ S2 : dS2(P1, R) = dS2(P2, R)}
= {R ∈ R3 : 2 arcsin

(
1
2
dR3(P1, R)

)
= 2 arcsin

(
1
2
dR3(P2, R)

)
} ∩ S2

= {R ∈ R3 : arcsin
(
1
2
dR3(P1, R)

)
= arcsin

(
1
2
dR3(P2, R)

)
} ∩ S2

∗
= {R ∈ R3 : 1

2
dR3(P1, R)) = 1

2
dR3(P2, R))} ∩ S2

= {R ∈ R3 : dR3(P1, R)) = dR3(P2, R))} ∩ S2

Remark This has an intuitive geometric interpretation. The left-hand side is
the definition of a line in S2, the set of points equidistant from two points P1
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and P2. The right-hand-side (before the intersection) is the same, but allowing
points in all of R3. This forms a plane, and intersecting with S2 gives our
familiar great circles. Therefore, we have proved that all lines in S2 are great
circles, and all great circles in S2 are lines.

Problem 4. (20 pts) Lines in S2. Let L,M ⊆ S2 be two distinct lines. The map
a : S2 −→ S2 defined by (x, y, z) 7−→ (−x,−y,−z) is called the antipodal map.

(a) Show that L ∩M consists of exactly two distinct points P,Q.

(b) Let L ∩M = {P,Q}, show that Q = a(P ) and P = a(Q), where a : S2 −→ S2

is the antipodal map.

(c) Show that for any line L ⊆ S2 there exists a plane ΠL ⊆ R3 through the origin
such that L = ΠL ∩ S2.

(d) Let Π̂ ⊆ R3 be a 2-plane which does not contain the origin and such that the in-

tersection Π̂∩S2 contains more than a point. Show that Π̂∩S2 must be a circle.

(e) In the same hypothesis of Part.(d), show that Π̂ ∩ S2 is not a line in S2.

Solution.

(a) From part (c) below, we know that

L ∩M = (ΠL ∩ S2) ∩ (ΠM ∩ S2) = (ΠL ∩ ΠM) ∩ S2.

Since L and M are distinct lines in S2, ΠL and ΠM are distinct planes in R3.
These planes cannot be parallel, because they both pass through the origin.
Therefore, ΠL ∩ ΠM is a line in R3 passing through the origin. By a suitable
isometry of S2, we may assume that this line is the x-axis, which intersects S2

at two points R1 = (1, 0, 0) and R2 = (−1, 0, 0). By Problem 5(c), our points
remain antipodal through this isometry.

(b) From the proof of part (a), we saw that when ΠL ∩ ΠM is the x-axis, we have
R2 = −R1 = a(R1), as desired. The other relation holds by noticing that
a ◦ a = (− Id) ◦ (− Id) = Id, and applying a to both sides of the equation
R2 = a(R1). The general case then follows from this one, because an isometry
ϕ : S2 −→ S2 will bring the x-axis to any desired axis. After applying ϕ, we
have P = ϕ(R1) and Q = ϕ(R2) as the two distinct points in ϕ(ΠL) ∩ ϕ(ΠM).
Since a = − Id, it commutes with all linear maps, so

a(Q) = a ◦ ϕ(R1) = ϕ ◦ a(R1) = ϕ(R2) = P,

as desired (again, the other direction holds by applying a to both sides above).

(c) First, we prove the following: for any distinct points P1, P2 ∈ R3, the set of
points equidistant to P1 and P2 is a plane. By a suitable isometry of R3, we can
assume that our two points P1 and P2 lie on the x-axis, at points P1 = (−α, 0, 0)
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and P2 = (α, 0, 0). (Note that this isometry will almost certainly not preserve
the sphere, but that’s ok, because we’re just proving a result about R3 right
now.) Then we proceed as in the Lemma on p. 9 of Stillwell:

{(x, y, z) ∈ R3 : dR3((x, y, z), P1) = dR3((x, y, z), P2)}
= {(x, y, z) ∈ R3 : (x+ α)2 + y2 + z2 = (x− α)2 + y2 + z2}
= {(x, y, z) ∈ R3 : 2αx = −2αx}
= {(x, y, z) ∈ R3 : x = 0},

where we used that α 6= 0, because P1 6= P2. The result is the yz-plane, so the
claim holds: the set of points equidistant between any two distinct points in
R3 is a plane.

Going back to the case at hand, we know that our line L ⊆ S2 is the set
of points equidistant from two distinct point P,Q ∈ S2 (by definition). By
Problem 3(d), this means that

L = ΠL ∩ S2,

where

ΠL = {R ∈ R3 : dR3(P,R)) = dR3(Q,R))} ∩ S2.

