
SOLUTIONS TO PROBLEM SET 5

MAT 141

Abstract. These are the solutions to Problem Set 5 for the Euclidean and Non-
Euclidean Geometry Course in the Winter Quarter 2020. The problems were posted
online on Friday Feb 21 and due Friday Feb 28 at 10:00am.

Problem 1. Show that there are no parallel lines L1, L2 ⊆ S2 in the 2-sphere, i.e. if
L1, L2 ⊆ S2 are lines, then L1 ∩ L2 is non-empty.

Solution. This is the content of Problem 4(a) in Problem Set 4.

Problem 2. Triangles in the Euclidean Plane. Let T ⊆ R2 be a triangle, and
α, β, γ be the interior angles of T .

(a) Show that α + β + γ = π.

(b) Construct a triangle T ′ with the same interior angles α, β, γ, such that

Area(T ′) = 293 · Area(T ).

(c) Prove that it is not possible to compute the area of a triangle T ⊆ R2 just by
knowing its interior angles α, β, γ.

Solution.

(a) See the figure below. We slide one side of T over and use properties of parallel
lines (and interior angles of a transversal) to see that α, β, and γ together fit
into an angle of π. Figure from

https://www.omnicalculator.com/math/triangle-angle

(b) The dilation ϕ : R2 −→ R2 given by ϕ(x, y) = (
√

293x,
√

293y) preserves angles and
has determinant 293. Therefore, T ′ := ϕ(T ) is a triangle with the desired properties.
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(c) From part (b), we have two triangles with the same angles but different areas, so the
angles of a triangle do not uniquely determine its area. This is to be contrasted with
the spherical case, where the area of a triangle with angles α, β, γ is exactly equal to
α+ β + γ − π.

Problem 3. (20 pts) Triangles in Euclidean Surfaces. In this problem C is the
Euclidean cylinder, M is the twisted Euclidean cylinder, T 2 is the Euclidean 2-torus,
and K is the Klein bottle. We will denote an arbitrary Euclidean surface by S.

(a) Give two triangles T1, T2 ⊆ C such that the interior angles of T1 coincide with
the interior angles of T2, but the area of T1 is distinct from the area of T2.

(b) Do there exist two triangles T1, T2 ⊆ T 2 with the same interior angles but dif-
ferent area ? How about T1, T2 ⊆ K in the Klein bottle ?

(c) Let T ⊆ S be a triangle with sides given by the lines L1, L2, L3 ⊆ S. How
many regions does the complement S \ {L1, L2, L3} has ?

Answer for each of the five cases S = R2, S = C, S = M,S = T 2 and S = K.

(d) Let T ⊆ S be a triangle in an arbitrary Euclidean surface S, and α, β, γ be the
interior angles of T . Show that α + β + γ = π.

Solution.

(a) Every Euclidean surface can be covered with small disks that are isometric to
disks in R2. So as long as our triangles stay within such a local disk, we can
mimic geometry in the plane. More simply, if we draw triangles in R2 that lie
completely in a fundamental domain of S, then the images of these triangles
under the quotient map π : R2 −→ S will satisfy what we need.

In R2, take the triangle ∆1 with vertices (0, 0), (1/4, 0), and (0, 1/4). Take
another triangle ∆2 with vertices (0, 0), (1/8, 0), and (0, 1/8). These triangles
have the same interior angles but different areas. Let π : R2 −→ C be the
quotient map to the cylinder, and define T1 := π(∆1) and T2 := π(∆2). Then
T1 and T2 have the same angles as ∆1 and ∆2, because π is a local isometry.
Furthermore, π preserves the areas of ∆1 and ∆2, because both are contained
in a Euclidean disk (a disk of radius 1

2
). We conclude that T1 and T2 satisfy

the desired properties.

(b) Yes, for both. The argument given in (a) will work for every Euclidean surface.

(c) For S = R2, a picture easily shows that the complement is split into 7 pieces:
T itself, and six unbounded regions.
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For S = C and S = M , there are infinitely many regions, which you can
see, for example, by drawing the lines L1 = {x = 0}, L2 = {y = 0}, and
L3 = {y = x− 1

2
} in a fundamental domain.

For S = T 2 and S = K, there are many different possible numbers of re-
gions. For example, take the lines L1 = {x = 0}, L2 = {y = 0}, and
L3 = {ny = x − 1

2n
} for any positive integer n (the − 1

2n
is just there to

shift our line a little so we avoid a triple intersection). If you draw these in a
fundamental domain for T 2, you can count n+ 2 regions. The same lines in K
give 3n+ 3 regions.