We have just proved that ΠL is a plane, since P 6= Q are points in R3. Finally,
letting O = (0, 0, 0) be the origin of R3, we have

dR3(P,O) =‖P‖ = 1 =‖Q‖ = dR3(Q,O),

where we used the fact that P and Q are on the sphere, and so have norm 1.
Therefore, the origin is in our plane ΠL, as desired.

(d) This result still holds even if Π̂ does contain the origin, because then we are in

the situation of part (c). By a suitable isometry of S2, we may assume that Π̂
is parallel to the xy-plane. That is,

Π̂ = {(x, y, z) ∈ R3 : z = r},

for some −1 < r < 1 (any other value of r will either intersect the sphere at
only one point, or not at all). Then

Π̂ ∩ S2 = {(x, y, z) ∈ R3 : z = r and x2 + y2 + z2 = 1}
= {(x, y, z) ∈ R3 : z = r and x2 + y2 = 1− r2}.

Since 1 − r2 > 0, this is the intersection of a cylinder with a perpendicular
plane, and is therefore a circle.

(e) Now let’s go back to assuming that Π̂ does not contain the origin. If Π̂ ∩ S2

were a line, say L ⊆ S2, then we would have

Π̂ ∩ S2 = L = ΠL ∩ S2

for some plane ΠL containing the origin (by part (c)). But ΠL intersects S2 in a
full circle (in particular, in three points not connected by a straight line in R3),
so the plane ΠL is uniquely determined by its intersection with S2. Therefore,

Π̂ = ΠL, a contradiction.
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Problem 5. (20 pts) The antipodal map in S2. Consider the antipodal map
a : S2 −→ S2 defined by (x, y, z) 7−→ (−x,−y,−z).

(a) Show that a is an isometry of (S2, dS2) and show that is has no fixed points.

(b) Express a as a composition of reflections in Iso(S2).

(c) Let f ∈ Iso(S2) be an isometry. Show that antipodal points P,Q remain an-
tipodal after applying f : S2 −→ S2, i.e. prove that P,Q are antipodal if and
only f(P ), f(Q) are antipodal.

Solution.

(a) Notice that a = − Id, so it has no fixed points (because P = −P implies P = O,
the origin, which is not in S2). The antipodal map is an isometry because − Id
is an isometry of R3, and equality of distances in R3 imply equality of distances
in S2. Alternatively, each of the reflections in part (b) below is an isometry, so
a is an isometry.

(b) The antipodal map is formed by negating three coordinates. If we negate each
coordinate one at a time, each negation corresponds to reflection in a coordinate
plane. For example (x, y, z) 7→ (x,−y, z) is reflection in the great circle formed
by intersecting S2 with the zx-plane. Therefore, let Lx, Ly, and Lz be the lines
in S2 formed by the intersections with planes in R3 as follows:

Lx = {x = 0} ∩ S2

Ly = {y = 0} ∩ S2

Lz = {z = 0} ∩ S2.

Then a = rLz ◦ rLy ◦ rLx . Note that all three reflections commute, so we could
have written this composition in any order.

(c) Since the inverse of an isometry is again an isometry, it suffices to prove
one direction of the if and only if. Suppose P and Q are antipodal. Then
dS2(P,Q) = π. Then, if f is an isometry of S2, we have

dS2(f(P ), f(Q)) = dS2(P,Q) = π.

Two points with distance π in the sphere must have distance 2 in R3. But since
the sphere has radius 1, any two such points must be antipodal. Therefore,
f(P ) and f(Q) are antipodal.

Alternatively, we can use a similar reasoning from Problem 4(b). Since a =
− Id, it commutes with all linear maps. Therefore, if a(P ) = Q, then

a(f(P )) = f(a(P )) = f(Q),

so f(P ) and f(Q) are antipodal.
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Problem 6. (20 pts) Isometries in S2. Let l ⊆ R3 be the oriented axis in 3-space
generated by the vector v = (1, 1, 1).

(a) Express the rotation Rz,π/2 as a composition of two reflections.

(b) Where does Rz,π/2 send the point 1√
6
(1, 1, 2) ∈ S2 ?

(b) Find a formula for the rotation Rl,θ.

(c) Where does Rl,θ map the point (0, 0, 1) ?

(d) Let A ⊆ R3 be any oriented axis. Show that a general rotation RA,θ must have
exactly two fixed points.

(e) In the hypothesis of Part (d), show that the two fixed points of a general rota-
tion RA,θ must be antipodal.

Solution.