(d) Let π : R2 −→ S be the quotient map. Let L1, L2, L3 be the three non-
coincident lines in S that make up T . Then L1 = π(N1), L2 = π(N2), and
L3 = π(N3) for some non-coincident lines N1, N2, and N3 in R2 which form a
triangle. Since π is a local isometry, it preserves angles, so the angles formed
by N1, N2, and N3 must be the α, β, and γ from T ⊆ S. Then α + β + γ = π
by Problem 2(a).

Problem 4. (20 pts) Triangles in S2 (Part I). Let T ⊆ S2 be a triangle in S2,
defined by the lines L1, L2, L3 ⊆ S2.

(a) Show that the area of the unit radius 2-sphere is 4π.

(b) Show that the area of a sector of angle α is α/2π the area of the 2-sphere. A
sector of angle α is the bigon described by two lines at angle α.

(c) Show that the complement S2 \{L1, L2, L3} consists of eight triangular regions,
where L1, L2, L3 ⊆ S2 are lines defining a triangle.

(d) Show that there exist six pairs of such regions such that the union of the pair
of region is a sector as in Part (b).

(e) Let T ⊆ S2 be a triangle, and α, β, γ be the interior angles of T . Show that

α + β + γ = π + Area(T ).

Solution.

(a) Probably the only calculus in the whole course! In the usual spherical coordi-
nates (φ ∈ [0, 2π) is the azimuthal angle from the x-axis and θ ∈ [0, π) is the
polar angle from the z-axis) an area element on the sphere is sin θ dθ dφ. We
then have

Area(S2) =

∫ 2π

φ=0

∫ π

θ=0

sin θ dθ dφ = 4π.
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(b) Let U ⊆ S2 be our sector By a suitable isometry, assume that the vertices of
U are the North and South poles, so that the lines creating the sector are lines
of longitude. For any curve of constant latitude (the intersection of S2 with
a plane parallel to the xy-axis), its intersection with U forms an arc of angle
α/2π. Build U up as a Riemann sum of horizontal strips by considering n such
curves of constant latitude, breaking U into n “rectangular” strips, R1, . . . , Rn.
For large n, each strip Ri has area approximately α/2π times the full circular
strip containing Ri (this circular strip is the space in S2 between two nearby
horizontal planes). Summing up, the result follows as n→∞.

(c)-(e) For the rest, see the proof of the Theorem by Harriot in section 3.8 of Stillwell,
pp. 65-67.

Problem 5. (20 pts) Triangles in S2 (Part II).

(a) Show that there exists a triangle T ⊆ S2 such that all its interior angles α, β, γ
are distinct from π/2.

(b) Let ε ∈ R+, prove that there exist triangles T ⊆ S2 such that one of its in-
terior angles is less than ε. That is, there are triangles with one of its angles
arbitrarily small.

(c) Let ε ∈ R+, prove that there exist triangles T ⊆ S2 such that two of its inte-
rior angles are less than ε. That is, there are triangles with two of its angles
arbitrarily small.

(d) Let ε ∈ R+ be given. Construct a triangle T ⊆ S2 whose area is 2π − ε, i.e.
build a triangle whose area is arbitrarily close to half the area of the 2-sphere S2.

(e) Is is possible to have triangles T ⊆ S2 with arbitrarily small area ?

Solution.

(a) A triangle in S2 is specified by three non-coincident lines and a selection of one
of the eight resulting regions cut out by these lines. The angles in one of these
regions differ only by taking supplementary angles of the angles in another
region, so we can ignore this selection of region.

Therefore, the problem reduces to showing that there exist three planes in R3,
each passing through the origin, which have no common intersection on S2, and
no two of which are perpendicular. Take the planes {x = 0}, {x+ y = 0}, and
{x + z = 0}. The intersection of these planes is the single point (0, 0, 0), and
their normal vectors are (1, 0, 0), (1, 1, 0), and (1, 0, 1), respectively, no two of
which are perpendicular. Therefore, these planes cut out a triangle in S2 with
no right angles.

Shown below is a picture of the above situation. Notice that there are no right
angles.
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(b) This follows from (c) below.

(c) It suffices to modify the planes in the proof of (a) so that, of the three possible
dot products of the resulting normal vectors (which we should now take to be
normalized), at least two are arbitrarily close to 1. This will translate directly
into arbitrary smallness of the corresponding angles between our planes (since
the transition from dot product to angle is arccos, which is one-to-one and takes
values near 0 for inputs near 1).

Note that, again, supplementary angles need not concern us: when cutting S2

with three planes, eight regions are created, grouped into four pairs of congruent
triangles. Each of the four types is obtained from a single triangular region T
by replacing two of the angles of T by their supplements. Therefore, if our
normal vectors have large enough dot products, we are guaranteed that one
type of the resulting triangles will include the two corresponding acute angles.

Try these planes out for size:

N1 = {x = 0}, N2 = {x+ δy = 0}, and N3 = {x+ δz = 0},

where δ > 0 is some small number (really, δ is some monotonically increasing
function of the given ε, but the details don’t matter). Once again, these planes
intersect only at the origin. The corresponding unit normal vectors are

n1 = (1, 0, 0), n2 = γ(1, δ, 0), and n3 = γ(1, 0, δ),

where γ = (1 + δ2)−1/2. The pairwise dot products are

n1 · n2 = n1 · n3 = γ and n2 · n3 = γ2.

Since γ → 1 as δ → 0, these dot products can be made arbitrarily close to 1.
Note that any given triangle cut out by N1, N2, and N3 will not have all of its
angles be small (since the angles must add up to something larger than π), but
by taking supplements, we can find a triangle where two angle are small.
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Shown below are pictures of the situation for values δ = 1, δ = 1/2, δ = 1/4,
and δ = 1/8.

(d) Let T be one of the two largest triangles created by the planes N1, N2, and N3

in the solution to (c). Its angles are the supplements of arccos γ, arccos γ, and
arccos γ2, so

Area(T ) = (π − arccos γ) + (π − arccos γ) + (π − arccos γ2)− π

= 2π −

(
2 arctan δ + arccos

(
1

1 + δ2

))
.

Note that the subtracted expression in parentheses is a one-to-one function that
goes to 0 as δ → 0. Therefore, we can set this expression equal to ε and invert,
yielding δ as a function of ε. The result is Area(T ) = 2π − ε.

(e) Yes. The smallest triangles in our construction above have angles arccos γ,
arccos γ, and π − arccos γ2, yielding the area

arccos γ + arccos γ + (π − arccos γ2)− π = 2 arccos γ − arccos γ2,

which goes to 0 as δ → 0.

Remark. The full range of possible sums of angles for triangles in spherical geometry
is (π, 3π). Contrast to Euclidean geometry where the only allowed value is π.

Problem 6. (20 pts) Polygons in R2 and S2. Let P be an n-sided polygon, i.e. a
region of S2 bounded by n lines L1, L2, . . . , Ln. For instance, n = 3 is a triangle.

(a) Let P ⊆ R2 be a polygon in the plane, and α1, . . . , αn its interior angles. Find
a formula for the sum α1 + . . .+ αn in terms of n.

(b) Find two polygons P1, P2 ⊆ R2 with the same interior angles but different areas.

(c) Let P ⊆ S2 be a polygon in the sphere, and α1, . . . , αn its interior angles. Find
a formula for the sum α1 + . . .+ αn in terms of n and Area(P ).
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(d) Show that two polygons P1, P2 ⊆ S2 with the same interior angles must have
the same area.

Solution.

(a) We argue that P can be broken down into n− 2 triangles without creating any
new vertices. This is obvious if P is convex, but otherwise it requires some
work. The result α1 + · · ·+ αn = (n− 2)π then follows immediately.

We proceed by induction on n. For n = 3, the result is obvious. For a general
n-gon assume the result for all k-gons with k < n. Order the vertices v1, . . . , vn
of P in the natural way. Draw a ray from v1 to vn and rotate it so that it
touches the interior of P . Stop when the ray hits a vertex v`. If ` = n, start
over, and rotate in the other direction. Now we may assume that i 6= 2, n.
Then Q1 := v1v2 · · · v` and Q2 = v1v`v`+1 · · · vn are two polygons that together
make up P . Both Q1 is an `-gon, and Q2 is an (n− `+ 2)-gon.

Notice that ` and n − ` + 2 are less than n. By the inductive hypothesis, Q1

can be broken into ` − 2 triangles, and Q2 can be broken into n − ` triangles.
Therefore, P can be broken into (`− 2) + (n− `) = n− 2 triangles.

(b) Take triangles T and T ′ from Problem 2(b). In general, a dilation preserves
angels of any polygon, but changes the area.

(c) The argument is the same as in (a). We cover P with n − 2 triangles, whose
interior angles sum to α1 + · · ·+αn. Furthermore, the sum of the areas of these
triangles is Area(P ), so

Area(P ) = α1 + · · ·+ αn − (n− 2)π.