(a) Thinking of (0, 0, 1) ∈ S2 as the North Pole, Rz,π
2

represents rotation to the
East by 90◦. We can decompose this rotation as a composition of two reflections
in lines which meet (0, 0, 1) and form an oriented angle of π

4
. To do so, we can

choose any two lines of longitude satisfying these properties. Choose the lines

L1 = {x = 0} ∩ S2 and L2 = {x+ y = 0} ∩ S2.

Notice that both of these lines contain the point (0, 0, 1). Next, the normal
vector for L2 is a rotation by π

4
of the normal vector for L1, so these two lines

have the desired angle. Therefore,

(1) Rz,π
2

= rL2 ◦ rL1 .

This can be checked by expressing rL2 and rL2 using conjugations of rE by the
isometries found in Problem 1(a) and 1(c), respectively. (Recall,

E = {z = 0} ∩ S2

is the standard equator in S2, and rE is the standard reflection, (x, y, z) =
(x, y,−z).) Alternatively, we can see directly what these reflections do. Since
rL1 is reflection through the yz-plane, we have rL1(x, y, z) = (−x, y, z). Since
rL2 is reflection through the plane {y = −x}, it preserves the z-coordinate,
sends the positive x-axis to the negative y-axis, and send the positive y-axis to
the negative x-axis. Therefore, rL2(x, y, z) = (−y,−x, z). So, in matrices, our
decomposition (1) becomes0 −1 0

1 0 0
0 0 1

 =

−1 0 0
0 1 0
0 0 1

 0 −1 0
−1 0 0
0 0 1

 ,
which checks out in the matrix multiplication.
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(b) We apply our rotation as a matrix:

Rz,π
2
( 1√

6
(1, 1, 2)) =

1√
6

0 −1 0
1 0 0
0 0 1

1
1
2

 =
1√
6

−1
1
2



(b) We can proceed as in Problem 2. First, we find the isometry ϕ : R3 −→ R3 that
sends v = (1, 1, 1) to the positive z-axis. We will then conjugate the standard
rotation Rz,θ by ϕ.

To start, we want to rotate v to the yz-plane, using a rotation Rz,φ. Notice
that the projection of v to the xy-plane is (1, 1), just like the point in Problem
2(c), where the necessary matrix was Rz,π

4
. Performing this rotation, we have

Rz,π
4
(v) = (0,

√
2, 1).

We want to use a rotation Rx,ψ to rotate this point to the positive z-axis. In

the yz-plane, the point (
√

2, 1) makes an angle arctan(−
√

2) with the positive
z-axis, so we should use ψ = − arctan(−

√
2) = arctan

√
2. Performing these

rotations, we have

ϕ = Rx,arctan
√
2 ◦Rz,π

4
=


1 0 0

0 1√
3
−
√

2
3

0
√

2
3

1√
3


 1√

2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 =


1√
2
− 1√

2
0

1√
6

1√
6
−
√

2
3

1√
3

1√
3

1√
3

 .
We check that ϕ(v) = (0, 0,

√
3) on the positive z-axis, as desired. We will also

need

ϕ−1 = (Rx,arctan
√
2 ◦Rz,π

4
)−1

= (Rz,π
4
)−1 ◦ (Rx,arctan

√
2)
−1

= Rz,−π
4
◦Rx,− arctan

√
2

=

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1




1 0 0

0 1√
3

√
2
3

0 −
√

2
3

1√
3

 =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

 .
Putting it all together, rotation about the oriented axis l by angle θ is the map

Rl,θ = ϕ−1 ◦Rz,θ ◦ ϕ =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3

1√
3


cos θ − sin θ 0

sin θ cos θ 0
0 0 1




1√
2
− 1√

2
0

1√
6

1√
6
−
√

2
3

1√
3

1√
3

1√
3


=

1

3

 1 + 2 cos θ 1− cos θ −
√

3 sin θ 1− cos θ +
√

3 sin θ

1− cos θ +
√

3 sin θ 1 + 2 cos θ 1− cos θ −
√

3 sin θ

1− cos θ −
√

3 sin θ 1− cos θ +
√

3 sin θ 1 + 2 cos θ

 .
Notice that this matrix fixes all points on the axis

l = 〈(1, 1, 1)〉 = {(t, t, t) ∈ R3 : t ∈ R}.
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(c) The answer is read off from the third column of our final matrix from part (b).
The point (0, 0, 1) is sent to

1
3
(1− cos θ +

√
3 sin θ, 1− cos θ −

√
3 sin θ, 1 + 2 cos θ).

(d) We assume that θ 6= 0 (otherwise RA,θ = Id fixes all points). We can think of
RA,θ as a rotation first of R3, so it fixes only the axis A. This axis intersects
S2 in two antipodal points (by the proof of Problem 4(a) above), so the fixed
points of RA,θ on S2 are these points.