As usual, the excess in Euclidean geometry is identically zero, while in spherical
geometry, it is Area(P ).

(d) Since our formula for area takes as input only the interior angles, the area of a
polygon in the sphere is completely determined by its interior angles.

Problem 7. (20 pts) Tilings of the 2-sphere S2. In this problem we will study how
to regularly tile the 2-sphere, i.e. how to regularly cover the 2-sphere with polygons of
the same area.

(a) Show that S2 can be subdivided into four triangles of the same area.

(b) Show that S2 can be subdivided into eight triangles of the same area.

(c) Show that S2 can be subdivided into twenty triangles of the same area.

(d) Show that S2 can be subdivided into six squares of the same area.
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(e) Show that S2 can be subdivided into twelve pentagons of the same area.

(f) (Challenging) Show that if S2 is subdivided into n-gons, all with the same
area and same length of sides, then the subdivision must be as into triangles,
squares or pentagons.

(Part (f) will not be graded.)

Solution.

(a)-(e) All images are from

https://mathstat.slu.edu/escher/index.php/Spherical_Geometry

Notice that the types and number of polygons in parts (a) through (e) correspond
exactly to the five platonic solids, the tetrahedron (four triangles), cube (six squares),
octahedron (eight triangles), dodecahedron (twelve pentagons), and icosahedron (twenty
triangles), shown below.

Each of these regular polyhedra may be used to tile the sphere as instructed, simply
by putting the vertices of a platonic solid on the sphere, erasing the original faces,
and replacing the edges with great circles. In a way, the faces are “ballooned” up to
the sphere. The results look like this:
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(f) This is part of the classification of regular polyhedra: the faces of any regular polyhe-
dron are triangles, squares or pentagons. At any given vertex of our spherical tiling,
the sum of the angles at that vertex is 2π. Since there must be at least three edges
coming from each vertex, this means that all polygons used must have interior angles
at most 2π/3. However, from Problem 6(c), an interior angle θ of a regular spherical
n-gon is strictly greater than (1− 2/n)π. Therefore, we have

(1− 2/n)π < θ ≤ 2π/3,

which implies n < 6. Therefore, the only possibilities are n = 3, 4, 5, corresponding
to triangles, squares, or pentagons. In particular, for n = 5, θ > 0.6π, so there can
only be 3 pentagrams meeting at a vertex (any more would exceed a total angles of
2π). This is the dodecahedron of part (e). Similarly, for n = 4, θ > π/2, so only 3
squares may meet at a vertex, the cube of part (d). Finally, for n = 3, θ > π/3, and
we can have 3, 4, or 5 triangles meeting at a vertex, corresponding to the tetrahedron,
octahedron, and icosahedron of parts (a), (b), and (c), respectively.

Here is another proof: Suppose that we have partitioned S2 into n-gons, and let q
be the number of edges that meet at every vertex. Let V , E, and F stand for the
number of vertices, edges, and polygons used to partition the sphere. We will make
use of Euler’s formula (without proof), which says that V − E + F = 2.

First, notice that since every polygon has n edges, we might say that there are
nF total edges. This double counts edges, since every edge belongs to two faces.
Therefore, nF = 2E actually. Similarly, since q edges meet at each vertex, we might
say that there are qV edges. This also double costs edges, because each edge has two
vertices in it, so qV = 2E actually. Plugging into Euler’s formula and simplifying
yields

1

n
+

1

q
=

1

2
+

1

E
.

First, we automatically have n ≥ 3 (because there are no polygons with less than
three sides), and q ≥ 3 (a polygon must have at least three vertices). Next, we can’t
have both n and q greater than 3, because otherwise we would have

1

2
+

1

E
=

1

n
+

1

q
≤ 1

4
+

1

4
=

1

2
,

a contradiction because E > 0. Therefore, we either have n = 3 or q = 3. If n = 3,
then we are in the case of a partition by triangles. If q = 3, then we can simplify
Euler’s formula to

1

n
− 1

6
=

1

E
.

The only solutions for n are n = 3, n = 4, or n = 5, corresponding to subdivisions of
the sphere by triangles, squares, or pentagons, as desired.

We could keep going and use Euler’s formula to compute all possible combinations
of the numbers (n, q, V,E, F ). These cover the cases of parts (a) through (e).

Remark. Actually, if we allow for 2-gons, we have additional spherical tessellations,
like the one below.
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