Here’s another proof: the rotation RA,θ can be decomposed into the composition
of two reflections, RA,θ = rM2 ◦rM1 , where M1 and M2 meet at A, and the angle
from M1 counterclockwise (at A) to M2 is θ/2. From Problem 4(a), we know
that M2 ∩M1 = {P,Q} is exactly two points. These points are certainly fixed
by rM2 ◦ rM1 , since they lie on both lines M1 and M2 (reflection through a line
fixes all points on that line).

Finally, we show that all other points of S2 are not fixed by RA,θ = rM2 ◦ rM1 .
Suppose T ∈ S2 is a fixed point not equal to P or Q. Then

T = RA,θ(T ) = rM2 ◦ rM1(T ).

Apply rM2 to both sides. Since rM2 ◦ rM2 = Id, we have

rM2(T ) = rM1(T ).

If T lies in M2 but not M1, then we would have

T = rM2(T ) = rM1(T ) 6= T,

a contradiction. Similarly if f T lies in M1 but not M2. Therefore, assume that
T lies in neither M1 nor M2.

From Problem 4(c), we have M1 = ΠM1∩S2 and M2 = ΠM2∩S2 for planes ΠM1

and ΠM2 through the origin. Since T is being reflected through each of these
planes, the line segment from T to rM1(T ) = rM2(T ) 6= T must be perpendicular
to both ΠM1 and ΠM2 . Therefore, ΠM1 and ΠM2 have the same normal vector
and both contain the origin, so ΠM1 = ΠM2 . But this is a contradiction because
these are two planes separated by angle θ/2 6= 0.

We conclude that no such fixed point T exists, so P and Q are the only fixed
points of RA,θ.

(e) From Problem 4(b), we know that the points P,Q ∈ S2 found above in (d) are
antipodal, and we showed that these are the fixed points of RA,θ.

Problem 7. (20 pts) Real-Life Computation. Consider the longitude ϕ (azimuth
angle) and latitude θ coordinates on Earth. Suppose the surface of the Earth is spher-
ical, its core is at (0, 0, 0) ∈ R3, and the radius of the Earth is r = 6378 kilometers.

In this coordinates, the point (x, y, z) ∈ R3 corresponds to
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(x, y, z) = (r cos θ sinϕ, r cos θ cosϕ, r sin θ),

with θ ∈ [−π/2, π/2], ϕ ∈ [−π, π), where θ = π/2 is the North Pole and θ = −π/2 is
the South Pole, and ϕ ∈ (0, π) is East of the Greenwich Meridian, and ϕ ∈ [−π, 0) is
West of the Greenwich Meridian.

(a) UC Davis is located at (θ, ϕ) = (38.5382◦N, 121.7617◦W ) and Barcelona (Spain)
at (θ, ϕ) = (41.3851◦N, 2.1734◦E). Compute approximately the distance dS2

on the surface of Earth from UC Davis to Barcelona.

(b) UC Berkeley is located at (θ, ϕ) = (37.8719◦N, 122.2585◦W ). Compute the
distance dS2 on the surface of Earth from UC Davis to UC Berkeley.

(c) Compare the distances on the surface of Earth with the corresponding distances
considered in R3. In which case is the distance dR3 closer to the distance dS2

on the surface of Earth ?

Solution.

We need to modify our definition of distance on the sphere somewhat, since our sphere
no longer has radius 1. Suppose we have two points P,Q ∈ R3 which are both located
on the sphere of radius r centered at the origin. Investigating the original derivation
for spherical distance in Fig. 3.1 of Stillwell (p. 46), we need the modification

(2) dS2(P,Q) = 2r arcsin
(

1
2r
dR3(P,Q)

)
= 2r arcsin

(
1
2
dR3(P/r,Q/r)

)
.

Note that this reduces to the usual case when r = 1. The final formula above says that
first we normalize P and Q so that they are on the usual unit sphere, then we find
their usual distance in the unit sphere, and then we scale back up. This makes sense,
because distances should go up in proportion to the radius in the sphere.

Remark. Also note that it would have been incorrect to simply scale our usual for-
mula by r (meaning 2r arcsin

(
1
2
dR3(P,Q)

)
). One way to see that this won’t work is

that 1
2
dR3(P,Q) may not even be in the domain of arcsin if P,Q lie on a large sphere

(as they do in this problem).

(a) First we should make our coordinates (θ, ϕ) match the conventions given in
the problem. From the conventions given, North and East are positive, while
South and West are negative. Therefore, UC Davis has coordinates

(θD, ϕD) = (38.5382◦,−121.7617◦),

and Barcelona has coordinates

(θB, ϕB) = (41.3851◦, 2.1734◦).

On the last page of this document is a Mathematica notebook that calculates
distances in R3 and S2 for any given attitude and longitude. Play around with
it! In short, we calculate the Cartesian coordinates of these points in space,
find their distance in R3, and then put that distance in (2) to find the distance



12 MAT 141

on the Earth. We find that that the distance on Earth from UC Davis to
Barcelona is

dS2(D,B) ≈ 9480.36 km.

(b) UC Berkeley has coordinates (θC , ϕC) = (37.8719◦,−122.2585◦). We find that
that the distance on Earth from UC Davis to UC Berkeley is

dS2(D,C) ≈ 85.9633 km.

(c) The distances in R3 are

dR3(D,B) ≈ 8631.39 km and dR3(D,C) ≈ 85.9627 km.

From UC Davis to UC Berkeley, traveling by foot (on the Earth) rather than
by laser (in R3) increases your trip by less than a meter. But the comparison
on a trip to Barcelona increases your trip by nearly 850 kilometers! If you’re
flying, that should give you enough time to watch about half a movie more than
you otherwise would. Certainly the difference is smaller on the shorter trip to
Berkeley.

Remark. Notice that the distance on Earth is always larger than the distance
in R3, because arcsin is a convex function on its positive domain. And since
the first order Taylor approximation of arcsin (at x = 0) is

arcsinx = x+O(x3),

we see that dR3 is a very good approximation for dS2 for reasonably small
distances (such as a day trip to Berkeley). However, the error becomes larger
as x strays too far from 0, explaining why the difference is significant on a trip
to Barcelona.

It is also interesting to note that this approximation is better for larger planets.
This is easily seen from the Taylor expansion for 2r arcsin

(
x/2r

)
(where r is

the radius of the planet), but it can also be viewed geometrically. The surface
of a larger planet is more similar to its tangent planes than is the surface of
a smaller planet. In other words, larger spheres have smaller curvature than
smaller spheres. Curvature is measured by second derivatives, and the magni-
tude of the second derivative is what measures how badly the first order Taylor
polynomial approximates a given function.
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Click on the link below to see the Mathematica notebook mentioned above. If you’d
like to play around with the notebook, click on “Make Your Own Copy” on the upper
right. It’s free to make a Wolfram ID account and use Mathematica as part of Wolfram
Cloud:

https://www.wolframcloud.com/obj/srubin0/Published/Distance_on_Earth.nb

Here is the text of the notebook:

r=6378; (* r is the radius of your "Earth" *)

(* Put in any coordinates for these pairs to test out other locations. *)

(* These are the three points from the problem *)

tD=38.5382; (* t is the N/S theta coordinate (latitude) in degrees *)

pD=-121.7617; (* p is the E/W phi coordinate (longitude) in degrees *)

tB=41.3851;

pB=2.1734;

tC=37.8719;

pC=-122.2585;

(* These calculate Cartesian coordinates given latitude and longitude *)

CartX[t_,p_]:=Cos[t Degree]*Sin[p Degree ];

CartY[t_,p_]:=Cos[t Degree]*Cos[p Degree];

CartZ[t_,p_]:=Sin[t Degree];

(* Given two coordinate pairs (in latitude and longitude), this calculates *)

(* the R^3 distance between the two points on the Earth with those coordinates *)

(SpaceDistance[t1_,p1_,t2_,p2_]:=r*EuclideanDistance[

{CartX[t1,p1],CartY[t1,p1],CartZ[t1,p1]},{CartX[t2,p2],CartY[t2,p2],CartZ[t2,p2]}])

(* This turns the R^3 distance into the distance on the surface of the Earth *)

EarthDistance[t1_,p1_,t2_,p2_]:=Simplify[2*r*ArcSin[(1/(2*r))*SpaceDistance[t1,p1,t2,p2]]]

(* If you want to test EarthDistance with nice whole numbers for degrees, *)

(* put it inside a N[] to evaluate numerically. Otherwise, it gives the *)

(* exact answer in terms of a single degree, o=Pi/180. *)

SpaceDistance[tD,pD,tB,pB] (* Distance by laser from UC Davis to Barcelona *)

EarthDistance[tD,pD,tB,pB] (* Distance by foot from UC Davis to Barcelona *)

SpaceDistance[tD,pD,tC,pC] (* Distance by laser from UC Davis to UC Berkeley *)

EarthDistance[tD,pD,tC,pC] (* Distance by foot from UC Davis to UC Berkeley *)


